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a b s t r a c t

Given a multinomial decomposable graphical model, we identify several alternative
parametrizations; in particular we consider conditional probabilities of clique-residuals
given separators, as well as generalized log-odds-ratios. For each such parametrization,
we construct the corresponding reference prior for suitable groupings of the parameters.
Each one of the reference priors we obtain is conjugate to the likelihood and is proper.
Furthermore, all these priors are equivalent, in the sense that they can be deduced from
each other by a change of variable. We also derive estimators of cell-probabilities based on
the reference prior. Finally, we discuss in detail a parametrization associated to a collection
of variables representing a cut for the statistical model, and derive the corresponding
reference prior.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

Graphical models, see e.g. [27], are statistical models such that dependences between variables are expressed by means
of a graph. The study of graphical models is an established and active area of applied and theoretical research.

In this paper, we considermultinomial graphicalmodelsMarkovwith respect to undirected decomposable graphs.While
such models are Markov equivalent to Directed Acyclic Graph (DAG) models without immoralities, they are of interest by
themselves since they are also used for the analysis of multi-way contingency tables.

We follow a Bayesian approach which requires a prior distribution on the parameter space. Parameter priors for
undirected discrete graphical, or more generally log-linear, models have been considered in [17,29,18,26,19].

Despite the adoption of reasonably simplified models, prior elicitation still represents a major concern even for
moderately large graphs, because of the very high number of parameters involved. This naturally suggests to search
for default, or objective, priors, requiring a minimal subjective input. However there is now evidence, see e.g. [6], that
naive approaches based on flat non-informative priors are largely inadequate in multi-parameter settings. In this context,
reference analysis represents one of the most successful general methods to derive default prior distributions. For an
informative review, see [11]; while Berger et al. [10] provide a formal development. Although the algorithmic complexity
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for the construction of reference priors can be substantial, it is known that suitable re-parametrizations of the model may
considerably simplify the task; see for instance [15,13].

We address two specific issues in this paper: identifying alternative parametrizations for a given discrete decomposable
graphical model, and constructing the corresponding reference priors. More precisely, in Section 2 we consider several
parametrizations: conditional probabilities of clique-residuals given separators, as well as generalized log-odds ratios that
arise as canonical parameters of equivalent exponential family representations of the underlying sampling distribution,
and explicate their mutual relationships. In Section 3, we provide the expressions for the corresponding reference priors,
and discuss their main properties. We also provide the expressions for the Bayesian estimator under quadratic loss, i.e. the
posterior expectation of the probability of each cell, and for the Bayesian estimator under a normalized squared loss. In
Section 4, we present a parametrization associated to a cut in the graphical model, and derive the corresponding reference
prior together with the ensuing estimator.

In the last section, we mention some possible points of discussion. In particular, we remark that our estimators could be
investigated from the perspective of risk properties, along the lines pursued in [23,24] for Poisson decomposable graphical
models. Finally, technical details for the proof of the relationships between various parametrizations are given in the
Appendix.

2. Generalized log-odds-ratios parametrizations

2.1. Preliminaries

Let us recall some basic facts about undirected graphs and graphical models: for further details the reader is referred to
[27, ch. 2]. An undirected graph G is a pair (V , E) where V is a finite set of vertices and E the set of edges, an edge being an
unordered pair {γ , δ}, γ ∈ V , δ ∈ V , γ ≠ δ. Henceforth the graph G is assumed to be decomposable. For a given ordering
C1, . . . , Ck of the cliques, we define the following sets

Hl = ∪
l
j=1 Cj, l = 1, . . . , k, Sl = Hl−1 ∩ Cl, l = 2, . . . , k, Rl = Cl \ Sl, l = 2, . . . , k

called, respectively, the l-th history, l-th separator and l-th residual. For a perfect ordering of the cliques (i.e. if for any l > 1
there is an i < l such that Sl ⊆ Ci) the Sl, l = 2, . . . , k are minimal separators.

A graphical model, Markov with respect to a given graph G, is a family of probability distributions on (Xγ , γ ∈ V ) such
that Xδ is independent of Xγ given XV\{δ,γ } whenever {γ , δ} is not in E. In this paper we shall focus on contingency tables
arising from the classification of N units according to a finite set V of criteria, see [27, Ch. 4]. Each criterion is represented
by a variable Xγ , γ ∈ V , which takes values in a finite set Iγ . Let I = ×γ∈V Iγ . The cells of the table are the elements

i = (iγ , γ ∈ V ), i ∈ I. (2.1)
Each of N individuals falls into cell i independently with a probability p(i); we let p = (p(i), i ∈ I), with


i∈I p(i) = 1.

Furthermore, we write n(i) for the i-th cell-count and n = (n(i), i ∈ I), with


i∈I n(i) = N . We consider here the model
MG, which, for a given G and a given integer N , is the set of multinomial M(N, p) distributions, with N =


i∈I n(i) and

p = (p(i), i ∈ I) in the |I| − 1 dimensional simplex, which are Markov with respect to G.
From now on, we adopt the notation ‘‘D⊆0 V ’’ to mean that D may be the empty set while ‘‘D ⊆ V ’’ excludes the empty

set. Let E denote the power set of V , excluding the empty set, i.e.
E = {F ⊆ V , F ≠ ∅}.

For D ∈ E , we denote the D-marginal cell and its corresponding count by
iD = (iγ , γ ∈ D), and n(iD), iD ∈ ID = ×γ∈D Iγ . (2.2)

We therefore have n(iD) =


j∈I|jD=iD
n(j) =


jV\D∈IV\D

n(iD, jV\D). Note that n(i∅) = N . For F ,D in E , we use the notation
pD(iD) and pD|iF (iD) to denote the marginal and the conditional probabilities, respectively

pD(iD) =


j∈I|jD=iD

p(j) and pD|iF (iD) =
pD∪F (iD, iF )

pF (iF )
.

Assuming that ‘‘0’’ indicates one of the levels for each variable, we let i∗γ denote the‘‘0’’-level in Iγ , so that

i∗ = (i∗γ , γ ∈ V )
denotes the cell with all components equal to 0.

Definition 2.1. For D ∈ E , we define

I∗

D = {iD | iγ ≠ i∗γ , ∀γ ∈ D}. (2.3)

In words, I∗

D is the set of marginal cells iD such that none of their components is equal to 0. We set I∗

V = I∗. For example, if
D = {a, b, c}, a takes the values {0, 1, 2, 3}, b takes the values {0, 1, 2}, c takes the values {0, 1}, then

I∗

D = {(1, 1, 1), (2, 1, 1), (3, 1, 1), (1, 2, 1), (2, 2, 1), (3, 2, 1)}.
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2.2. The parametrization for G decomposable

The standard multinomial probability function is usually written in terms of the cell-probabilities p = (p(i), i ∈ I) as

f (n|p) =
N!

i∈I

n(i)!


i∈I

p(i)n(i), (2.4)

where the only restriction on the parameters p(i) is


i p(i) = 1. As shown in [30, Lemma 2.2], if we use the ‘‘baseline-
constrained’’ parametrization

