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Abstract

Discrete graphical models are an essential tool in the identification of the rela-
tionship between variables in complex high-dimensional problems. When the num-
ber of variables p is large, computing the maximum likelihood estimate (henceforth
abbreviated mle) of the parameter is difficult. A popular approach is to estimate
the composite mle rather than the mle, that is the value of the parameter that max-
imizes the product of local conditional likelihoods centered around each vertex v of
the graph underlying the model. A more recent development is to have the com-
ponents of the composite likelihood be local marginal likelihoods centered around
each v.

The purpose of this paper is to first show that the estimates obtained through lo-
cal conditional and marginal likelihoods are identical. Second, we study the asymp-
totic properties of the composite mle obtained by averaging of the local estimates:
this is done under the double asymptotic regime when both p and N go to infinity
and compare the rate of convergence to the true parameter with that of the global
mle under the same conditions. We also look at the simple asymptotic regime where
p fixed and thus recover results by Liu and Ihler (2012).
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1 Introduction

Discrete graphical models are an essential tool in the analysis of complex high-dimensional
categorical data. Let V' = {1,...,p} be a finite index set. Let G = (V,FE) be an
undirected graph where E' is the set of undirected edges in V' x V. Then the distribution
of X = (X,,v € V) is said to be Markov with respect to G if X, is independent of X,
given Xy (4,03 Wwhenever the edge (v,u) is not in £. The set of distributions Markov with
respect to a given graph G is called a graphical model. When the variables X, take values
in a finite set I,,,v € V, the graphical model is said to be discrete. These models are used
extensively to represent interactions between individuals in physical or human networks.
Each data point is classified according to its values of X, = i,, 7, € I,,v € V and the
data is thus gathered in a p-dimensional contingency table with cells i = (i,,v € V') and
cell counts n(i),i € I = [[,cy Lo- As we shall recall in Section 2, the density of the cell
counts can be written under a natural exponential family form as

f(t;0) = exp{(0,1) — Nk(0)} (1.1)

where ¢ is a vector of marginal cell counts, (0,t) denotes the inner product of ¢t = t(x)
and @ is the canonical loglinear parameter.

For a given data set, the first task is to learn the underlying graph and once the
underlying graph has been learnt, the second task is to estimate the parameter 6 of
the model. In this paper we will be concerned with the maximum likelihood estimate
(mle) of . When p is large, to obtain the mle of # through a simple maximization
of the likelihood function is impossible because of the dimension of the parameter 6
and the complexity of the cumulant generating function k() in (1.1). Approximate
techniques such as variational methods (see Jordan et al., 1999, Wainwright and Jordan,
2008) or MCMC techniques (see Geyer, 1991) have been developed in recent years. More
recently still, work has been done on a third type of approximate techniques based on the
maximization of composite likelihoods (see Besag, 1975 and Lindsay, 1988). For a given
data set ), ..., ™) a composite likelihood is typically the product of local conditional
likelihoods, coming from the local conditional probability of X, given Xy, v € V', which
we can write as

N
£"5(0) = [ [T p(Xo = 2P| Xn, = 235679 (1.2)
veV k=1

where N, indices the set of neighbours of v in G, and 6" is a subvector of 6.

Further in the vein of composite likelihood, recent research has focused on studying
each local model and combining all the local results to yield a global estimate of either the
underlying structure GG or the parameter 6. For example, for model selection, with p large,
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Ravikumar et al. (2010) introduced a local approach to discrete graphical model selection
by looking at the regularized local conditional likelihood of X, given Xy (o}, that is, due
to the Markov properties of the model, given X,,. The aim is to identify the components
of 0v7% related to the interaction of v and its neighbours, that are not equal to zero.
For parameter estimation, with p large and G given, the local approach has been used
for Gaussian graphical models by Wiesel and Hero (2012) who consider the composite
likelihood based on local conditional likelihoods of X, given X, ,v € V. To obtain
the maximum composite likelihood estimate, the estimates obtained through each local
likelihood are combined using the ADDM optimization technique. For discrete models,
Liu and Thler (2012) study the asymptotic properties, for p fixed and N going to infinity,
of a maximum composite likelihood estimate obtained through either an optimal linear
combination of the estimates of the components of " from different local conditional
models (linear consensus) or through the choice of a "best”, in some sense, such estimate
(maximum consensus).

