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The analysis of GWAS data has long been restricted to simple
models that cannot fully capture the genetic architecture of complex
human diseases. As a shift from standard approaches, we propose here
a general statistical framework for multi-SNP analysis of GWAS data
based on a Bayesian graphical model. Our goal is to develop a general
approach applicable to a wide range of genetic association problems,
including GWAS and fine-mapping studies and more specifically able
to: 1) Assess the joint effect of multiple SNPs that can be linked or
unlinked and interact or not; 2) Explore the multi-SNP model space
efficiently using the Mode Oriented Stochastic Search (MOSS) algo-
rithm and determine the best models. We illustrate our new method-
ology with an application to the CGEM breast cancer GWAS data.
Our algorithm selected several SNPs embedded in multi-locus mod-
els with high posterior probabilities. Most of the SNPs selected have
a biological relevance. Interestingly, several of them have never been
detected in standard single-SNP analyses. Finally, our approach has
been implemented in the open source R package genMOSS.

1. Introduction. The emergence of high-throughput technologies for
SNP genotyping and their application to large scale genome-wide associ-
ation studies (GWASs) have generated promises that the genetic basis of
many common human diseases could be elucidated (Risch and Merikan-
gas, 1996; Risch, 2000; Hirschhorn and Daly, 2005; Kingsmore et al., 2008;
Kruglyak, 2008; McCarthy and Hirschhorn, 2008). These GWASs have iden-
tified hundreds of genetic variants implicated in various human diseases and
complex traits, providing valuable insights into their genetic mechanisms
(Hindorff et al., 2009a,b). The rationale underlying GWAS is that com-
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mon genetic variants (i.e. present in more than 1-5% of the population)
can explain most of the attributable risk of common human diseases, also
referred to as the common disease, common variant (CDCV) hypothesis.
The present paradigm for GWAS involves the collection of more than 1,000
cases and 1,000 controls and an exhaustive search among > 500K SNPs of
those associated with the disease outcome using simple univariate test statis-
tics. Despite its relative merits at identifying new genetic variants, GWASs
have also given rise to criticisms. For example, the SNPs selected through
univariate statistics have generally a low predictive value, explain a fairly
modest proportion of the genetic variability of the disease and maybe more
importantly, do not usually provide much understanding of the underlying
biological process.

A few alternative approaches have been proposed to the usual GWAS
paradigm. After a pioneer paper demonstrating the feasibility of the exhaus-
tive testing of two genetic markers (Marchini, Donnelly and Cardon, 2005),
several papers emphasized the power of multi-SNP approaches (Zhang and
Liu, 2007; Schwartz, Ziegler and Konig, 2008; Wu and Zhao, 2009). Two
general classes of methods emerged: penalized regression and Bayesian selec-
tion methods. The most popular penalized regression approach, the LASSO
(Tibshirani, 1996), has been further extended to GWAS analysis (Hoggart
et al., 2008). The Bayesian framework offers various competing approaches
for multi-SNP analysis, where usually a regression model for the response
is defined as well as a prior for the regression coefficients associated with
the SNPs. In order to deal with the high-dimensional model space, efficient
stochastic search algorithms such as MCMC are needed to perform the model
selection. While these approaches provide a step forward compared to uni-
variate statistics, they also have limitations. They are sometimes restricted
to low-dimensional models with only two SNPs (Zhang and Liu, 2007), might
only consider those SNPs that are in linkage disequilibrium (Verzilli, Stallard
and Whittaker, 2006) or could be more specifically designed for continuous
outcomes (Guan and Stephens, 2011). They also often require a very ”ag-
gressive” first step selection to reduce the model space (Wilson et al., 2010).
Our goal here is to propose a more general framework for multi-SNP anal-
ysis of GWAS data based on Bayesian graphical models.

The ability to model complex dependency structures makes graphical
models an attractive approach for GWAS analysis. The application of graph-
ical models to discrete genetic data such as SNPs remains relatively rare.
Among the few examples, Thomas and Camp (2004) proposed the use of
graphical models to study the patterns of allelic association between genetic
markers in a small chromosomal region. Their work focused on decomposable
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graphical models in the frequentist framework and used simulated anneal-
ing for model fitting. A more recent approach is based on a fully Bayesian
approach where prior knowledge about linkage disequilibrium around each
marker can be incorporated (Verzilli, Stallard and Whittaker, 2006). The
model fitting used a MCMC algorithm that yields samples from the poste-
rior probability and where inference is based on model averaging. They used
decomposable graphical models where their clique definition was restricted
to SNPs physically close to each other, ignoring the complex nature of associ-
ation patterns in GWAS. Additional work on the application of probabilistic
graphical models to genetic associations was also reported using either the
Bayesian (Xing et al., 2011; Ungvari et al., 2012) or the frequentist frame-
work (Jiang, Barmada and S., 2010; Han, Park and Chen, 2010).

Our goal in this paper is to develop a general approach, applicable to a
wide range of genetic association problems and more specifically able to:
1) Assess the joint effect of multiple SNPs that can be linked or unlinked
and can interact or not; 2) Explore the model space efficiently using the
Mode Oriented Stochastic Search (MOSS) algorithm (Dobra and Massam,
2010) and determine the best multi-SNPs models. We illustrate the interest
of our new methodology through an application to the CGEM breast cancer
GWAS data.

2. Discrete Bayesian Graphical models for Modelling the Joint
Effect of SNPs in GWAS.

2.1. Overview of the approach. In GWAS, we are interested in modelling
the response variable (i.e. case control status) as a function of the SNP
variables. Let X = {X1, . . . , Xr} be a vector of random discrete variables
with Y = Xr, r ∈ V be a response variable and XA, A ⊂ V \{r} be the set of
SNPs. A typical GWAS dataset can include several thousands of SNPs with
the aim of finding a small subset associated with the case-control status.
Our goal is therefore to search for sets A such that the probability of the
regression [Y |XA] is highest. This probability can be expressed as the ratio
between the marginal likelihood of the saturated model for (n)A∪{r} and
for (n)A (Dobra and Massam, 2010), where (n)A∪{r} and (n)A are cross-
classifications involving XA∪{r} and XA, respectively.

(1) P (Y |XA) =
P (Y,XA)

P (XA)

Because of the complex dependence structure among the SNPs in a GWAS,
the marginal likelihood of the models is expressed using graphical model
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methodology and the search for the best regression models in this high-
dimensional setting is conducted using the mode oriented stochastic search
(MOSS) algorithm (Dobra and Massam, 2010) (see section 3).