θ(iD) = log


F ⊆0 D

p(iF , i∗V\F )
(−1)|D\F |

, D⊆0 V , iD ∈ I∗

D, (2.5)

the density


i∈I p(i)n(i), with respect to a suitable dominating measure, can be written in natural exponential family (NEF)
form exp{⟨θ, x⟩ − k(θ)}. Note that for F = ∅, p(iF , i∗V\F ) = p(i∗) and θ(i∅) = θ(i∗) = log p(i∗). The parameters θ(i∗) and
p(i∗) are not free but functions of the other θ or p parameters. We also emphasize the fact that while θ(iD) is indexed by the
marginal cell iD, its definition requires knowledge of the joint probabilities p(i) in the full table. Using Lemma 2.1 in [30] and
the Hammersley–Clifford Theorem, it is immediate to show that the multinomial model is Markov with respect to a given
decomposable, non complete, graph G, if and only if for iD ∈ I∗

D, D ⊆ V

θ(iD) = 0 whenever D is not complete in G. (2.6)

In order to give the NEF-representation of the multinomial family, Markov with respect to a decomposable graph G, we
define

D = {D ∈ E | D complete} (2.7)

and more generally, for any subset A ⊆ V of the vertex set,

DA
= {D ⊆ A | D is complete} and DA

0 = DA
∩ ∅ (2.8)

so that D = DV . We are now going to provide the representation of MG in three different parametrizations.
The first parametrization is in terms of the log-linear parameters defined in (2.5) with canonical parameter

θmod
= θ(D) = (θ(iD), D ∈ D, iD ∈ I∗

D) (2.9)

and corresponding canonical statistic n(D) = (n(iD), D ∈ D, iD ∈ I∗

D). It will also be convenient to use the notation

k(θ(DA)) = log

1 +


D⊆A


iD∈I∗

D

exp

F⊆D

θ(iF )

 (2.10)

for the cumulant generating function, and the notation ⟨θ(DA), n(DA)⟩ =


D⊆A


iD∈I∗
D
θ(iD)n(iD). for the inner product.

We note here that, as indicated by our notation, this inner product and (2.10) depend upon DA since by (2.6), θ(iF ) = 0 if F
is not complete. From the general result (2.22) in [30] it follows immediately, as a special case, that the NEF representation
of MG in terms of θmod is as follows.

Proposition 2.1. Let G be a decomposable graph. The NEF-representation of the multinomial Markov model in terms of the
parametrization θmod is given by

exp{⟨θ(D), n(D)⟩ − N k(θ(D))}. (2.11)

Let us now introduce a second parametrization which is relative to the marginal distribution for C1 and the conditional
distributions for Rl given Sl. For a given perfect ordering C1, . . . , Ck of the cliques of G, theMarkov property implies (see [27],
p. 90)


i∈I

p(i)n(i) =


i∈I


k

l=1
pCl(iCl)

k
l=2

pSl(iSl)


n(i)

=


i∈I


pC1(iC1)

k
l=2

pRl|iSl (iRl)

n(i)

. (2.12)

As a consequence we have
i∈I

p(i)n(i) =


iC1∈IC1

(pC1(iC1))
n(iC1 )

k
l=2


iSl∈ISl


iRl∈IRl

(pRl|iSl (iRl))
n(iCl ). (2.13)
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Note that (2.13) expresses themultinomialMarkovmodel in terms of themarginal probabilities in the C1-table, aswell as the
conditional probabilities in the iSl-slice of the Rl-table, for l = 2, . . . , k. Expression (2.13) gives rise to a new parametrization
which we label pcond

pcond = (pC1 , pRl|iSl , iSl ∈ ISl , l = 2, . . . , k), (2.14)

where

pC1 = (pC1(iC1), iC1 ∈ IC1) and pRl|iSl = (pRl|iSl (iRl), iRl ∈ IRl).

Note that there are 1 +
k

l=2 |ISl | groups of parameters. We remark that the factorization (2.13), and the allied
parametrization pcond, are predicated on a specific ordering of the cliques C1, . . . , Ck. It is well known that to each undirected
decomposable graphical model there corresponds a directed acyclic graph (DAG)model which isMarkov equivalent, see [2].
In general, however, a DAG model need not be Markov equivalent to an undirected graphical model. Yet, each DAG model
admits a recursive factorization such as (2.13) for the joint density, and thus a parametrization of type pcond can always be
defined also for DAG models. The latter will contain the conditional probabilities of each child-node given all its parent-
configurations.

We now define the log-linear parameters corresponding to the factorization (2.13).

Definition 2.2. For each clique Cl, l = 1, . . . , k, we define

θCl(iD) = log


F ⊆0 D

(pCl(iF , i∗Cl\F ))
(−1)|D\F |

, D ⊆ Cl, iD ∈ I∗

D. (2.15)

Definition 2.3. For each residual Rl, l = 2, . . . , k, and fixed iSl ∈ ISl , we define

θRl|iSl (iD) = log


F ⊆0 D

(pRl|iSl (iF , i∗Rl\F ))
(−1)|D\F |

, D ⊆ Rl, iD ∈ I∗

D. (2.16)

Note that both θCl(iD) and θRl|iSl (iD) are ‘‘marginal’’ parameters, in the sense that they are functions of probabilities in the
Cl-marginal table.

For any A ⊆ V , B ⊆ V , B ∩ A = ∅ and any fixed iB ∈ IB, we write

θ(DC1) = (θC1(iD), D ⊆ C1, iD ∈ I∗

D), (2.17)

for the log-linear parameters for the clique-C1-table and n(DC1) = (n(iD), D ⊆ C1, iD ∈ I∗

D) for the cell-counts in that
table. Similarly,

θ(iB,DA) = (θA|iB(iD), D ⊆ A, iD ∈ I∗

D), (2.18)

are the log-linear parameters in the iB-slice of the A-table and n(iB,DA) = (n(iB, iD), D ⊆ A, iD ∈ I∗

D) the cell-counts in
that table. We collect together the elements of (2.17) and (2.18) in a single parameter

θ cond = (θ(DC1), θ(iSl ,D
Rl), isl ∈ ISl , l = 2, . . . , k) (2.19)

with corresponding canonical statistics ncond
= (n(DC1), n(iSl ,D

Rl), isl ∈ ISl , l = 2, . . . , k).
Since C1 and Rl, l = 2, . . . , k, are complete, we can apply Lemma 2.2 of [30] to each of the C1-marginal and Rl-conditional

multinomials in the iSl-slice of (2.13) and obtain the following representation.