For the estimation of the precision matrix in graphical Gaussian models, Meng et al.
(2014) depart from the ideas of the two papers just mentioned, in two ways. First, they do
not consider local conditional models but rather local marginal models. Second they do
not look only at ”one-hop” marginal models, i.e., models built on v and its neighbours N,
but they consider "two-hop” local marginal models that is marginal models with vertex
set a vertex v, its neighbours and the neighbours of the neighbours. With the two-hop
local marginal likelihoods, they achieve such accuracy that, to obtain the overall estimate
of the parameter, they need not use a method more sophisticated than simple averaging
of the various local marginal likelihood estimates. While they prove that for the one-hop
case, the estimates obtained from local marginal models are identical to those obtained
from local conditional models, they do not make the same statement for the estimates
obtained from maximizing two-hop local marginal and conditional likelihoods.

In this paper, we are concerned with the maximum composite likelihood estimation of
0 in (1.1) for discrete graphical models and our purpose is twofold. First we extend the
local marginal method of Meng et al. (2014) to discrete graphical models and show that,
actually the estimates of the parameters obtained from these local marginal likelihoods
are equal to the estimates obtained from the more traditional local conditional likelihoods
and this holds whether we are looking at one-hop or two-hop neighbourhoods. Given
the complexity of computations for local marginal likelihoods, we suggest one should
therefore work only with local conditional likelihoods. We then define our maximum
composite likelihood estimate of # in the following way: if a component 6; of 0 is obtained
from one local conditional model only, then this will be the estimate of ;. If the same
component ¢; is obtained from m; different local conditional models, then the estimate
of 6; is the average of the estimates obtained from the m; local marginal models. This
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is a particular case of ”linear consensus” as defined in Liu and Ihler (2012). The second
aim of our paper is to study the asymptotic properties of our estimate under both the
classical and the double asymptotic regime, that is when |V| = p is fixed and the number
of data points N tends to infinity, and, when both p and N tend to infinity.

In Section 3.1, we first recall the definition of composite likelihood based on condi-
tional local likelihoods. The most important feature is that the parameter of each local
conditional likelihood which we denote 679 (see (1.2)) is a subvector of the parameter
6 of the global model in (1.1). Then, following what was done in Meng et al. (2014),
we define a relaxed local marginal likelihood and show that the parameter of this local
likelihood, denoted 8™+ contains 6”7 also. In Section 3.4, we show our first main result,
Theorem 3.1, which states that the estimate of 8" obtained from local marginal and
conditional likelihoods are identical. We illustrate this results with numerical examples.
It is interesting to note, at this point, that Mizrahi et al. (2014) who developped, also for
discrete models, a local marginal composite likelihood method centered around cliques
rather than vertices find that the performance of their new method is ”basically indistin-
guishable from that of the pseudolikelihood”. Though we have not verified it analytically,
we conjecture that the estimates obtained by their LAP-D and LAP-E method are equal
to the estimates obtained by pseudolikelihood.

In Section 4, we then look at the properties of our maximum composite likelihood esti-
mate of 0. We study its asymptotic properties under the classical and double asymptotic
regime. Our main result, Theorem 4.2, states that, when both p and N go to infinity,
under certain conditions, Conditions A and B, for % large enough, our estimate is close
to the true value of the parameter with high probability. Conditions A and B are similar
to the ”"Dependency” condition of Ravikumar et al. (2010) for model selection. The De-
pendency condition are conditions on the variance function, or Fisher information matrix,
of the local conditional model that roughly state that the maximum eigenvalue of this
variance function is bounded above and the minimum eigenvalue is bounded away from
zero. Our Conditions A and B impose the same type of condition but on the sum, over
v € V, of the local variance functions. Our result under the classical regime, Theorem
4.1, where p is fixed coincides with Theorem 4.1 of Liu and Ihler, 2012 and is given here
for the sake of completness .

Before proceeding to the next section, we ought to make some important remarks.
First when computing the estimates from the local conditional likelihoods, we need to
make sure that they exist, that is that there exists finite estimates of 6’ that maximize
the local conditional likelihood. If they do not exist, our maximization software may
return values that are erroneous. It may happen also that the global maximum likelihood
estimate of # does not exist and yet the local estimates of 8V exist and we can obtain



a maximum composite likelihood estimate of the parameter. We expand on these points
in Lemma 3.3. Techniques to identify the existence of the global maximum likelihood es-
timate of 6 have been developed in Fienberg and Rinaldo (2012) and Wang et al. (2016).
In the present paper, we will assume that all local estimates exist.