2.2. Graphical models. In this paper, we assume that the variablesXi, i =
1, . . . , r, that include the SNPs and case-control status, take a finite number
of values. Practically, the case-control status is binary with values 0 (con-
trols) and 1 (cases) whereas the SNP variables can take up to three values.
For ease of notation, we recall the theory below for binary variables only.
The reader is referred to Massam, Liu and Dobra (2009) for general nota-
tions. We consider a fixed number N of individuals that we classify in a
contingency table according to these r criteria. Let E denote the collection
of all non empty subsets of V and E0 the collection of possible subsets of V
including ∅. The elements F in E0 are in 1-1 correspondence with the cells
in the contingency table and we can use pF to denote the cell probability

(2) pF = P (Xv = 1, v ∈ F,Xv = 0, v 6∈ F ).

i.e. the probability that, for a given individual, the variables Xv, v ∈ F are
all equal to 1 while the variables Xv, v ∈ V \ F are all equal to 0.

Since N is fixed, the cell counts nF , F ∈ E0 follow a multinomial distri-
bution with the well-known density function

(3) f((n), p) =

(
N

(n)

)
p
N−

∑
F∈E nF

∅

∏
F∈E

pnF
F

where the parameters are the cell probabilities pF , F ∈ E0.
An alternative representation of the multinomial distribution is to write

it in a natural exponential family form using loglinear parameters instead
of cell probabilities. We use the following loglinear parameters

(4) θE = log
∏

F⊆E,F∈E0

p
(−1)|E\F |
F with θ∅ = log p∅ .

where θE can be interpreted as the generalized log odds ratio.

Using Moebius inversion lemma, we can show that (4) is equivalent to

(5) log pE =
∑

F⊆E,F∈E0

θF with log p∅ = θ∅ .

After the change of variable (nF , F ∈ E) 7→ (yF , F ∈ E) where

(6) yF =
∑

D⊇F,D∈E0

nD
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and y∅ = N are the marginal F -cell counts and total counts respectively, the
multinomial density for (n) = (nF , F ∈ E0) becomes the following density
for y = (yF , F ∈ E)

f(y; θ) = exp
(∑
E∈E

θEyE −N log(1 +
∑
E∈E

exp(
∑
D⊆E

θD))
)
.(7)

Let us now consider the case of interest in this paper, i.e., the case where
the model for X is a graphical model, which we will now define.

An undirected graph G is a pair (V,E) where V = {1, 2, . . . , r} is a finite
set of vertices, and E, the set of edges, is a subset of the set V × V of un-
ordered pairs of distinct vertices {i, j}, i ∈ V, j ∈ V . Let X = {X1, . . . , Xr}
be a vector of random variables. Each variable Xi is represented by the
vertex i of G. For A ⊆ V , XA indicates the collection of random vari-
ables {Xi, i ∈ A}. In GWAS, the vertices represent the disease status, the
SNPs, and occasionally confounding variables (e.g. that control for popula-
tion stratification).

For G given, a probability distribution for X is said to be Markov with
respect to G if for any two non-adjacent vertices i, j ∈ V , Xi is independent
of Xj given XV \{i,j}. Therefore no edge between two variables means con-
ditional independence between these variables given all the other variables
while an edge between two variables is an indication of association between
these variables. A graphical model is a family of probability distributions for
X Markov with respect to a given graph G. A discrete graphical model is a
graphical model where each random variables Xi, i = 1, . . . , r is discrete.

For a given model with underlying graph G, let

(8) D = {D ∈ E | D is complete in G}

be the clique set of G. For E and F in E0, we will use the notation

E ⊆G F

to mean that E ⊆ F and E ∈ D. Following Massam, Liu and Dobra (2009),
it can be shown that for a graphical model Markov w.r.t. the graph G

(9) θE = 0, E 6∈ D.
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Then (5) and (7) become respectively

log pE =
∑

F⊆GE,F∈E0

θF(10)

f(y; θ) = exp
( ∑
E∈D

θEyE −N log(1 +
∑
E∈E

exp(
∑
D⊆GE

θD))
)

(11)

From (10), it is immediate to derive the conditional distribution of Xv given
XV \{v}, v ∈ V and to show that P (Xv = 1|XV \{v}) is a function of (θD, D ∈
D, v ∈ D) only and therefore, in the logistic regression of Xr where Xr

represents the disease status. If the parameter θ{r,u} = 0, u ∈ V \ {r}, we
can conclude that Xr is conditionally independent of Xu given the other
variables and that therefore there is no edge between r and u in G.

Thus, we see that graphical models together with MOSS allow us to se-
lect the best SNPs jointly associated with the response variable, including
marginal and interaction SNP effects (See section 3).

2.3. Bayesian Graphical Model (BGM). Let us assume we perform a
model search in the family of models M1, . . . ,Mk. We write the models as

(12) Mj = {p(x|ϑ), ϑ ∈ Θj}, j = 1, . . . , k

where ϑ is a parameter in the parameter set Θj and p(x|ϑ) is a probability
density function. In the particular case where the model is a graphical model,
the parameter space is defined by the underlying graph G and we identify
models Mj with their underlying graph Gj .

In a Bayesian framework we assume a prior probability P (Mj), j =
1, . . . , k on the set of models (M1, . . . ,Mk) and a prior probability on the
parameters ϑ, and want to derive the posterior model probabilities P (Mj |x)
for each one of the modelsM1, . . . ,Mk, that is, the conditional distribution
of Mj given the data.

The Bayesian solution is to choose the model with the highest posterior
probability. According to Bayes’ theorem, the posterior probability for Mj

is

(13) P (Mj |x) =
P (x|Mj)P (Mj)∑k
i=1 P (x|Mi)P (Mi)

The term
∑k

i=1 P (x|Mi)P (Mi) in (13) is a constant. Therefore we can
write

(14) P (Mj |x) ∝ P (x|Mj)︸ ︷︷ ︸
(the Marginal Likelihood)

P (Mj)︸ ︷︷ ︸
(the Model Prior)
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In our problem, p(x|ϑ) is given by (11) and therefore ϑ = θ = (θD, D ∈ D)
and since (11) is a member of a natural exponential family, the conjugate
priors for θ have density of the form
(15)

πG(θ|s, α) = IG(s, α)−1 exp{
∑
D∈D

θDsD − α log
(

1 +
∑
E∈E

exp(
∑
D⊆GE

θD)
)
} ,

where s = (sD, D ∈ D) ∈ <|D| and α ∈ < are hyperparameters and IG(s, α)
is the normalizing constant.