Lemma 2.1. The NEF-representation, in terms of the parametrization θ cond,

• of the marginal C1-model is given by
iC1∈IC1

(pC1(iC1))
n(iC1 ) = exp{⟨θ(DC1), n(DC1)⟩ − N k(θ(DC1))} (2.20)

• of the conditional Rl-model in the iSl-slice is given by
iRl∈IRl

(pRl|iSl (iRl))
n(iCl ) = exp{⟨θ(iSl ,D

Rl), n(iSl ,D
Rl)⟩ − n(iSl) k(θ(iSl ,D

Rl))}. (2.21)

Note that the number of parameters in θmod and θ cond is of course the same. Indeed each element of each one of the two
parametrizations is indexed by iD,D ∈ D, iD ∈ I∗

D either directly as for θmod, or through the components iF , F ⊆ Sl, iF ∈ I∗

F
and iD,D ⊆ Rl, iD ∈ I∗

D as for θ cond. Furthermore, θ cond is a block-wise one-to-one function of pcond.
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Since the clique marginal generalized log-odds ratios are also of interest, we are now going to define a third
parametrization of the multinomial model in terms of the generalized log-odds ratios in (2.15). Any marginal cell iSl can
be written as

iSl = (iF , i∗Sl\F )

where F ⊆0 Sl, iSl ∈ I∗

Sl
Accordingly, we define

θ(D
Sl
0 ,D

Rl) = (θCl(iF , iD), D ⊆ Rl, iD ∈ I∗

D, F ⊆0 Sl, iF ∈ I∗

F )

n(DSl
0 ,D

Rl) = (n(iF , iD), D ⊆ Rl, iD ∈ I∗

D, F ⊆0 Sl, iF ∈ I∗

F )

and

θ cliq = (θ(DC1), θ(D
Sl
0 ,D

Rl), l = 2, . . . , k) (2.22)

with corresponding cell counts ncliq
= (n(DC1), n(DSl

0 ,D
Rl), l = 2, . . . , k).We note that for F = ∅, θCl(iF , iD) = θCl(iD)

and n(iF , iD) = n(iD). Clearly the number of parameters in θ cliq is the same as in θ cond.
The expression of the density in terms of this new parametrizationwill be given in the next section, after we have derived

the relationship between the three parametrizations (2.9), (2.19) and (2.22).

2.3. Relationship between the various θ parametrizations

The relationship between the three θ parametrizations is given in the following proposition. To state the results
succinctly, let us also define, for any F ⊆ V and iF ∈ I∗

F ,

i⊆0 F = {iG, G⊆0 F}.

Then for given F ⊆ V and iF ∈ I∗

F , and A ⊆ V such that F ∩ A = ∅, we define

θ(i⊆0 F ,D
A) = (θ(iG, jL), G⊆0 F , L ⊆ A, jL ∈ I∗

L ) (2.23)

and

k(θ(i⊆0 F ,D
A)) = log

1 +


L⊆A

exp

K ⊆0 F
H⊆L,
jH∈I∗

H

θ(iK , jH)

 . (2.24)

We note that for any l = 2, . . . , k, and F ⊆ Sl,

θ(i⊆0 F ,D
Rl) ⊂ θ(D

Sl
0 ,D

Rl).

Proposition 2.2. Let iD ∈ I∗

D and D ⊆ Cl,D ∩ Rl ≠ ∅. Then

(a) the relationship between θ cliq and θ cond is

θCl(iD) =


F ⊆0 D∩Sl

(−1)|(D∩Sl)\F | θ
Rl|(iF ,i∗Sl\F

)
(iD∩Rl) (2.25)

which, for D ⊆ Rl, is equivalent to

θ
Rl|(iF ,i∗Sl\F

)
(iD) =


G⊆0 F

θCl(iG, iD). (2.26)

(b) The relationship between θ cliq and θmod is as follows. Let {>l} denote the set of j ∈ {l + 1, . . . , k} such that Cl ∩ Cj ≠ ∅.
(i) For D ⊈ Sj, for some j ∈ {>l},

θ(iD) = θCl(iD). (2.27)
(ii) For D ⊆ Sm,m ∈ {>l}

θ(iD) = θCl(iD)−


F ⊆0 D

(−1)|D\F |k(θ(i⊆0 F ,D
C>l)) (2.28)

where C>l = ∪m>l(Cm \ Cl) and k(θ(i⊆0 F ,D
C>l)) is defined as in (2.24).

Moreover, all θ(iH , jG) ∈ θ(i⊆0 F ,D
C>l) are such that H ∪ G ⊆ Cm for some m ∈ {>l} and is therefore either equal to

θCm(iH , jG) or can be expressed in terms of θCm(iE),m ∈ {>l}, E ⊆ Cm, iE ∈ I∗

E .
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The proofs of (2.25) and (2.26) can easily be derived fromDefinitions 2.2 and 2.3. The proof of (2.28), though, is not immediate
and is interesting. It is given in the Appendix.

Remarks. 1. Expression (2.26) is a generalization of the relationship between conditional and marginal log-odds ratios for
a three way table given in [1, p. 322].

2. According to (2.27) and (2.28), θ(iD) is a function of θCm(jH) such that H ⊆ Cm for m ≥ l only. This is going to be an
important fact when we derive the reference prior of θmodel from the reference prior on θ cond in the next section.

Relations (2.27) and (2.28) are crucial for the derivation of the reference prior for θ cliq in the next section, and we
therefore illustrate it here with an example.

Example 2.1. Consider a decomposable graphical model with the following perfect order of the cliques

C1 = {a, b, c}, C2 = {b, c, d}, C3 = {c, d, e}, C4 = {e, f },

having separators

S2 = {b, c}, S3 = {c, d}, S4 = {e}.

To simplify matters, let us assume the data are binary. In this case we can simplify the notation since, because of the corner
constraint conditions (see end of Section 2.2), I∗

D contains only one element for each D. Thus θ(iD) can more simply be
written θ(D). Let us take D = {c, d}. We see that D ⊆ C2 and D ∩ R2 = {d} ≠ ∅. Moreover C>2 = {e, f } and the set of
L ⊆ C>2 is equal to {e, f , ef }. Then according to (2.28), it follows that

θ(cd) = θC2(cd)− log(1 + eθ(e)+θ(ec)+θ(ed)+θ(ecd) + eθ(f ) + eθ(e)+θ(ec)+θ(ed)+θ(ecd)+θ(f )+θ(ef ))
+ log(1 + eθ(e)+θ(ed) + eθ(f ) + eθ(e)+θ(ed)+θ(f )+θ(ef ))+ log(1 + eθ(e)+θ(ec) + eθ(f ) + eθ(e)+θ(ec)+θ(f )+θ(ef ))
− log(1 + eθ(e) + eθ(f ) + eθ(e)+θ(f )+θ(ef )).

Since

θ(ec) = θC3(ec), θ(ed) = θC3(ed), θ(ecd) = θC3(ecd), θ(ef ) = θC4(ef ), θ(f ) = θC4(f ),

and according to (2.28) again,

θ(e) = θC3(e)+ log(1 + eθ(f ))− log(1 + eθ(f )+θ(ef )) = θC3(e)+ log(1 + eθ
C4 (f ))− log(1 + eθ

C4 (f )+θC4 (ef )),

we see that θ(cd) can be expressed in terms of θCm(E),m ≥ 2, E ⊆ Cm.

We will now give the expression of the multinomial Markov model with respect to θ cliq, using relation (2.26).

Lemma 2.2. Let G be a decomposable graph with its cliques C1, . . . , Ck arranged in a perfect order. The NEF-representation of
the multinomial Markov model in terms of the θ cliq parametrization is given by

i∈I

p(i)n(i) = exp{⟨θ(DC1), n(DC1)⟩ − N k(θ(DC1))}

k
l=2

exp


⟨θ(D

Sl
0 ,D

Rl), n(DSl
0 ,D

Rl)⟩

−


F ⊆0 Sl


jF∈I∗

F

n(jF )

H ⊆0 F

(−1)|F\H|k(θ(j⊆0 H ,D
Rl))

 . (2.29)

From (2.29), it appears that under the multinomial Markov model, the joint distribution of ncliq admits a conditional
reducibility structure, see [15]; specifically, it factorizes into the product of k conditional exponential families (save for
the first term which is a marginal distribution), in a recursive fashion according to the clique ordering.