Our second remark is that in the sequel, we will only consider graphs that are not re-
ducible: a graph G is reducible if there exist three disjoint subsets A, B,C of V with
V = AUBUC such that every path from A to B goes through C' and such that the graph
G¢ induced from G by C'is complete, i.e. every vertex in C is linked to any other vertex
in C' by an edge. If G can be so decomposed, then, we decompose each component G 4,¢
and Geup and so on until the smallest components thus obtained are prime components,
i.e. nondecomposable induced subgraphs that are maximal with respect to inclusion. It
is easy to show that the prime components thus obtained can be ordered into a perfect
sequence Py, ..., P, of components that, for any ¢ = 2, ..., k, there exists j < ¢ such that

PN (Uf;i Pl> CP; and S;=PF;N (U{;ll Pl> is complete.

In that case, it is well-known, that the cell probabilities p(i) = P(X = 1), i € I can
be expressed analytically in terms of the cell probabilities p’i(ip) and p(ig,) in the
P-marginal and Si-marginal, [ = 1, ..., k models respectively, as follows
N Hf:l pPl (iPl)
pli) = Fr v
Hl:2 pSl (251)
Since, as we shall see in the next section, knowing p(i),7 € I in a given model is equivalent
to knowing € as in (1.1), it is sufficient to work on the induced graphs Gp,l =1,... k.
Thus in the sequel, all graphs considered in this paper are irreducible prime graphs. In
this case, there is no possibility to see cuts in the natural exponential family (1.1), that
is no possibility to split the parameter ¢ into functionally independent components and
the task at hand is to estimate 6.

2 Preliminaries

2.1 Discrete graphical and hierarchical loglinear models

Let p,V and X = (X,, v € V) be as described in Section 1 above. If N individuals are
classified according to the p criteria, the resulting counts are gathered in a contingency
table such that

I=][%

veV
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is the set of cells ¢ = (i,, v € V). For D C V| ip denotes the marginal cell ip = (i,,v € D)
with ¢, € I,. Let D be a family of non empty subsets of V' such that D € D, D; C D and
D # ) implies D, € D. In order to avoid trivialities we assume UpcpD = V. The family
D is called the generating class of the hierarchical loglinear model. We denote by Qp the
linear subspace of y € R such that there exist functions fp € R! for D € D depending
only on ip and such that y = >, 5, 0p, that is

Qp={yeR': 30p € R, D € D such that p(i) = Op(ip) and y = Z Op}

DeD

The hierarchical model generated by D is the set of probabilities p = (p());e; on I such
that p(i) > 0 for all ¢ and such that logp € Qp.

The class of discrete graphical models Markov with respect to an undirected graph G
is a subclass of the class of hierarchical discrete loglinear models. Indeed, let G = (V, E)
be an undirected graph where V is the set of vertices and E C V x V denotes the set
of undirected edges. We say that the distribution of X is Markov with respect to G if
(v1,v9) € E implies

Xy L Xv2| XV\{v1,v2}'

Let D be the set of all cliques (not necessarily maximal) of the graph G. If the distribution
of X = (Xy,...,X,) is Multinomial(1, p(¢),7 € I) Markov with respect to the graph
G, and if we assume that all p(i),i € I, are positive, then, by the Hammersley-Clifford
theorem, log p(7) is a linear function of parameters dependent on the marginal cells ip, D €
D only, and therefore the graphical model is a hierarchical loglinear model with generating
set the set D of cliques of G. The reader is referred to Darroch & Speed (1983), Lauritzen
(1996) or Letac & Massam (2012) for a detailed description of the hierarchical loglinear
model and the subclass of discrete graphical loglinear models.

We now set our notation and recall some basic results for discrete hierarchical loglinear
models. The following notation and results can be found in Letac & Massam (2012) and
the corresponding supplementary file.

Among all the values that X, can take in I,,,v € V', we call one of them 0. For a cell
i € I, we define its support S(i) as

S@i) ={veV; i, #0}
and we define also the following subset J of I
J={jel, S(j) €D} (2.1)

From here on, we will call this set the J-set of the model. For 7 € I and j € J, we define
the symbol
j <1
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to mean that S(j) is contained in S(7) and that jg;) = ig(;). The relation < has the
property that if 7,5’ € J and ¢ € I, then

j<j and j'<i= j<i.