2.4. Specification of the prior. A method to construct hyperparameters
of a proper prior πD(θD|(s, α)) is to start with a fictive prior contingency
table with all cell counts νF positive, not necessarily integers. With α de-
noting the total count in the given fictive contingency table, γD denoting
the marginal cell counts, we can take as hyperparameters α = N and
sD = γD, D ∈ D. Lack of prior information can be expressed through
what is sometimes called a flat prior by taking all the fictive cell entries
to be equal and equal to α

|I| . We used this latter prior specification in our
simulations and real data application.

2.5. Posterior of a model. The posterior of G is proportional to the ratio
of the two normalizing constants:

(16) P (G | Y ) ∝ IG(y + s, n+ α)/IG(s, α).

For G decomposable, the prior π(θ|α, s) is identical to the hyper Dirich-
let (see Massam, Liu and Dobra (2009)). It therefore follows that the nor-
malizing constants IG can be computed analytically when the graph G is
decomposable. When G is non decomposable, IG needs to be computed nu-
merically.

3. SNP selection with the MOSS algorithm. The mode oriented
stochastic search (MOSS) algorithm is a two-stage Bayesian variable selec-
tion procedure that aims at identifying combinations of SNPs (rather than
single SNPs) that are associated with a response variable. The first stage of
MOSS consists of identifying the best saturated graphical models including
the response variable and a small subset of SNPs (typically between 2 to
6 SNPs in a GWAS). The second stage is used to search the space of log-
linear models to identify the most relevant interactions among the variables
in each of the top models. By using the generalized hyper Dirichlet prior
of Massam, Liu and Dobra (2009), the computations in both steps is done
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efficiently. The principle of MOSS is the following:

LetM denote a set of possible regression models. We associate with each
candidate model m ∈ M a neighbourhood nbd(m) ⊂ M. Any two models
m,m′ ∈ M are connected through a path m = m1,m2, ...,ml = m′ such
that mj ∈ nbd(mj−1) for j = 2, ..., l. The neighbourhood of m = [Y |XA] is
obtained by addition moves, deletion moves, and replacement moves. For de-
tails see Edwards and Havranek (1985) and Dellaportas and Forster (1999).
In an addition move, we include in A any variable in V \A, one at the time.
In a deletion move, we delete any variable that belongs to A, one at the
time. For a replacement move, we replace any one variable in A with any
one variable in V \A. The first stage of the MOSS procedure is as follows:

We make use of a current list of regressions M that is updated during
the search. Define

M(c) =

{
m ∈M : P (m) ≥ c max

m′∈M
P (m′)

}
where c ∈ (0, 1). A regression m ∈ M is called explored if all of its

neighbours m′ ∈ nbd(m) have been visited.

1. Initialize a starting list S of regressions. For each m ∈ S, calculate and
record its marginal likelihood P (m). Mark m as unexplored.

2. Let L be the set of unexplored regressions in S. Sample an m ∈ L
according to probabilities proportional with P (m) normalized within
L. Mark m as unexplored.

3. For eachm′ ∈ nbd(m), check if m′ is currently in S. If it is not, evaluate
and record its marginal likelihood P (m). Eliminate the regressions
S\S(c′) for some pre-chosen value 0 < c′ < c.

4. With probability q, eliminate from S the regressions in S\S(c).
5. If all the regressions in S are explored STOP. Otherwise return to step

2.

The role of the parameters c, c′, and q is to limit the number of regressions
that need to be visited to a manageable number. In our simulations and real
data application, the values c, c′, and q were set to control the false discovery
rate (FDR) at a given level.

At the end of the first stage, we have a set of top regressions [Y |XA], each
involving a small number of SNPs. At this point, we relax the assumption
that the saturated model holds for all the variables V . In the second stage,
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we search the space of log-linear models [Y,XA] to identify the most rele-
vant interactions among the SNPs and between the SNPs and the response
variable in each regression. We do a separate search for each regression iden-
tified in the first stage, looking for the log-linear model m = [Y,XA] with
the highest marginal likelihood. To do this, we once again begin by defining
the concept of the neighbourhood of a model and for a given set of variables,
the algorithm tries to find m that maximizes P (m) in an analogous way to
the algorithm described above.

At the end of the second stage of MOSS, we also add a pruning procedure
where any of the variables XA that is not interacting with the response vari-
able Y in the log-linear model is removed from the list of SNPs selected. In
this second stage, we use a small α (i.e. α = 0.01) to favour sparser models
to be selected (Letac and Massam, 2012) and found this strategy to perform
well in all our simulation scenarios.

4. Risk Estimation and Prediction Based on Bayesian Model
Averaging. Once MOSS has identified a set of regression models S for
some c ∈ (0, 1), one can estimate the risk associated with the selected SNPs
and perform risk prediction. This is done using Bayesian Model Averaging.
Let us consider a regression model mj ∈ S(c), which is [Y |XAj ] with Aj ⊂
V \{r} and j ∈ B. Here B is a set of indices for the collection of models over
which we are averaging. The regression model of Y on the selected variables
XAj (i.e. SNPs) is a weighted average of the regression models in S, where
the weights represent the posterior probability of each regression model (see
for example Yeung, Bumgarner and Raftery (2005)):

Pr(Y = y|(n)) =
∑
j∈B

Pr(Y = y|(n)Aj ) · Pr(mj |(n)).(17)

Since we assumed that all models are a priori equally likely, the posterior
probability of each regression is equal to its marginal likelihood normalized
over all the models in S:

Pr(mj |(n)) =
Pr(r|Aj)∑

l∈B
Pr(r|Al)

.

It is shown in Madigan and Raftery (1994) that the weighted average of
regressions in (17) has a better predictive performance than any individual
model in S. The revelance of each predictor Xj can be quantified by its pos-
terior inclusion probability defined as the sum of the posterior probabilities
of all the models that include Xj .
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To estimate the parameters of a given graphical model, one can use the
algorithm described in Dobra and Massam (2010), called the Bayesian iter-
ative proportional fitting algorithm. Alternatively, we can estimate param-
eters at the mode of the posterior distribution, as implemented in our R
package genMOSS.