3. Reference priors

Subjective prior elicitation to express uncertainty on the parameters described in the previous section presents a
formidable task, whose difficulty increaseswith the vertex size. Thismotivates the use of objective priors, which only require
as input the statistical model. Even setting aside the enormous difficulty of prior elicitation, a further reason for an objective
analysis is to acquire some sort of consensus on the elicited prior for scientific inference; see [7]. Often this consensus prior
is understood to represent weak prior information, implying that scientific inference would be most convincing for the
relevant community of scientists if the result were dominated by data acquired from an experiment, rather than by prior
information. A further reason for performing an objective Bayesian analysis is to provide a benchmark relative to which a
subjective analysis can be compared. Indeed the term reference prior, which now characterizes a specific methodology for
the construction of objective priors, stems from this interpretation.
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Notice that naive ‘‘flat’’ priors donot represent sensible noninformative distributions in highly dimensional problems, and
indeed they should be strongly discouraged, as argued in [11] and references therein. Instead one should start by providing
a meaningful definition of a prior which is maximally dominated by the data; this was conceptualized in the seminal paper
of Bernardo [12]. Using information-theoretic ideas, he introduced the notion of reference prior for a parameter of interest
indexing a given model. This is a prior which, within a class of possible distributions, maximizes the missing information
on the parameter associated to the prior. The concept of missing information requires computing the expected (Shannon)
information on the parameterwhich can be provided by an experiment under hypothetical independent infinite replications.
For a rigorous definition, see [10].

When themodel containsmany parameters, convincing arguments show that one should notmaximize the jointmissing
information, but rather proceed sequentially. Berger and Bernardo [8] provide a precise definition of the sequential process
required to construct a reference prior.

An important issue which arises when constructing a reference prior is the ordering in which the parameters of the
model should be considered, since the resulting reference prior will depend on such ordering. This happens because the
construction algorithm sequentially maximizes the missing information for each parameter component in the given order
(essentially, at each step, one considers the distribution of the current parameter conditional on those following it in the
chosen order). Parameters should be arranged in decreasing order of inferential interest, so that the first parameter in the list
should represent the primary parameter for the investigation. The fact that the ordering of the parameter is relevant to the
prior may look oddwhen regarded from a purely subjective elicitation viewpoint. On the other hand, as Bernardo [11, p. 48],
remarks, ‘‘reference priors are not meant to describe the analyst’s beliefs, but the mathematical formulation of a particular
type of prior beliefs those which would maximize the expected missing information about the quantity of interest which
could be adopted by consensus as a standard for scientific communication’’.

Another more subtle issue concerns grouping of the parameters. For instance, if the model parameters are
(φ1, φ2, . . . , φm) say, then we could create a set of k ≤ m groups (φ(1), . . . , φ(k)), where φ(1) = (φ1, . . . , φm1), φ(2) =

(φm1+1, . . . , φm1+m2), . . . , φ(k) = (φm1+m2+···mk−1+1, . . . , φm). The reference prior on (φ1, φ2, . . . , φm) will then depend
also on this particular grouping, as well as on the ordering (φ(1), . . . , φ(k)), of the parameters. For a discussion of ordered
group reference priors, see [9].

The preceding discussion shows that weak information must be focussed on specific aspects, or goals, of the analysis,
and the resulting prior will reflect these inputs. In other words, there is no unambiguous definition of the expression
‘‘noninformative prior’’, valid in absolute term. Ideally, ordering and grouping should have a substantive connection to the
structure of the problem under consideration to be compelling for an objective Bayesian analysis. Anticipating results that
we will present later in this section, we will derive a reference prior for the parameter of a graphical multinomial model
which is specific to a particular grouping of the parameters. The latter is inherent in the nature of the graph (and thus has a
structural interpretation); on the other hand, the particular order of the groups will prove to be immaterial.

A final issue concerns invariance of the reference prior methodology to model reparametrization. As with other
techniques which construct priors using an algorithm taking as input a statistical model, there is no guarantee that the prior
obtained in the original parametrizationφ, say, will be coherentwith that produced on a newly defined reparametrization of
the original modelψ . To be coherent, the two priors should be probabilistically equivalent, i.e. linked to each other through
the usual change-of-variable rule of probability theory. A well known situation where this lack of coherence may arise is
with conjugate families of priors; see [14,22]. On the other hand, Jeffreys priors are well known to satisfy the property of
invariance, which they inherit from the invariance of the expected Fisher information matrix.

Concerning the reference prior, the following result holds. Let pφ(φ) be the reference prior for φ, relative to the ordered
grouping (φ(1), . . . , φ(k)). Let ψ = g(φ) be a reparametrization and consider the ordered grouping ψ = (ψ(1), . . . , ψ(k))
with ψ(l) having the same dimension as φ(l) and ψ(l) being a function of (φ(1), . . . , φ(l)), for l = 1, . . . , k. We call the map
φ → ψ block-lower-triangular. Then the reference prior pψ (ψ) = pφ(g−1(ψ))|Jφ(ψ)|, where Jφ(ψ) is the Jacobian of the
transformation, so that invariance is satisfied; see [33,16]. Intuitively this happens because the groups of the new parameter
ψ are arranged in an order of importance consistent with that of φ. An important special case occurs whenψ(l) = hl(φ(l)): in
this casewe say that themap is block-wise one-to-one. Clearly invariance is desirablewhenever no ‘‘natural’’ or ‘‘privileged’’
parametrization is available for the problem at hand.

We now consider reference priors for the various parametrizations introduced in Section 2. We shall only provide an
outline of the proofs, because they follow the technical steps described in Sections 2 and 4.2.1 of [15].

Recall that a reference prior for a multidimensional parameter depends on the grouping of its components, as well as
the ordering of its groups. For a given graph G, let C1, . . . , Ck represent a perfect ordering of the cliques. We first consider
the reference prior for the parametrization pcond, see (2.14). Next we will consider the reference priors for θ cond, θ cliq, θmod

following a parallel grouping-structure. We shall see that all these reference priors are equivalent, so that invariance holds.
In other words, our objective Bayesian analysis will not depend on the specific parametrization we choose to work with.

Proposition 3.1. The reference prior for pcond relative to the grouping defined in (2.14) is

πR
pcond(p

cond) ∝

 
iC1∈IC1

p(iC1)

−
1
2 k

l=2


iSl∈ISl

 
iRl∈IRl

pRl|iSl (iRl)

−
1
2

. (3.1)



G. Consonni, H. Massam / Journal of Multivariate Analysis 105 (2012) 380–396 387

Wenote that the reference prior for pcond is a product of Jeffreys’ priors, one for each of the groups of pcond, and is conjugate
to the family (2.13).