The loglinear parametrization that we use for the multinomial is the so-called baseline
parametrization with general expression, for i € I, S(i) = E C V,

9, — Z(_l)\EI—IFl log plip, Oy\r) - (2.2)
FCE

With the notation above, in Proposition 2.1 of Letac and Massam (2012), it is shown that
fori ¢ J, 6; = 0 and that

S-S g PU)
Qj = Z (—1) J J IOg—O, J e J
T p(0)
logp(i) = 6o+ Z b, i€l (2.3)
jeJj<u
logp(0) = 6. (2.4)

One then readily derives the density of the multinomial M(N, p(i), i € I) of the cell counts
n = (n(7),i € I), Markov with respect to G to be, up to a multiplicative constant, equal
to

F(t: 0) = exp{(t,0) — Nk(0)}, 6 € R’ (2.5)

with 0 = (6;,7 € J), t =t(n) = (t(j), j € J) where t(j) = n(js(;)) are the jg(;-marginal
cell counts and

k(@)zlog(Zexp 3 ej) — log (1+ Y e Y ej). (2.6)

iel jeJ j<i ieI\{0} jeJ j<i

For § € R, these distributions form a natural exponential family of dimension .J generated
by a measure p which we will now identify. Let e;,j € J be the canonical basis of R’

and, for ¢ € I, let
jed,j<i

Then (2.3) and (2.4) can be written in matrix form as

logp = Af (2.8)



where 6" = (0y,6"), A is an (|I]) x (1 4 |.J|) matrix. We call A the design matrix of the

model. The rows of A are indexed by i € I and equal to ﬁt = (1,f}) € R/ Tt is
immediate to see that the Laplace transform of the generating measure p is

el

and therefore the measure p generating (2.5) is

pldx) =Y " 5y, (w). (2.9)

el

This exponential family is concentrated on the convex hull of f;,7 € I, which is a bounded
set of R7, and therefore the set of parameters @ for which k(6) is finite is the whole space
R/. From the definition of X, f;,4 € I and t = (t(js(j),J € Jj), it is easy to see that
(N,t(j), j € J)' = A'n = 3",., n(i) fi and the vector of sufficient statistics ¢, which we
also write as t = t; to emphasize its length, is such that

tr _(tl) o N\ n() . )

= (wied) = X R (2.10)
1€I\{0} i€l

and thus belongs to the convex hull of (f;)ie;. The (f;)'s are the extreme points of the

closure of the convex hull of the f;,7 € I.

3 The conditional and marginal composite maximum
likelihood estimators

When the dimension of the discrete graphical model is large, computing the maximum
likelihood estimate of ¢ in (2.5) is challenging, if not impossible. As mentioned in the
introduction, a recent approach to this problem has been local with the use of a composite
likelihood which is equal to the product, over all vertices v € V', of the local conditional
likelihood for X, given X, where N, denotes the set of neighbours of v in G. Recently, for
Gaussian high-dimensional graphical models, Wiesel & Hero (2012) and Meng & al. (2013,
2014) worked with a different composite likelihood which is the product, over all vertices
v € V, of local marginal likelihoods. In this section, we will first recall the definition
of the conditional composite likelihood estimate, then extend the marginal composite
likelihood to discrete graphical models and finally show that the maximum likelihood
estimates obtained from these two types, conditional and marginal, of local models are
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in fact identical and thus the composite likelihood obtained by any type of consensus
from these two types of likelihood are equal. Since the computational complexity of the
marginal computations is exponential in the number of vertices in the neighbourhood of
v while the conditional computations are linear in this number, there is no advantage in
working with marginal composite likelihoods.

3.1 The conditional composite likelihood function

We first define the standard conditional composite likelihood function. For ¢ = (i,,v € V),
let i, ..., i™) be a sample of size N from the distribution of X Markov with respect to
G. We recall that the global likelihood function is

N
L) o [ [ p(X, = i), v € V) = exp{(, ) — Nk(0)} (3.1)
k=1
where k() is as in (2.6).
For a given vertex v € V, let N, the set of neighbours of v in the given graph G.
The composite likelihood function based on the local conditional distribution of X, given

Xvy\{v} or equivalently, due to the Markov property, the conditional distribution of X,
given its neighbours Xy, is L™9(0) =[], L"°(6) where

N
Lo7(9) = [T p(x, = il X, = i 0) (3.2)

k=1

and the superscript PS stands for ”pseudo-likelihood”, the name often given to the con-
ditional composite lilelihood (Besag, 1974). As given by (2.3), for a given cell 7, we have

logp(i) = logp(X, =iy,,veEV)=10+ 29]-

J<u

= o+ > 0+ > 0+ > b

j<i, S(5) CvUNG,S () LN j<i, S()CNo j<i, S(G)ZVUN,
The set J is as defined in (2.1) for the global model. Let

I8 ={j e J|S(j) CvUN,S(H) LN} ={jeJ|veSy)}



Then for i, # 0, we have

p(Xy = iy)
Xv\(v} = tv\{v})
002 i, jeaPSe 05T i, s(HTne 9325, () gouns, b5

<690+2j<k, jesPSv 05+ 5ak, sGycny Ot an, s()geuns 93‘)