5. Simulation Study.

5.1. Simulation scenarios. To assess the performance of this novel BGM,
we simulated datasets that mimic real GWAS data. In scenarios 1 to 3, we
simulated GWAS data according to the breast cancer study analyzed in
Section 7, which includes 1,145 cases and 1,142 controls. This represents a
typical GWAS problem where the SNPs are tag SNPs with low linkage dis-
equilibrium (LD). In addition, we also simulated 53K SNPs taken from the
original breast cancer GWAS in section 7 and assumed them to be indepen-
dent from the disease status. This represents approximately 10% of the total
number of SNPs available for this study. Since these SNPs were extracted
from a real SNP array, they have a realistic genome-wide correlation struc-
ture. Scenarios 4 and 5 correspond to a fine mapping problem where the
SNPs are in high LD and are extracted from a small chromosomal region.

In our Scenario 1, we consider a 5-SNP main effects model with an
interaction between SNP2 and SNP3. For each individual, the case-control
status was generated from a Bernouilli trial with probability p of being a
case given by

logit(p) = β0 +
∑
i=1..5

βiSNPi + β23SNP2 × SNP3.

We chose the β’s to reflect the range of SNP effects found in our real
GWAS data (section 7), i.e. β1 = 0.405, β2 = 0.916, β3 = 0.182, β4 =
−0.405, β5 = 1.386 and β23 = β2 × β3, corresponding to odds-ratio for the
genetic association of 1.5, 3.0, 1.2, 0.67, 5.0, 1.92, respectively. The param-
eter β0 was determined to get 1, 145 cases and 1, 142 controls as in our real
dataset.

For each SNP, we generated two genotypes with probability fi, 1− fi, i =
1, . . . , 5 from a Bernoulli trial with fi equal to 0.10, 0.10, 0.36, 0.36 and
0.02 for the five SNPs. These genotype frequencies correspond to a minor
allele frequency (MAF) of 0.05, 0.05, 0.2, 0.2 and 0.025, respectively, under a
dominant genetic model, and thus represent a wide spectrum of uncommon,
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common and rare SNPs.

Scenario 2 corresponds to a SNP-SNP interaction model with three 2-
way interactions without main effects. For each individual, the case-control
status was generated from a Bernoulli trial with probability p of being a
case given by

logit(p) = β0 + β23SNP2 × SNP3 + β34SNP3 × SNP4 + β45SNP4 × SNP5.

The MAF of the SNPs was 0.25, 0.25, 0.36, 0.36 and 0.15, respectively
for the five SNPs, and the regression coefficients for the interactions were
β23 = 1.099, β34 = 0.916 and β45 = 1.609.

The analyses were performed with main effects models only under this
scenario since some of the methods used in our simulations cannot model
specifically the interactions.

Scenario 3 corresponds to a fine mapping problem where a causal SNP
(SNP2) is associated with a disease status Y , and where SNP2 is in link-
age disequilibrium (LD) with two other SNPs, SNP1 and SNP3. These two
other SNPs are conditionally independent of the disease status given SNP2,
so that only one causal locus in the region is observed. The 3 SNPs consti-
tute a cluster of SNPs and are denoted X1, X2, and X3 for simplicity. The
distribution of the four discrete variables in the graph was generated from
a multinomial distribution and can be represented by a 4-way contingency
table with joint cell probabilities given by the log-linear model

logPijkl = θYi + θX1
j + θX2

k + θX3
l + θY X2

ik + θX1X2
jk + θX2X3

kl

where the subscripts i, j, k, l ∈ {0, 1} index the levels of the variables Y , X1,
X2, and X3, respectively. We chose as parameters θY1 = 0, θX1

1 = θX2
1 =

θX3
l = ln(0.2) = −1.6, θY X2

11 = 0.717, θX1X2
11 = θX2X3

11 = 1.792. All the other
parameters were set to 0. The association among SNPs has a level of LD of
Q = 0.71 and D′ close to 0.55 (Devlin and Risch, 1995), which is a mod-
erate/strong level, as generally observed for the SNPs in a same haplotype
block. The MAF was 0.20 for all three SNPs and we assumed a dominant
model for SNP2.

Scenarios 4 & 5: After a GWAS, the main loci discovered are often
followed-up by a fine-mapping study with the goal to refine the location
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of the causal genetic variants. These two scenarios correspond to a fine-
mapping problem and are motivated by a real data analysis on prostate
cancer (PCa). We used real data from an ongoing study focusing on SNPs
located in the Kallikrein (KLK) region on chromosome 19 and we simulated
the fine-mapping data with a similar LD structure. This study included 772
cases and 1,052 controls and the KLK region was originally composed of 308
SNPs (Scenario 4). To assess the sensitivity of the multiple-SNP models to
the SNP density in the region, we also imputed an additional 590 SNPs from
the 1,000 genomes reference data to reach a total of 898 SNPs (Scenario 5).
The KLK family consists of 15 genes clustered in a region that spans about
261,558 bp on chromosome 19q13.3-4 and display significant homology to
each other (Diamandis and Youssef, 2002). PSA is a member of the KLK
family, a very important gene family in PCa diagnosis. The KLK region
was partitioned into 51 haplotype blocks based on the Haploview software
(Barrett et al., 2005). We assumed 3 causal SNPs located in the haplotype
blocks 7, 19 and 49, associated with the outcome with an OR of 2.0, all with
a dominant effect and a MAF of 19.2%, 15.6% and 18.6%, respectively. The
non causal SNPs (303 SNPs and 896 SNPs in scenarios 4 & 5, respectively)
were taken from the original data and analyzed with 3 genotype categories.
Their MAFs were all > 2%.

5.2. Method comparison. For our method comparison, we used the pe-
nalized regression method LASSO (Tibshirani, 1996), two Bayesian ap-
proaches: BVRS (Guan and Stephens, 2011) and BEAM3 (Zhang, 2012),
and a simple test statistic based on χ2 statistic with either Bonferonni or
FDR correction for multiple testing and applied all these methods to our
simulated datasets.

For LASSO, we used the HyperLASSO formulation proposed for GWAS
data by Hoggart et al. (2008), which is based on shrinkage priors. Each re-
gression coefficient is assigned an independent shrinkage prior with a density
function that is sharply peaked at zero. The prior density function can be
defined either as a double exponential (DE) or a normal exponential gamma
(NEG) distribution. Parameter estimates are obtained by maximizing the
posterior density p(β|X,y) over β, where X is the normalized genotype data
and y the response variable (i.e. the case-control status). Taking logarithms
in Bayes theorem, the problem can be thought of as maximizing the penal-
ized log-likelihood function:

log p(β|y,X) = L(β)− f(β) + const

where L is the log-likelihood for the logistic regression model and f is the log-
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prior density with a minus sign to allow f to be interpreted as a penalty func-
tion. With the DE prior, the maximization of the penalized log-likelihood
is equivalent to the LASSO procedure. A SNP j is included in the final
regression whenever:

|L′(βj = 0)| > f ′(βj = 0+)

We used the NEG distribution prior in our simulations. To control the
FDR at a given level, we changed the hyper-parameters of the prior NEG
distribution.