Proof. In our setting, we simply need to derive the (Fisher) information matrix. From (2.13) it appears that the likelihood
function factorizes into the product of terms, each involving exactly one group of pcond; furthermore each term is a saturated
multinomial. Accordingly the information matrix is block-diagonal, and the determinant of each block, using standard
results, is easily available. Specifically the first one, corresponding to clique C1, is given by

N

 
iC1∈IC1

p(iC1)

−1

, (3.2)

while for the remaining blocks the determinant is

E(n(iSl)|p)

 
iRl∈IRl

pRl|iSl (iRl)

−1

, iSl ∈ ISl , l = 2, . . . , k. (3.3)

Because of the perfect ordering the cliques, Sl ⊆ Cj for some j < l, so that the expected value E(n(iSl)|p) is a function of
parameters only belonging to groups preceding the l-th one. Following the theory summarized in [15, Sect. 2], the reference
prior is given by the square root of the product of the block-determinants, excluding the terms E(n(iSl)|p), and the result is
established. �

We now emphasize three properties of the reference prior for pcond. First of all, since the information matrix is block-
diagonal, the reference prior is order-invariant, i.e. it does not depend on the order of the groups. On the other hand, we
recall that the very structure of the parametrization depends on the specific ordering of the cliques C1, . . . , Ck. Secondly, we
remark that there exists also some degree of invariance with respect to grouping. Specifically, if we lumped together in one
single block all the iSl terms pRl|iSl , iSl ∈ ISl , the reference prior would not change. This feature will turn out to be useful later
on when deriving reference priors for alternative parametrizations. Third, we remark that the distribution πR

pcond belongs to
a family conjugate to the likelihood for pcond, see (2.13). Accordingly its hyper-parameters can be interpreted in terms of
‘‘prior counts’’; the latter however cannot be recovered as the margins of a fictitious overall table. Indeed, each cell in the
C1-table, as well as in the iSl slice of the Rl-table, has a prior count equal to 1/2, irrespective of the dimension of the subtables
and of the overall table. Finally, the prior is proper, since it is a product of Dirichlet priors, one for each block, each Dirichlet
being indexed by a vector of hyper-parameters with entries all equal to 1/2. We notice that the expression of the reference
prior (3.1) for the pcond parametrization also holds for the corresponding parametrization in an arbitrary DAGmodel, which
contains the conditional probabilities of each child-node given its parents. Indeed, all steps in the proof go through also for
this more general class of models.

We now turn to the derivation of the reference priors for the three θ parametrizations described in Section 2. Central to
our arguments below is invariance of the reference prior to block-lower-triangular parameter transformations.

We start by expressing pcond in terms of the θ cond. Using (2.15) and (2.16) we therefore define

ξ C1(iD) =


F⊆D

θC1(iF ), iD ∈ I∗

D (3.4)

ξ Rl|iF (iF , iD) =


L⊆D

θ
Rl|(iF ,i∗Sl\F

)
(iL) (3.5)

=


L⊆D


H ⊆0 F

θCl(iH , iL), iF ∈ I∗

F , iL ∈ I∗

L ,D ⊆ Rl. (3.6)

We let

ξ cond = (ξ C1 , ξ
Rl|(iF ,i∗Sl\F

)
, F ⊆ Sl, iF ∈ I∗

F , l = 2, . . . , k) (3.7)

where

ξ C1 = (ξ C1(iD),D ⊆ C1)

ξ
Rl|(iF ,i∗Sl\F

)
= (ξ

Rl|(iF ,i∗Sl\F
)
(iF , iD), D ⊆ Rl, iD ∈ I∗

D).

The mapping between pcond and ξ cond is block-wise one-to-one. As a consequence the reference prior on ξ cond can be
deduced from that of pcond as

πR
ξ cond

(ξ cond) = πR
pcond(p

cond(ξ cond))|Jpcond(ξ
cond)|, (3.8)
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where |Jpcond(ξ
cond)| is the absolute value of the Jacobian of the transformation pcond → ξ cond. It can be verified that

det

dpcond

dξ cond


=

 
iC1∈IC1

p(iC1)(ξ
C1)

 k
l=2


iSl∈ISl

 
iRl∈IRl

pRl|iSl (iRl)(ξ
Rl|iSl )

 , (3.9)

so that the induced reference prior for ξ cond is

πR
ξ cond

(ξ cond) ∝

 
iC1∈IC1

p(iC1)(ξ
C1)

−
1
2 +1

k
l=2


iSl∈ISl

 
iRl∈IRl

pRl|iSl (iRl)(ξ
Rl|iSl )

−
1
2 +1

. (3.10)

Clearly the reference prior for ξ cond is also conjugate. We shall also need the following result which can be easily derived
from Definitions 2.2 and 2.3 and Moebius inversion formula.

Lemma 3.1. For iC1 = (iF , i∗C1\F ),

pCl(iCl) =
exp ξ Cl(iF )

1 +


H⊆C1


jH∈I∗

H

exp ξ ClD (jH)
. (3.11)

For iSl and iRl = (iG, i∗Rl\G) given,

pRl|iSl (iRl) =
exp ξ Rl|iSl (iG)

1 +

H⊆Rl


jH∈I∗

H

exp ξ
Rl|iSl
D (jH)

. (3.12)

As particular cases, we have

pCl(i∗Cl) =
1

1 +


H⊆C1


jH∈I∗

H

exp ξ ClD (jH)
, (3.13)

and

pRl|iSl (i∗Rl) =
1

1 +

H⊆Rl


jH∈I∗

H

exp ξ
Rl|iSl
D (jH)

. (3.14)

Since the reference priors of the three θ-parametrizations are structurally equivalent we shall provide the result in a
unified statement.

Theorem 3.1. The reference prior for

(a) θ cond, relative to the grouping defined in (2.19)
(b) θ cliq, relative to the grouping defined in (2.22)
(c) θmod, relative to the following grouping

θ̃C1 = (θ(iD),D ⊆ C1, iD ∈ I∗

D), θ̃Cl = (θ(iD),D ⊆ Cl,D ∩ Rl ≠ ∅), l = 2, . . . , k (3.15)

is proportional to 
iC1∈IC1

p(iC1)(·)

 1
2 k

l=2


iSl∈ISl

 
iRl∈IRl

pRl|iSl (iRl)(·)

 1
2

, (3.16)

where the probabilities p(iC1)(·) and pRl|iSl (iRl)(·) are understood to be expressed in terms of the relevant θ-parametrization,
using (3.11)–(3.14) together with (i) (3.4)–(3.5) for θ cond; (ii) (3.6) for θ cliq. (iii) (2.26)–(2.28) for θmod.
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More explicitly, the reference prior

• for θ cond is given by the product of (2.20) and (2.21), with the understanding that the counts in these formulas are replaced
by fictitious prior counts which we write as ñ(iD), Ñ and so on. More precisely, we have

ñ(iD) =
|IC1\D|

2
, Ñ =

|IC1 |

2
,

and

ñ(iSl , iD) =
|IRl\D|

2
, ñ(iSl) =

|IRl |

2
.

• for θ cliq is given by (2.29) where for l = 1

ñ(iD) =
|IC1\D|

2
and Ñ =

|IC1 |

2
,

and for l = 2, . . . , k

ñ(jF , iD) =
|ISl\F ||IRl\D|

2
and ñ(jF ) =

|ISl\F ||IRl |

2
• for θmod can be obtained from that of θ cliq above by expressing it in terms of θ(D) using (2.27) and (2.28).