(X = 0] X, = in,) = p(Xy = iy| Xvr\fo) = tv\pu)) = o

2ker v\ (o} =tv\ (o}
ezjqz} jegPSv 0; ( )
= 3.3
Z. . PS,U 9] :
]_ + Zkell kV\{v}:iV\{v}y kv7£0 e“—i<dk, j€J

and

1

PXy =0] Xy\po} = inu}) = (3.4)

2 jak, jesPSv 9
1 + Zke]\ kV\{U}:iV\{U}7 ky£0 e ik, jEJ P

Equality (3.3) is due to the fact that the set of j € J such that j <k, S(j) € vUN,, is

Oo+>"

. . : , 0
the same whether k, = i, or k, # i, and therefore the term e Jak, SNZkoun, 7 cancels

out at the numerator and the denominator. The same goes for the set of j € J such that

j<k, S(j) CN,.

Remark 3.1 In the equation above, we worked with p(X,| Xy (vy) rather than with P(X,|Xy;, ),
though the two are equal, in order to emphasize that the parameter

0 = (0;, j € J7), veV (3.5)

of the v-th component L*T° of conditional composite distribution is a subvector of 0, the
parameter of the global likelihood function.

We now define the two-hop conditional composite likelihood function.

Definition 3.1 For a given v € V', we will say that M, is a one-hop neighbourhood of v
if it comprises v and its immediate neighbours in G, i.e. if M, = {v} UN,. We will say
that M., is a two-hop neighbourhood if it comprises v, its immediate neighbours and the
netghbours of the immediate neighbours in G. We use the notation

Now = M \ ({v} UNU)

to denote the set of neighbours of the neighbours of v. For simplicity of notation, we will
denote both the one-hop and two-hop neighbourhoods by M.,.
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The two-hop conditional composite likelihood function is L”%2(0) = T, ., L*¥'*?(6) where

N
LU,PSQ (9) _ Hp(Xv — ’Lq()k), X./\/U — 25\12|XN21; = Z'S\I/z)v) (36)
k=1

The expression of p(X, = iP Xy, = ij(\];3|XN2U = 15\2)”) is the same as (3.3) and (3.4) but

with J*% replaced by J"*2 where
TR ={j € T | 8(j) € My, S(j)  Nav}
In a parallel way to Remark 3.1, we note that
0vPS: = 9. j € JUPS)

is a subvector of § = (6;,j € J), the argument of the global likelihood function.

3.2 The marginal composite likelihood

Let M, be the one-hop or two-hop neighbourhood of v. The marginal composite likelihood
is the product

M) = [T [T o, = i) = T[22 (6). (3.7)

veV k=1 veV

where LM (0) = [, p(Xpm, = isxljz)v)- The M,-marginal model is clearly multinomial
and the corresponding data can be read in the M, ,-marginal contingency table obtained
from the full table. The density of the M,-marginal multinomial distribution is of the
general exponential form

FEM; M) = exp{(#40,04) — NEMo(62)) (3.8)

where tMv, M+ and k™Mv are respectively the M,-marginal canonical statistic, canonical
parameter and cumulant generating function.

In order to identify the M,-marginal model, we first establish the relationship between
6 and 0. In the sequel, the symbol j will be understood to be an element of I, when
used in the notation 0;‘/1” while it will be understood to be the element of J obtained by
padding it with entries jy\ o, = 0 when used in the notation ;. We now give the general
relationship between the parameters of the overall model and those of the M,-marginal
model. Proofs are given in the Appendix.
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Lemma 3.1 Let M, be the one-hop or two-hop neighbourhood of v € V. For j €
J,S(j) C M,, the parameter 8; of the overall model and the parameter 9?4” of the marginal
model are linked by the following:

oMo — 0+ 3 (~1)SO-5W 1o (1 + Y e Y ek) . (3.9)

i’ | 3'<0] i€, i, =)' k| kai
3"l J'<0j v ksti!

We want to identify which of the marginal parameters are equal to the corresponding
overall parameter and in particular which marginal parameters are equal to 0 when the
global parameter is equal to zero. Let M¢ denote the complement of M, in V. We define
the buffer set at v as follows:

B, ={we M, | I € M with (w,w') € E}. (3.10)
We have the following result.

Lemma 3.2 Let M, be the one-hop or two-hop neighbourhood of v € V. For j €
J,S(7) € M, the following holds:

(1.) if S(j) ¢ By, then 61" =4,

(2.) if S(j) C By, then in general QJM” # 0;, and (3.9) holds.
Moreover, fori € I,S5(i) C M,,

(8.) If S(i) ¢ B, then 6 = 0 whenever 6; = 0.