The BVSR approach is based on a linear multi-SNP regression model and
defines some normal priors for the regression coefficients associated with the
SNPs as well as for the probability of each regression coefficient to be zero in
the model, which controls the sparsity of the model. An important feature
of this approach is to to have the normal prior distribution for the regres-
sion coefficients that depend on a parameter that controls the proportion
of genetic variability explained (PVE) by the selected SNPs (which itself is
function of the sparsity parameter). This prevents the risk that more com-
plex models explained substantially higher PVE. The induced prior for PVE
given the sparsity parameter is a ”flat” prior in the range (0,1). BVSR was
initially developed for continuous outcomes but was then extended to binary
responses, using a probit link function. The inference is based on MCMC
and models with highest posterior PVE are selected. In our simulations, we
allowed the model size for BVSR to vary between 1 and 5 and the hyper-
parameters were chosen so that the control of FDR was similar to that of
the other approaches whenever possible.

BEAM3 is a Bayesian graphical method recently developed for large-
scale association mapping (Zhang, 2012). BEAM3 can simultaneously de-
tect single-SNP and SNP-SNP interactions in genetic association studies. It
was described as a powerful method for analyzing a large number of SNPs
even in the context where the SNPs are in strong LD (Zhang, 2012). The
rationale behind BEAM3 is to define two sets of SNPs, i.e. those associated
with the response and those not associated. The SNPs within these two sets
are embedded into two distinct cliques of a graph that account for SNP
dependency and for which a joint probability distribution is specified. The
method also requires to define a prior inclusion probability for the SNPs to
be included in the associated and non-associated sets as well as a prior dis-
tribution for the cliques partition and clique interactions for the associated
set. The inference is done with MCMC and can be summarized through a
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posterior probability of inclusion for the associated SNPs.

MOSS algorithm is described above. We fitted 3-SNP models in all simu-
lation scenarios with the following settings: α=1, c=0.005, c′=0.0005, q=0.1,
replicates=10 in the first stage of MOSS and α=0.01, c=0.005, c′=0.0005,
q=0.1 in the second stage. These settings gave us the best performance of
MOSS in all the simulation scenarios.

Univariate test statistics: We also calculated a χ2 statistic for testing
single SNP associations. Since the SNPs had 2 genotypes in simulation sce-
narios 1 to 3 and 3 genotypes in scenarios 4 and 5, the number of degrees of
freedom for the χ2 statistics was respectively 1 and 2 in these situations. A
correction for multiple testing was performed using either a Bonferroni or
an FDR adjustment.

5.3. Control of False and True Discovery Rate. For our different simula-
tion scenarios, we estimated the False Discovery Rate (FDR) (see Benjamini
and Hochberg (1995)) by the proportion of non causal SNPs among all the
SNPs discovered by a particular approach. The main effect FDR (FDRm)
for a SNP j is defined for a particular method as

FDRm =

∑
k=1···Nd

I( SNP j is discovered in dataset k ∩ SNP j /∈ causal SNPs )∑
k=1···Nd

I( SNP j is discovered in dataset k)

where Nd is the number of simulated datasets and I(.) is the indicator func-
tion.

In scenarios 4 and 5 of the simulations, we also computed the cluster FDR
(FDRC) where the cluster C corresponds to the haplotype block and the
lenient cluster FDR (FDRLC) defined as:

FDRC =

∑
k=1···Nd

I( SNP j is discovered in dataset k ∩ SNP j /∈ cluster C)∑
k=1···Nd

I( SNP j is discovered in dataset k)

and

FDRLC =

∑
k=1···Nd

I( SNP j is discovered in dataset k ∩ SNP j /∈ clusters {C − 1, C, C + 1} )∑
k=1···Nd

I( SNP j is discovered in dataset k)
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We also computed the true discovery rate (TDR) for each individual SNP
j associated with the outcome as

TDR =

∑
k=1···Nd

I( SNP j is discovered in dataset k)

Nd

and an overall TDR as

TDRall =

∑
k=1···Nd

∑
j=1···Ns

I( SNP j is discovered in dataset k)

Nd ×Ns

where Ns the number of causal SNPs associated with the outcome.

In scenarios 1 and 2 of our simulations, we computed a TDR for each
specific pair of SNPs (j, j′) corresponding to the interaction term in our
simulated model as

TDRpair =

∑
k=1···Nd

I( SNPs j and j′ are discovered in dataset k)

Nd

In scenarios 4 and 5, we also computed a TDR for the cluster (haplotype
block) and a lenient cluster TDR defined as:

TDRC =

∑
k=1···Nd

∑
j=1···Ns

I( SNP j is discovered in dataset k ∩ SNP j ∈ cluster C )

Nd ×Ns

and

TDRLC =∑
k=1···Nd

∑
j=1···Ns

I( SNP j is discovered in dataset k ∩ SNP j ∈ cluster {C − 1, C, C + 1} )

Nd ×Ns

5.4. Control of FDR. We tried to control FDRm at the same level with
all the methods compared to get a fair comparison of the TDR statistics.
This was achieved by varying the tuning parameter of the NEG distribution
with the HyperLASSO and the SNP inclusion probability with the three
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Bayesian approaches MOSS, BVSR and BEAM3. However, the control of
FDRm could not always be achieved for all the methods in certain situations.
Along with the FDR and TDR statistics, we also computed the rank of each
SNP based on a χ2 statistic with 1 df (Scenarios 1 to 3) or 2 df ’s (Scenarios
4 and 5).