Proof. (a) Because of (3.4) and (3.5) it is immediate to verify that themap ξ cond → θ cond is block-wise one-to-one;moreover
the Jacobian is equal to one. Accordingly the reference prior for θ cond will be exactly as that for ξ , with the only difference
that the probabilities involved will be expressed as functions of θ cond.

(b) Similarly to what happened for the reference prior for pcond, the reference prior for θ cond is unchanged if, for each
l = 2, . . . , k, we lump together the groups labeled by iSl ∈ ISl , and thus only regard θ cond as made up of k groups.
In this way the transformation from θ cond to θ cliq is block-wise one-to-one, and thus the reference prior for θ cliq is equal
to that induced from the reference prior θ cond. Moreover, the transformation is linear so that the Jacobian is constant,
and thus the result follows.

(c) We see that the groupings in (3.15) are exactly parallel to those in θ cliq. From (2.27) and (2.28) we also see that the
l-th group in θmod is a function of the subsequent l, l + 1, . . . , k groups in θ cliq. This defines a block-upper triangular
transformation, which can be turned into a block-lower triangular one by reversing the order of the groups in θ cliq.
Since the reference prior on θ cliq is invariant to group-ordering, we conclude that the reference prior on θmod can be
obtained from that of θ cliq by a change-of-variable. From (2.27) and (2.28) the Jacobian matrix is upper triangular with
diagonal elements ∂θCl(iD)/∂θ(iD) = 1; as a consequence the Jacobian is 1, as one can verify in Example 2.1. Finally, the
expressions of the fictitious counts are derived by inspection. �

We remark that, similarly to what happened for pcond, the reference prior for each of the three θ-parametrizations is also
a conjugate prior, since each is proportional to the corresponding likelihood, and is proper, being the transformation of a
proper prior on pcond.

We now derive the Bayes estimator of the cell probabilities p(j), j ∈ I under the reference prior (3.1) and assuming a
standard quadratic loss function. This is given by the posterior expectation

E(p(j) | n(i), i ∈ I) =
n(jC1)+

1
2

iC1∈IC1


n(iC1)+

1
2

 k
l=2

n(jCl)+
1
2

iRl∈IRl


n(jSl , iRl)+

1
2


=

n(jC1)+
1
2

N +
|IC1 |

2

k
l=2

n(jCl)+
1
2

n(jSl)+
|IRl |

2

= p̂(j)×

1 +
1

2n(jC1 )

1 +
|IC1 |

2N

k
l=2

1 +
1

2n(jCl )

1 +
|IRl |

2n(jSl )

 (3.17)

where

p̂(j) =


n(jC1)
N

k
l=2

n(jCl)
n(jSl)


is the maximum likelihood estimator of p(j). We recall that the admissibility of the MLE in decomposable log-linear
interaction models for multinomial contingency tables was proved in [31] when the loss function is the sum of the squared
error losses for each component. Formula (3.17) is easily obtained using the likelihood (2.4) and the reference prior (3.1) and
reveals that this estimator is always well defined; in particular it is never zero, even for sparse tables wherein some cliques
may present no cases, as opposed to p̂(j).
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To better appreciate the nature of estimator (3.17), consider the following hypothetical situation. For a given set
observations assume that, within each clique, each configuration jCl is equally frequent. Then n(iCl) = Al, ∀iCl ∈ ICl . On

the other hand,


iRl∈IRl
n(jSl , iRl) = n(jSl), whence Al =

n(jSl )
|IRl |

. Notice that for l = 1 we get A1 =
n(j∅)
|IC1 |

=
N

|IC1 |
. Substituting

these values into correction factor in (3.17) we get exactly one. Summing up, deviations of our estimator from the MLE will
be noticeable for sparse tables and when counts within cliques are not of equal size.

It is also interesting to compute the Bayes estimator of pcond under the same reference prior (3.1) and the normalized
squared error loss

L(d, p) =


i∈I

(d(i)− p(i))2

p(i)
. (3.18)

This loss was also considered by Olkin and Sobel [32] to prove admissibility and minimaxity of the MLE for the saturated
multinomial model, by Johnstone [25] in the context of Poisson models and more recently by Hara and Takemura [23,24]
for decomposable Poisson models. Some straightforward computations lead to the estimator

p(j) =
n(jC1)−

1
2

N +
|IC1 |

2 − 1

k
l=1

n(jCl)−
1
2

n(jSl)+
|IRl |

2 − 1
(3.19)

withp(j) = 0 when n(j) = 0. Notice that estimator (3.17) and (3.19) will be similar when cell counts are moderately large;
on the other hand, for sparse tables characterized by several zero cell counts, the difference might be appreciable.

4. Parametrizations and reference priors associated to a cut

The reference priors obtained in the previous sectionwere based on a grouping of the parameters defined by the structure
of the graph, essentially through a perfect ordering of the cliques (and consequently of residuals and separators).

Now suppose we are interested in a particular subset A ⊆ V of the variables, and that we would like to consider a
reference prior where the first group contain exclusively the parameters of the marginal distribution for the variables in A.
As an example, consider the Czech Autoworkers data presented in [20]. They involve 1841men cross-classified according to
6 binary variables, each representing a potential risk factor for coronary trombosis: (a) smoking, (b) strenuous mental work,
(c) strenuous physical work, (d) systolic blood pressure, (e) ratio of beta and alpha lipoproteins and (f) family anamnesis of
coronary heart disease. These data were analyzed from a Bayesian model search perspective in [28,18] and more recently
[30]. Each paper adopted a specific methodology, and often several analyzes were performed modifying tuning parameters
in order to assess robustness. When the space of models was restricted to decomposable graphs, the graph having cliques
C1 = {a, d, e}, C2 = {a, c, e}, C3 = {b, c} and C4 = {f } often emerged as the most probable one. Conditionally on this
graph, a goal of the analysis may be to focus on the effect of strenuous physical work on coronary trombosis. Accordingly
the parameter associated to the set A = {c} would be of primary concern.

In this section we show that, if the Markov model MG is collapsible onto A (equivalently if A represents a cut for the joint
distribution), then we are able to obtain the required reference prior.

Asmussen and Edwards [3] consider the concept of collapsibility for contingency tables. If the set of factors for the table
are indexed by γ ∈ V and if A ⊆ V , we say that G is collapsible onto A if the multinomial model MGA , Markov with respect
to the induced subgraph GA, is the same as the model obtained by marginalizing the given model MG, Markov with respect
to G, over the A-table. Frydenberg (1990, Theorem 5.4) has shown that the model for the random vector Y , Markov with
respect to G, is collapsible onto A if and only if the sub-vector YA is a cut (for simplicity we shall also say that A is a cut). Cuts
in exponential families have been introduced in [4] and studied in several further articles such as [5]. A very useful result,
due to [3], is that A will induce a cut if and only if every connected component of V \ A has a complete boundary in G.

Let Bl, l = 1, . . . , p be the connected components of V \ A and let ∂Bl denote the boundary of Bl. The following lemma
gives the factorization of MG with respect to the cut A and the connected components of GV\A.