From the lemma above, we see that, for j € J such that S(j) € M,,S(j) Z B,, the
corresponding global and M,-marginal loglinear parameters are equal. We see also that
for i € I such that S(i) € M,, S(i) £ B,, if the loglinear parameter is zero in the global
model, it remains zero in the M,-marginal model.

3.3 A convex relaxation of the local marginal optimization prob-
lems

It is clear from (3.9) that even though maximizing the marginal likelihood from (3.8) is

convex in Mv_ it is not convex in #. We would therefore like to replace the problem of

maximizing (3.8) non convex in 6 by a convex relaxation problem. We know from (1.) of
Lemma 3.2 that (9;\4” =0, for jin theset {j € J: S(j) C M,, S(j) Z B,} .
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We also know from (3.) of Lemma 3.2 that if the global model parameter 6;,S(i) C
M,,S(i) ¢ B, is equal to zero, then HZM” is also equal to zero. Following what has been
done for Gaussian graphical models in Meng et al. (2014), it is natural to consider the
following graphical model relaxation of the M,-marginal model.

Let M;, denote the relaxed hierarchical loglinear model obtained from the M,-
marginal model by keeping interactions given by edges with at least one endpoint in
M, \ B, and all interactions in the power set 2Bv The index [ takes values [ =1 or [ = 2
when M, is respectively the one-hop or two-hop neighbourhood of v. The J-set of this
local model is

JMiw = L5 € J]S(j) c M, S(j) ¢ B,yu{ie ]| S(i)cB,}. (3.11)

Let pMiv(Xyy,) denote the marginal probability of X, in the M, ,~-marginal model.
The local estimates of §;, j € {j € J| S(j) C M,, S(j) ¢ B,} are obtained by maximizing
the M, ,-marginal loglikelihood

N
LM (0) = [[ M (X, = i%1,) = exp{(pM0e 1M00) — NEMuo(9Me)} - (3.12)
k=1

which is a convex maximization problem in
oMy = (9;,5 € JMe).
At this point, we need to make two important remarks.

Remark 3.2 The vector 0V"° defined in (3.5) is a subvector of 0tv. Therefore mawi-
mizing (3.12) for either | = or | = 2 will yield an estimate of 6%,

Remark 3.3 The M;,, | = 1,2-marginal model is a hierarchical loglinear model but
not necessarily a graphical model. For example, if we consider a four-neighbour lattice
and a given verter vy and its four neighbours that we will call 1,2,3,4 for now, then the
generating set of the relaxed M ,,-marginal model is

DMivo = {(v, 1), (vo,2), (vo, 3), (vo, 4), (1,2,3,4)}.

This s not a discrete graphical model since a graphical model would also include the
interactions (v, 1,2), (vo, 2,3), (vo, 3,4), (vo, 1,4), (vo, 1,2,3,4). It was therefore crucial to
set up our problem, as we did it in Section 2, within the framework of hierarchical loglinear
models rather than the more restrictive class of discrete graphical models.
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Figure 1: Two vertices in a 5 x 10 lattice: Theorem 3.1 applies for vertex 25 while it does
not apply for vertex 39.

3.4 Equality of the maximal conditional and marginal composite
likelihood estimate

Let §Muv | = 1,2 denote the maximum likelihood estimate of #*t» obtained from the
local likelihood (3.12).

Theorem 3.1 The PS component of 6™ i.e. (é;wl’”,j € JvP%) is equal to the mazi-
mum likelihood estimate of 0T obtained from the local conditional likelihood (3.2).
Similarly, The PSy component of éMQﬂ’,i.e. (éjMz’”,j € JvP5) s equal to the mazimum
likelihood estimate of V52 obtained from the local conditional likelihood (3.6).

The proof is given in the Appendix.

At this point, we ought to make an important observation. In the case of the two-
hop marginal likelihood, it may happen that the buffer B, is no longer equal to Nj,.
For example, if we consider a four-neighbour 5 x 10 lattice and number the vertices by
rows starting from the left, vertex 39 is such that N,, = {19,28,30,37,48,50} while
B, = N2, \ {50}. The argument in the proof of Theorem 3.1 for j such that S(j) ¢ Na,
then breaks down since in the M, ,-marginal model, some cells such as iy, = (i30 =
1,i50 = 1,0p,\(30,503) With support in N5, no longer have a complete support. This
situation is illustrated in Figure 1 where for the sake of comparison, we also look at
vertex 25 for which N5, = B, and Theorem 3.1 applies..