6. Simulation results.

6.1. GWAS simulation results (Scenarios 1 to 3). FDR and TDR results
are presented in Table 1 and in Supplement B.

In Scenario 1, all methods control FDRm at a level < 20% except
BEAM3 for which FDRm is much higher (30%). Under very similar sim-
ulation scenarios, previous results reported FDR levels very close to ours
(Hoggart et al. (2008), He and Lin (2011)). TDR estimates vary substan-
tially across methods with the best results obtained with BVSR (62.2%) and
MOSS (56.8%). The pairwise SNP effects are better detected by BVSR and
MOSS with TDRpair of 71% and 30%, respectively. The AUC values are all
close to each other, from 58.0 to 61.1%. In Scenario 2, all methods control
FDRm at a very low level (i.e <6.1%). MOSS yields the best TDR results
with 73.7% while BVSR performs the worst (TDR=18.5%). The AUCs vary
between 53.2 to 59.8%. MOSS performs also very well to detect pairwise
SNP interactions. The Scenario 3 is the most complex since the goal is to
find one single causal variant among a group of 3 SNPs in strong linkage
disequilibrium. This complex situation is reflected by an overall higher level
of FDRm compared to scenarios 1 and 2 and a larger difference across meth-
ods (i.e. with FDRm varying from 1.0% to 47.0%). In that situation, BVSR
and LASSO were the only methods to not find the causal variant in all the
simulated datasets. MOSS has the lowest FDRm in that scenario, i.e 1%,
while all the other methods have much larger FDRm statistics (varying from
16.7% to 47.0%). In all three scenarios, MOSS has better performance than
the univariate chi-square statistic with either Bonferroni or FDR adjustment
for multiple testing.

[Table 1 about here.]

6.2. Fine mapping simulations (Scenarios 4 and 5). FDR and TDR re-
sults are presented in Table 2.

In Scenario 4, it was not possible to control FDRm at a similar level
with all the different methods. The best results are obtained with MOSS
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both in terms of FDR (all values below 10.0%) and TDR (> 96.3%). The
LASSO also performs well under this scenario but with inflated FDR values
compared to MOSS (FDRm=18.0%) and TDR values > 89.0%. The single
SNP analyses BONFmain and FDRmain gave very poor results. The AUCs
vary between 67.8% (with BVSR) and 70.7% (with BONFmain). In Sce-
nario 5, all the multi-SNP methods control FDRm at a level < 20.9% while
the two single SNP analyses showed huge inflation of this statistic: BONF-
main (91.3%) and FDRmain (38.7%). MOSS has the highest TDR statistics
(based on TDRm, TDRc and TDRtc) and reaches levels > 93.7%. LASSO
has also levels of TDR > 93% but to the price of increased level of FDRc

and FDRlc. The AUC values vary from 52.5% (with FDRmain) to 70.5%
(with BONFmain). Additional simulation results are given in Supplement
C.

[Table 2 about here.]

6.3. Computation time. In simulation scenarios 1 to 3, the median com-
putation time to fit one simulated dataset was about 6 hours for a 2-SNPs
model and 17.9 hours for a 3-SNPs model with MOSS, 13 mins with the
LASSO and 5-6mins with BEAM3 and BVSR. For the simulation scenar-
ios 4 and 5, the computation time was about 4-5 mins for a 2-SNPs model
and about 6 mins for a 3-SNPs model with MOSS, 1 min with the LASSO,
about 10 secs with BEAM3 and 5 mins with BVSR. The longer computation
time required by MOSS could be explained by the extensive model search
performed by this algorithm compared to the other methods.

6.4. Sensitivity to prior specification with MOSS. We noticed that the
performance of MOSS in terms of FDR and TDR remain unchanged for
various specifications of the priors (results not shown). In particular, defining
the prior cell counts to be all 1 or proportional to the sample size of the
observed cell counts with various possible proportions, did not change our
main conclusions (Supplement D).

7. Analysis of the CGEM breast cancer GWAS data.

7.1. The breast cancer paradigm. In most Western populations, approx-
imately one in ten women develop breast cancer. Epidemiological studies
have shown that women who have first-degree relatives with a history of
breast cancer have a two-fold increase in risk of the disease (Collaborative
Group on Hormonal Factors in Breast Cancer, 2002). The risk ratio increases
with increasing the number of affected first-degree relatives. Twin studies
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have indicated that most of the excess familial risk is due to inherited pre-
disposition (Peto and Mack, 2000). Particularly, BRCA1 and BRCA2 are
the most important susceptibility genes conferring, when mutated, high life-
time risks of breast cancer (Thompson and Easton, 2002; The Breast Cancer
Linkage Consortium, 1999). Mutations in BRCA1 and BRCA2 account for
about 16% of the familial risk of breast cancer (Anglian Breast Cancer Study
Group, 2000). Mutations in other genes (TP53, PTEN, STK11, CDH) are
also associated with elevated risks but it is unlikely that mutations in these
six genes account for more than 20% of the familial risk of the disease.
Therefore the remaining 80% of the familial risk remains to be explained.
The search for this missing heritability has led to the identification of other
high-penetrant mutations in candidate genes such as CHEK2, ATM, BRIP1
and PALB2. However, they still confer a small contribution to the familial
risk of breast cancer (Thompson and Easton, 2004). Alternatively, common
low-penetrant alleles have been sought through GWAS. So far, only a small
number of such variants have been identified and confirmed in different pop-
ulations and they just modestly improved the performance of risk models
for breast cancer (Wacholder et al., 2010; Gail, 2008). The bulk of breast
cancer genetic susceptibility thus remains to be determined.

7.2. The CGEM study. The CGEM genome-wide association studies
(GWAS) for breast cancer has been completed in the Nurses’ Health Study
(NHS) with nearly 550,000 SNPs genotyped. The analysis includes 1,145 in-
dividuals who developed breast cancer during the observational period and
1,142 age-matched individuals who did not develop breast cancer during
the same time period. Both the genotype data and the pre-computed anal-
yses based on the genotype data were retrieved from the following website
(http://cgems.cancer.gov/). The first GWAS study using the CGEM breast
cancer data identified several SNPs within the gene FGFR2 (Hunter et al.,
2007) and this result has been replicated in many independent studies. A
SNP close to the gene BUB3 was also very significant in the initial study
but has not been replicated yet.

7.3. Data pre-processing. Our initial dataset included 555,341 SNPs and
2,287 observations (1,145 affected individuals and 1,142 controls). After ex-
clusion of SNPs with a high rate of missing genotypes (missing rate ≥ 10%),
we had 546,540 SNPs left. For the remaining SNPs, we imputed the miss-
ing genotype values using the program MACH (Li et al., 2010). Our final
number of SNPs after imputation was 546,253. We assessed the presence
of population stratification using the program EIGENSTRAT (Price et al.,
2006), which is based on principal component analysis (PCA). Using pro-
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jections on the two first principal components, we found 20 individuals (9
cases and 11 controls) who appear to be outliers and were removed from our
analysis. We also estimated the identity by state (IBS) matrices in cases and
controls separately based on all the SNPs and compared the mean IBS val-
ues between the 2 groups using permutation testing as implemented in the
software PLINK (Purcell et al., 2007). Because we did not find any signif-
icant difference, no adjustment for population stratification was performed
in our analysis. We did not filter out SNPs neither based on their MAF
nor on Hardy-Weinberg disequilibrium test since there was no evidence of
deviation of this test in our data (Hunter et al., 2007).