Lemma 4.1. Let A be a cut. Let C ′

1, . . . , C
′
q be a perfect ordering of the cliques of GA, the graph induced by A. Let Bl, l = 1, . . . , p

be the connected components of GV\A. Let C (l)j , j = 1, . . . ,ml be the cliques of the induced graph GBl∪∂Bl , l = 1, . . . , p. The
multinomial model MG, Markov with respect to G, can be factorized as follows

i∈I

p(i)n(i) =


iC ′
1
∈IC ′

1

(pC
′
1(iC ′

1
))

n(iC ′
1
)

q
l=2


iS′l

∈IS′l


iR′l

∈IR′l

(p
R′
l |iS′l (iR′

l
))

n(iC ′
l
)

×

p
l=1


i∂Bl


i
C(l)1 \∂Bl

(pC
(l)
1 \∂Bl|i∂Bl (iC(l)1 \∂Bl

))
n(i

C(l)1
)

ml
j=2


i
S(l)j


i
R(l)j

(p
R(l)j |i

S(l)j (iR(l)j
))

n(i
C(l)j

)

 . (4.1)
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Fig. 1. The decomposable graph for Example 4.1.

Proof. For simplicity of exposition, some statements concerning the random variables associated to a set, will be simply
stated in terms of the set itself. IfA is a cut, A separates the connected components ofV \A; by Theorem2.8 of [17], this implies
that the Bl’s aremutually conditionally independent givenA. Moreover sinceA is a cut, the boundary of Bl is a complete subset
of A and, of course, it separates Bl from V \ (Bl ∪ ∂Bl). Therefore the overall multinomial Markov model factorizes as the
product of the A-marginal multinomial model, Markov with respect to MGA , and the product of the conditional multinomial
distributions of the Bl’s given i∂Bl , l = 1, . . . , p,. Since the marginal model for A is Markov with respect to the graph GA, it
factorizes according to a perfect order of the cliques of GA, in parallel to what was done in Section 3: this proves the first line
of (4.1).

Let us now consider the expression for the second line of (4.1). As recalled above, this is given by the product of the
conditional multinomial models for Bl, l = 1, . . . , p given i∂Bl . For any l ∈ {1, . . . , p}, as a subgraph of G, the induced graph
GBl∪∂Bl is decomposable. Moreover the marginal model for Bl ∪ ∂Bl is Markov w.r.t. GBl∪∂Bl . This happens because Bl ∪ ∂Bl is
itself a cut, since the boundary of each connected component ofGV\(Bl∪∂Bl) clearly belongs to ∂Bl which is complete. Therefore
the marginal distribution MGBl∪∂Bl

factorizes according to a perfect order of the cliques of GBl∪∂Bl . Since ∂Bl is complete, it

must belong to a clique C (l)1 of GBl∪∂Bl and by Proposition 2.29 of [27], we know that we can take this clique as the first in a
perfect order C (l)i , i = 1, . . . ,ml of the cliques of GBl∪∂Bl .

The marginal multinomial distribution MGBl∪∂Bl
can therefore be written as

ml
j=1


i
C(l)j

(pC
(l)
j (iC(l)j

))
n(i

C(l)j
)

=


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C(l)1

pC
(l)
1 (iC(l)1

)
n(i

C(l)1
)

ml
j=2


i
S(l)j


i
R(l)j

(p
R(l)j |i

S(l)j (iR(l)j
))
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C(l)j

)

=


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))
n(i

C(l)j
)


×

ml
j=2


i
S(l)j


i
R(l)j

p
R(l)j |i

S(l)j (iR(l)j
)
n(i

C(l)j
)

and therefore the model for Bl conditional on i∂Bl is equal to


i
C(l)1 \∂Bl

(pC
(l)
1 \∂Bl|i∂Bl (iC(l)1 \∂Bl

))
n(i

C(l)j
) ml
j=2


i
R(l)j


i
S(l)j

p
R(l)j |i

S(l)j (iR(l)j
)
n(i

C(l)j
)

. (4.2)

Since this is true for all Bl, l = 1, . . . , p, the result is established. �

With reference to the Czech Autoworkers case, inwhichwe had singled out variable c (strenuous physical work) asworth
of being investigated on its own, it can be easily checked that c is a cut relative to the most probable model recalled above.
On the other hand, if we select variable b (strenuous mental work), then our result does not hold because b is not a cut. A
more elaborate artificial example follows in order to better clarify the main points.

Example 4.1. Suppose that the joint distribution of the 11 variables numbered consecutively from 1 to 11 is Markov with
respect to the decomposable graph G as given in Fig. 1.
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Fig. 2. The decomposable graph GA associated to a cut A and the connected components of GV\A for Example 4.1.

Consider the subset of variables given by A = {1, 2, 3, 4}. A perfect ordering of the cliques of the induced sub-graph GA is

C ′

1 = {1, 2}, C ′

2 = {2, 3}, C ′

3 = {3, 4}, (4.3)

so that S ′

2 = {2}, S ′

3 = {3}, R′

2 = {3}, R′

3 = {4}. The connected components Bl of GV\A, their boundary ∂Bl together with
the cliques C l

j of GBl∪∂Bl are

l Bl ∂Bl Bl ∪ ∂Bl C (l)j

1 {9, 10, 11} {2} {2, 9, 10, 11} C (1)1 = {2, 9, 10}, C (1)2 = {10, 11}

2 {8} {2, 3} {2, 3, 8} C (2)1 = {2, 3, 8}

3 {5} {3} {3, 5} C (3)1 = {3, 5}

4 {6, 7} {3, 4} {3, 4, 6, 7} C (4)1 = {3, 4, 6, 7}

A graphical display of GA and its connected components is given in Fig. 2.
Accordingly, the multinomial model, Markov with respect to G, can be factorized using Lemma 4.1 as

i∈I

p(i)n(i) =


iC ′
1
∈IC ′

1

(pC
′
1(iC ′

1
))

n(iC ′
1
) 
iS′2

∈IS′2


iR′2

∈IR′2

(p
R′
2|iS′2 (iR′

2
))

n(iC ′
2
) 
iS′3

∈IS′3


iR′3

∈IR′3

(p
R′
3|iS′3 (iR′

3
))

n(iC ′
3
)

×


i∂B1


i
C(1)1 \∂B1

(pC
(1)
1 \∂B1|i∂B1 (iC(1)1 \∂B1

))
n(i
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)
i
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
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(p
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)

×
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))
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)

×


i∂B3


i
C(3)1 \∂B3

(pC
(3)
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))
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×


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
i
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(pC
(4)
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))
n(i
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.

We now provide the expression for the reference prior associated to a cut.
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Theorem 4.1. Let A be a cut and consider the parametrization associated to A

pcutA = (p′, cond
A , p′, cond

V\A|A ),

where

p′, cond
A = (pC

′
1 , p

R′
l |iS′l , l = 2, . . . , q, iS′

l
∈ IS′

l
) (4.4)

p′, cond
V\A|A = (pC

(l)
1 \∂Bl|i∂Bl , i∂Bl ∈ I∂Bl; p

R(l)j |i
S(l)j l = 1, . . . , p, j = 2, . . . ,ml, iS(l)j

∈ IS(l)j
), (4.5)

using the notation presented in Lemma 4.1. The reference prior for pcutA , relative to the grouping (4.4) and (4.5), is

πR
pcutA
(pcutA ) ∝


iC ′
1
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1

pC
′
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1
)−

1
2
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(p
R′
l |iS′l (iR′

l
))−

1
2

×

p
l=1
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
i
C(l)1 \∂Bl

(pC
(l)
1 \∂Bl|i∂Bl (iC(l)1 \∂Bl
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−

1
2

ml
j=2


i
S(l)j


i
R(l)j

(p
R(l)j |i

S(l)j (iR(l)j
))

−
1
2

 .
We emphasize that, also for this case, the prior admits a conjugate structure and is proper, being a product of Jeffreys’ priors.