In Tables 1 and 2, we give the numerical values of the maximum likelihood estimate
0;,j € JM2» obtained by the four local model PS, PSy, My, and Ms, for j such that
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j € JP%5 and for j such that j € JP9 respectively. We see that in the first case, the
values of é]- obtained from the local likelihoods 17925 and [*1:25 are identical and similarly
for those obtained from (©9225 and [M225 while in the second case, the values obtained
through the PS; and Mj, models are slightly different. The values obtained from the
PS and M, , models are identical since then B, = N, and the proof of Theorem 3.1 does
not break down.

Models 025 915,25 924,25 925,26 925,35
My, -0.0536 | 0.5914 | -0.4808 | -0.8314 | -0.8461
Moy, -0.0779 | 0.5221 | -0.5310 | -0.7274 | -0.7459

(v, PS) -0.0536 | 0.5914 | -0.4808 | -0.8314 | -0.8461

(v,2PS) | -0.0779 | 0.5221 | -0.5310 | -0.7274 | -0.7459

Table 1: The local mle of some 6,5 € J?>P9 in the 5 x 10 lattice

Models B39 929,39 938,39 939,40 939,49
M, -1.0799 | -0.3306 | -0.3647 | -0.5791 | 1.1749
My, -1.0386 | -0.3519 | -0.5020 | -0.5445 | 1.1946

(’U, PS) -1.0799 | -0.3306 | -0.3647 | -0.5791 | 1.1749

(v, 2PS) -1.0381 | -0.3531 | -0.5019 | -0.5448 | 1.1947

Table 2: The local mle of some 6,5 € J3%"9 in the 5 x 10 lattice

Remark 3.4 The equality of the estimates holds also for the marginal estimates obtained
by Mizrahi et al. (2014) if, for q a clique of G and v € q¢ C A,, satisfying the strong LAP
condition with respect to A,, we retain only the parameters 0;,7 € J¥5* N q. We also note
that Theorem 9 in that paper may not be verified in some cases. For example, take vertex
7 in a 3 x 3 lattice numbered from left to right starting with the top row, take ¢ = {7,8}
as the clique of interest. Then A, = {4,7,8} satisfies the strong LAP condition but 65 in
the A,-marginal model cannot be equal to Os in the joint model as our Lemma 5.2 shows.

3.5 The maximum composite likelihood estimate
Since we have proved that the estimates of §7° obtained from local conditional and

relaxed marginal likelihoods are identical, given the computational complexity in the
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relaxed marginal model, we will work only with the local estimates obtained from local
conditional lilkelihoods. More precisely, for each local conditional likelihood [vFS or [0F52
we consider the local maximum likelihood estimate v or §*7%2. We define

= 6P if we work with (»F°
- (é;},PSz’ S(j) c {v} UN,) if we work with [*F52 .

~

v

(3.13)

In other words, from either [FS or {F52 we retain 6° = (é;’, S(7) C v UN)\N,) =

(é;’, ;v € S(j)) only. If we have m, estimates é;l,l = 1,...,m;, then we define the

maximum composite likelihood estimate of 6 to be
~ B 7711‘ é{)l
i=,- =% e, (314
m;
which from now on, we will abbreviate by "mcle”. R
Let 679 denote the vector obtained by stacking up the vectors §”,v € V. We then
have B )
0= AG"S
where A is a |J| x 3 o\ [J*F| where J"F% is as defined in (3.5). If S(j) = {v}, clearly,
the row of A corresponding to 6; has all its entries equal to 0 except for one entry equal
to 1 in the column block J»P5. If j € JP5 1 =1,... my, and S(j) C ({vi} UN,,) \ N,
the row corresponding to 6; has all its entries equal to 0 except for one entry equal to mi
J
in each of the column blocks J*"5 [ =1,... ,m;. For example, if the model considered
is the discrete graphical model Markov with respect to the four-cycle with vertex set

V ={a,b,c,d} and D = {ab, ac, bd, cd}, we have

o

0

0, 1 000 0 0 00 00 0 O Oac
0, 0050005 0 00 0 0 0 0 0
0, 00 01 0 0 0000 0 0 0,
G_| G| _]0 00000500 0 005 0 b,
0, 00 00 0 0 1000 0 0 o
0. 00 00 0 0 00050 0 05 he
04 00000 0 00O 1 0 0 fe,
O 00 00 0 0500 0 005 0 i
O

04,
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In general, for j € J and k € J»PS, v € V, the matrix A is defined by
AJk_:{ ij lf ]UlUNul:k'EJvl’PS,l:]w,mj

3.15
0 otherwise. ( )

We have now defined our mcle which we use to replace the global mle maximizing (3.1).
It is natural to ask whether the mcle exists when the global mle exists and conversely
whether global mle exists when the mcle exists. The existence of the global mle is an
important problem that has been considered in Fienberg and Rinaldo (2012) and more
recently in Wang et al. (2016). We say that the mle does not exist if we cannot find § such
the corresponding cell probabilities p(i) and p(0) as given by (2.3) and (2.4) are strictly
positive. The nonexistence of the global mle has important consequences for inference.
However, if we are only concerned with estimation of the parameter 6 or equivalently
(p(i),i € I, as the following lemma shows, the global mle may not exist but we may
accept still accept the mcle as an estimate of the parameter.