7.4. Analyses with MOSS. We searched for regression models contain-
ing at most 2 and 3 SNPs but since the selection of the best SNPs was very
similar under these 2 models, we only present the simple 2 SNP models in
Table 3. The total number of possible 2-SNP regressions was 1.49197×1011.
The number of models evaluated by MOSS in each of the 1, 000 instances
was considerably smaller and varied between 209, 445 and 837, 778, with a
mean of 497, 065. The eight regressions in the resulting S(0.5) involve twelve
SNPs embedded or very close to known genes (Table 3).

MOSS selected 12 SNPs with MAF varying between 0% and 42% in the
European population. Three SNPs have a MAF lower than 5%. In general,
frequentist approaches applied to GWAS would not be able to perform a test
statistic for these SNPs. Most of the SNPs detected by MOSS have a high
rank when using the more conventional univariate p−value criteria. The two
SNPs in the gene FGFR2 were previously identified from univariate analysis
of the CGEM data (Hunter et al., 2007) and have been replicated in multiple
studies. The SNP in the gene BUB3 was also identified in the initial analysis
of the CGEM data but not further replicated. It is noteworthy that MOSS
was able to replicate some initial findings from the CGEM study. Addition-
ally, several novel SNPs emerge from our analysis. An example, is the SNP
rs3130544 associated with the highest posterior probability. To our knowl-
edge, this SNP has never been identified in previous breast cancer GWAS.
We also noticed that the SNP rs1882619 in the gene APC which has a very
low rank based on univariate analysis, would have never been selected with
a standard approach. This SNP has been selected by MOSS because it has a
joint effect with the SNP in the gene BUB3. While MOSS is able to detect
more SNPs associated with the disease of interest in GWAS, the question
remains to know whether these results have any biological validity. In the
next tables and Supplement E, we give more insights into the biological in-
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terpretation of our results.

[Table 3 about here.]

Interestingly, 4 out of 17 genes in our list have been previously implicated
in breast cancer, including BUB3, NTSR1, FGFR2 and APC. Further-
more, eight genes have previous relation to cancers, which suggests an en-
richment of cancer genes in the MOSS selection. The most interesting gene
found by MOSS is the gene C6orf15. This gene is located in the HLA re-
gion and does not have a very clear function. However it is located in a
region characterized by a dense cluster of genes which has been found over-
expressed in many cancer types. This is therefore a region that would be
worth sequencing to find potential causal variants associated with breast
cancer or other cancers.

Table 4 displays the best eight two-SNP models identified by MOSS and
their associated marginal likelihood and Bayes Factor (BF). We first notice
that the BFs for these models are much higher (from 18.32 to 17.18) than
any of the BF for the single SNP models in Table 3 (i.e. the maximum
value was 4.50 for the SNP rs10510126 close to gene BUB3). There is also
a certain level of internal replication. Indeed, two pairs of models (1, 3) and
(5, 7) appear almost identical since they involve the same two genes but
different pairs of SNPs. The two SNPs that belonged to the same gene were
in linkage disequilibrium (LD) in both cases. It is therefore remarkable that
MOSS was able to identify SNPs strongly in LD through the selection of the
best models. In some models, the interaction term between the two SNPs
was not included. In most instances, the best models include one strong
marginal SNP effect (log odds > 1) and a weaker one (|log odds| < 1), the
sign of the coefficient for this latter being either positive (risk effect) or
negative (protective effect). In terms of allele frequency, a rare, uncommom
and common SNPs correspond to a MAF of < 5%, ≥ 5% and < 10% and ≥
10%, respectively. Among the eight models detected by MOSS, four of them
involve two common SNPs, two include one common and one uncommon
SNPs and the last two models entail one rare and one common SNPs. It is
therefore of interest that MOSS was able to select these latter two models
since most common approaches for GWAS are limited to common SNPs.

[Table 4 about here.]

7.5. Risk prediction with Bayesian Model Averaging. The model predic-
tion was obtained by Bayesian model averaging of the eight regression mod-
els using 500 iterations of two-fold cross-validation. The area under the ROC
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curve (AUC) was estimated to be 63.5%. By comparison, the prediction ob-
tained from the set of best seven common SNPs identified through previous
GWAS on breast cancer (based on univariate analysis) was only 57.4% (Gail,
2008). A selection of the best 10 SNPs combined with the major known epi-
demiological risk factors for breast cancer resulted in an AUC of 61.3%
(Wacholder et al., 2010). Therefore, MOSS improves substantially the AUC
and the addition of known epidemiological and clinical factors (which were
not available for this study) to our model could provide even better pre-
dictive ability. MOSS yielded an AUC estimate very similar to that given
by other modelling approaches, i.e 63.7%, 64.3% and 63.6% with BEAM3,
BVSR and HyperLASSO, respectively.

7.6. The R package genMOSS. To run MOSS on the example dataset
simuCC dataset we use the function MOSS_GWAS:

R>MOSS_GWAS(alpha = 1, c = 0.1, cPrime = 0.0001, q = 0.1,

replicates = 5, maxVars = 3, data, dimens, confVars = NULL, k = NULL)

The parameters alpha, c, cPrime, and q, have been described in Section 2.
Replicates is the number of instances the first stage of the MOSS procedure
is run. The top regressions are culled from the results of all the replicates.
The parameter maxVars is the maximum number of variables allowed in
a regression (including the response). Data is a data frame containing the
genotype information for a set of SNPs. It must be organized such that each
row refers to a subject and each column to a SNP; the last column in data
is interpreted as the binary response. Rows with missing values (i.e., NA’s)
are ignored. Dimens is the number of possible values for each column in
the dataset. In our example, this is three except for the case-control status
which is binary. The parameter k is the fold for the cross validation. If k is
NULL then only the first stage of MOSS is carried out. Finally, confVars
determines the number of confounding variables to be forced to be in every
regression (e.g. population stratification variables). In this example, we used
the default values for all the parameters (except for k, which is NULL by
default, and the parameters data and dimens which, of course, are based
on the dataset). A complex R code to simulate and analyze genetic data is
given in Supplement A.