Proof. Using Lemma 4.1 the likelihood factorizes into a product of two general terms, one related to the marginal
distribution of A indexed by p′, cond

A , the other related to the conditional distribution of V \A given A indexed by p′, cond
V\A|A . The two

groups of parameters are variation and likelihood independent, so that the information matrix is two-block-diagonal. The
marginal distribution related to A is a GA-Markov model, with GA decomposable, and therefore the corresponding reference
prior is exactly as in the general decomposable case of Proposition 3.1. This yields the first line of the kernel of the reference
prior

To prove the second line, we have to consider the second block of the information matrix. This actually further
decomposes into p diagonal blocks, one for each connected component Bl. Consider the block corresponding to the model
for Bl conditional on ∂Bl, l = 1, . . . , p (see (4.2)). Each block decomposes into |I∂Bl | ×

ml
j=2 |IS(l)j

| sub-blocks, each one

representing the information of a saturated multinomial. In particular the first sub-block has cell-probabilities pC
(l)
1 \∂Bl|i∂Bl

and n(i∂Bl) trials, while the remaining sub-blocks have cell-probabilities p
R(l)j |i

S(l)j and n(iS(l)j
) trials. The expression of the

corresponding term in the informationmatrixwill therefore be as in the general conditional saturatedmultinomial, see (3.3).
Finally, the expectation of n(i∂Bl) depends only on the parameter p′, cond

A since ∂Bl ∈ A, and similarly the expectation of n(iS(l)j
)

does not depend on the parameter p
R(l)j |i

S(l)j specific to the sub-block because of the perfect ordering of the cliques. Therefore,
in both cases the term corresponding to the expectation factors out of the determinant and the proof is complete. �

We can, of course, derive the Bayes estimators of cell probabilities under the reference prior in Theorem 4.1 in a parallel
way to what was done for the Bayes estimators under the prior given in Proposition 3.1. For the standard quadratic loss
function, the Bayes estimator is

E(p(j)|n(i), i ∈ I) =
n(jC ′

1
)+

1
2

N +
|IC ′

1
|

2

q
l=2

n(jC ′
l
)+

1
2

n(jS′
l
)+

|IR′l
|

2

p
l=1

n(jC(l)1
)+

1
2

n(j∂Bl)+

|I
C(l)1 \∂Bl

2

ml
k=2

n(jC(l)k
)+

1
2

n(jS(l)k
)+

|I
R(l)k

|

2

with a similar expression for the Bayes estimatorp(j) under the normalized square error loss.

5. Discussion

In this paper we have considered several alternative parametrizations for discrete decomposable graphical models.
Arguing that prior elicitation becomes rapidly infeasible for large graphs, we have adopted an objective Bayes approach
analysis which requires no prior input form the user. We have then derived a reference prior for each of the above
parametrizations, showing that they are all equivalent. This is reassuring and lends stability to our analysis, which is thus not
tied to any particular model-parametrization. A notable feature is that all reference priors are proper and that they belong
to a conjugate family; the latter property extends results of [15], valid for Natural Exponential Families having a simple
quadratic variance, to multinomial decomposable models, whose variance function is not quadratic.
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While our results refer to undirected graphs, they can be of interest for general DAG models with no hidden variables,
wherein the joint density exhibits a recursive structure such as (2.13), where the conditional distribution of each single
variable given its parents is multinomial, so that the latter admits an exponential family representation. Accordingly both
the pcond and θ cond parametrizations can be extended to this larger class ofmodels, togetherwith the corresponding reference
priors. On the other hand, since DAG models are generally curved exponential families, see [21], parametrizations θmod and
θ clique are not available for general DAG models.

Using our reference prior, we have derived Bayesian estimators of the cell-probabilities, both under a sum of squared
error losses for each component, as well as under a normalized squared error loss. In the former situation, the MLE for the
multinomial decomposable case is known to be admissible, as shown by Meeden et al. [31]. Thus a uniform improvement
over the risk function associated to the MLE cannot be obtained. This is in contrast to results derived by Hara and Takemura
[24,24] for decomposable Poisson graphical models wherein carefully selected parameter priors produce estimators which
dominate theMLE for normalized squared error losses. An interesting line of future research would be to compare the latter
estimators, in terms of risk behavior, with those originating from an application of our reference prior methodology to the
Poisson sampling scheme.
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Appendix

Proof of (2.28). Consider D ⊆ Cl,D ∩ Rl ≠ ∅ for some l ∈ {1, . . . , k − 1} such that also D ⊆ Sj for some j ∈ {>l}, then

pCl(iD) =


L⊆0 Cc

l

p(iD, jL) =


L⊆0 Cc

l

exp


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θ(iE)+
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E ⊆0 D,G⊆L,jG∈I∗

G

θ(iE, jG)


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exp
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E ⊆0 D

θ(iE)
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 .
This last equality is of the form

E ⊆0 D

ψ(E) = φ(D) (A.1)

and therefore by Moebius inversion formula, we have

ψ(D) =


F ⊆0 D

(−1)|D\F |φ(F). (A.2)

For l = 2, . . . , k, let C<l = Hl−1 \ Cl. Then (A.2) can be written as
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= θCl(iD)−
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We now want to show that the term


F ⊆0 D

(−1)|D\F | log

1 +


L⊆C<l

exp




H ⊆0 F ,
G⊆L,
jG∈I∗

G

θ(iH , jG)


 (A.3)

in the equation above is equal to zero.
Let F be an arbitrary subset of D and let I = F ∩Hl−1. Since G ⊆ L ⊆ C<l, in order for θ(iH , jG), H ⊆0 F , jG ∈ I∗

G to be non
zero, it is necessary that H ⊆0 I and therefore1 +
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 . (A.4)

We see that the right hand side of (A.4) above is the same for all F ⊆0 D that have the same intersection I with Hl−1. We
therefore consider all such F ’s. Since D ∩ Rl ≠ ∅, there are as many such F ’s with |D \ F | odd as there are with |D \ F | even
and therefore from (A.4), it follows that, for a given I ,


F ⊆0 D

F∩Hl−1=I

(−1)|D\F | log

1 +


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
 = 0. (A.5)

Since this is true for all I ⊆0 D ∩ Hl−1, it follows immediately from (A.5) that (A.3) is equal to zero and we have

θ(iD) = θCl(iD)−


F⊆D

(−1)|D\F | log

1 +
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
 .

Formula (2.28) is thus proved. Moreover, since D ⊆ Sj ∩ Cl for somem ∈ {>l} and G ⊆ L ⊆ Cm \ Cl is non empty, in the right
hand side of the equation above, we have that either θ(iH , jG) = θCm(iH , jG) or that θ(iH , jG) can be expressed using (2.28)
recursively and therefore θ(iD) can be expressed in terms of θCm(iE),m ∈ {>l}, E ⊆ Cm, iE ∈ I∗

E . �
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