8. Summary and Discussion. GWAS has emerged as one of the
most spectacular advances in genetic research with thousands of novel ge-
netic variants discovered and implicated in many complex human diseases
(Hindorff et al., 2009a). Despite this success, the clinical and biological rele-
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vance of these findings still remains to be determined. The current challenge
in GWAS goes beyond the identification of SNPs that have main effect but
also entails the elucidation of more complex genetic mechanisms including
SNP by SNP interactions and LD patterns in fine mapping studies. The ul-
timate goal is to improve the biological relevance of the genetic discoveries.
To answer some of these challenges, we proposed a Bayesian graphical model
to search for multi-SNP models in the context of GWAS analysis.

Our simulation studies and real data application demonstrate the versa-
tility of MOSS for analyzing complex GWAS data. We showed that MOSS
was able to identify genetic variants associated with a binary response in
a wide range of association studies where the SNPs could be linked or un-
linked, could have main effects and/or interaction effects on the response
variable. MOSS can also be applied to fine mapping problems where it can
reveal more complex patterns of association with the response. Our simula-
tions showed that MOSS has the best performances overall when compared
to more standard approaches for multi-SNP analyses.

Our real application to a breast cancer GWAS data confirms the interest of
our novel approach and its relevance for genetic research. We found 12 SNPs
embedded in 8 two-SNPs models associated with breast cancer. These two-
SNP models included both common and rare variants. We replicated some
known associations, e.g. with SNPs in the FGFR2 gene, but also discovered
new ones that are biologically very promising. Many of these genetic associa-
tions would not have been discovered by conventional approaches, which are
generally limited to single SNP analyses or simple multi-SNP models. This
is the case of the two SNPs we found associated with the genes APC and
BUB3. The association with the SNP in APC and breast cancer has never
been reported in the original paper because it is a rare SNP (Hunter et al.,
2007). Biological information about BUB3 shows that it interacts physically
with APC, thus validating biologically one of the two-SNP models we dis-
covered.

Some future extension of MOSS could include the discovery of complex
gene networks. While our results suggest that MOSS can find simple SNP-
SNP interactions, further work is needed to infer these more complex net-
works.

Acknowlegments. We would like to thank Olia Vesselova for her part
in the development of the R package genMOSS as well as the Associate
Editor and the referees for their very constructive comments. This paper is
published in memoriam of Dr. Hilmi Ozcelik who inspired a lot this work.
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SUPPLEMENTARY MATERIAL

Supplement A: Example of R code
(; Rcode.pdf). This is a simple example of code to run our R package gen-
MOSS.

Supplement B: Complete table 1 results
(; Table1Supp.pdf). This table is similar to table 1 but adds additional
FDR results for each of the five SNPs simulated and for the SNP pairwise
interactions.

Supplement C: Additional simulation results
(; SimulSupp.pdf). We performed additional simulations to assess the perfor-
mance of MOSS where it is compared to the standard Bonferroni correction.
The R code used to generate the data is given in Supplement A.

Supplement D: Sensitivity analyses
(; SensitivitySupp.pdf). In this section, we assess the sensitivity of the priors
to the detection of rare and common genetic variants.

Supplement E: Additional real data analyses
(; RealDataSupp.pdf). This section provides additional results from the real
data analysis.
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Table 1
Simulation results: False Discovery Rate (FDR) and True Discovery Rate (TDR) (in %)

in Simulation Scenarios 1 to 3

FDR1 TDR2 AUC

Scenario Method

1 MOSS 15.7 56.8 61.2
1 LASSO 19.4 29.0 58.0
1 BVSR 16.8 62.2 59.6
1 BEAM3 30.0 31.2 58.3
1 BONFmain3 1.0 38.0 58.4
1 FDRmain4 15.8 54.4 61.1

2 MOSS 5.7 73.7 59.8
2 LASSO 2.5 39.2 57.7
2 BVSR 5.1 18.5 53.2
2 BEAM3 5.6 46.2 56.1
2 BONFmain 1.8 33.2 57.8
2 FDRmain 6.1 45.7 58.3

3 MOSS 1.0 100.0 56.6
3 LASSO 47.0 36.0 53.9
3 BVSR 28.1 94.0 57.1
3 BEAM3 16.7 100.0 56.6
3 BONFmain 23.6 100.0 56.7
3 FDRmain 30.5 100.0 57.2

1 FDRm: FDR for SNP main effects
2 TDRm: TDR for SNP main effects; TDRpair: TDR for a pair of SNPs; TDRall: TDR
for SNP main effects over all the SNPs
3 TDR corresponding to a χ2(1) statistic and Bonferroni corrected p-value
4 TDR corresponding to a χ2(1) statistic and FDR corrected p-value
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Table 2
Simulation results: False Discovery Rate (FDR) and True Discovery Rate (TDR) (in %)

in Simulation Scenarios 4 & 5

False Discovery Rate True Discovery Rate AUC

FDR1
m FDR1

c FDR
1
lc TDR

2
m TDR2

c TDR
2
lc

4 MOSS 10.0 5.8 3.6 96.3 97.0 98.3 68.5
4 LASSO 18.0 13.4 10.9 89.0 90.3 90.7 68.5
4 BVSR 28.8 23.4 17.8 87.0 87.3 87.7 67.8
4 BEAM3 46.2 19.6 15.8 59.7 83.3 86.0 67.9
4 BONFmain 92.2 79.5 57.0 100.0 100.0 100.0 70.7
4 FDRmain 73.6 61.7 48.5 86.6 86.6 86.6 68.3

5 MOSS 16.1 4.9 3.6 93.7 96.0 96.7 68.6
5 LASSO 18.4 13.4 10.3 93.0 94.7 94.7 68.9
5 BVSR 14.9 12.0 6.2 85.3 85.3 85.6 67.5
5 BEAM3 20.9 11.8 10.7 53.0 54.7 55.0 65.1
5 BONFmain3 91.3 77.8 57.2 100.0 100.0 100.0 70.5
5 FDRmain4 38.7 9.1 4.5 6.3 6.7 6.7 52.5

1 FDRm: FDR for SNP main effects; FDRc: FDR for the cluster of SNPs; FDRlc: FDR
for the lenient cluster of SNPs
2 TDRall: TDR for SNP main effects; TDRc: TDR for the cluster of SNPs; TDRlc:
TDR for the lenient cluster of SNPs
3 Bonferroni corrected p-value based on a χ2(2) statistic for the main effects
4 FDR corrected p-value based on a χ2(2) statistic for the main effects
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