Lemma 3.3 For a discrete log-linear model, if the global mle exists, then the mcle exists.
However, the mcle may exist and yet the global mle does not.

Proof: If the global mle exists, then p(X =) > 0 and p(Xy, = in,) > 0,

X =1i)

H( Xy = 0| XN, =in,) =
o X, = in.) P(Xn, = in,)

> 0,

i.e. the composite mle exists. We now give an example where the mcle exists but the
global mle does not. Consider the four-cycle graphical model as described above, with
binary variables.

Let the data be such that n(i) = 1,7 € {0000, 1000, 0100, 1010,0101,1011,0111,1111}
and n(i) = 0 otherwise so that the marginal counts are t. = tg = 4,tq = 1,tpg = teg =
tee = 3 where for A C V, t4 denotes t; with j, =1 if v € A and j, = 0 otherwise. Thus
the data vector lies on the facet t. +t5+ top — tpg — tea — tae = 0 of the marginal polytope
of the four-cycle model. The reader is referred to Letac and Massam (2012, Theorem 5.3)
for the equations of the facets of the polytope corresponding to the four-cycle. From the
theory on the existence of the global maximum likelihood estimate developed in Fienberg
and Rinaldo (2012) references therein, this implies that the global mle does not exist.
The facets corresponding to the local models built on v = a have equation

tab = 07
tog — tap = 07
ty — tap = 0;
1_ta_tb+tab = 0;
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We can verify immediately that none of these equations are satisfied with the given data
and therefore the mle iof 7% inn the a-local model. Similarly the mle of 7% v =b,c,d
exist and thus the mcle exist. [J

4 Asymptotic properties of the maximum composite
likelihood estimate

In this section, we look at the asymptotic properties of the mcle # when p is fixed and
then when both p and N go to infinity. Though asymptotics in the case p is fixed have
been given by Liu and IThler (2012), we give our result here in Section 4.1 for completeness
in our own notation.

4.1 The classical asymptotic regime

We consider here the behaviour of the mcler # when p = |V| is fixed and the sample size
N goes to infinity. We have the following result.

Theorem 4.1 The mcle § as defined in (3.14) is asymptotically consistent and
VN( — 6") — N(0, AGA) (4.1)

where A is as defined in (3.15), G is the square Y, |J*"|-dimensional matriz with
(v, vm)-block entry

1(0™) = [vPS((0%)0P5| X)) is the local conditional likelihood, given one sample point X,
*U *V t
evaluated at the true local parameter (0*)""FS and I(6*%) = E(ag(g*vll) (ag(g*vlz)) ) is the
vi-local information matriz evaluated at the true value 6, v; € V.
The mean square error therefore satisfies

n * N 0 v vl *
E(HQJ_HJH - Z ]lel J]+Z Z . ”11”12 & (4.3)

h=11ls=l1+1 j

Gy, = 17107 B(

In the expression of the mean square error (4.3) above, we note that to the diagonal
elements of the inverse information matrix for each local model are added the cross-
product terms [Gy, ., ];; because the estimates of ¢j coming from the v;, and v, local
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conditional models with j € J%P5 N J%P5 are not independent. We also note here that
our Theorem above coincides with Theorem 4.1 in Liu and Ihler (2012) with our matrix
A being equal to their (3, W)~

To illustrate our result above, we simulate data from the model Markov with respect
to the four cycle G as described above. We simulate our data for the following values of the
parameters [0,, 0y, 0., 04, Oup, Ouc, Opa, Ocal = [0.53,1.83, —2.25,0.86,0.31, —1.30, —0.43, 0.34].
The results are illustrated in Figure 2.

4.2 The double asymptotic regime

In this section, we consider the asymptotic properties of the mcle when both p and N go
to +00. In Theorem 4.2 below, we give its rate of convergence to the true value *. In
order to compare the behaviour of the mcle with the global mle, we also give, in Theorem
4.3, the rate of convergence of the global mle under the same asymptotic regime.

It will be convenient to introduce the notation

Hiw =TI ﬂ(xlzynz{l ifjaz
)

0 otherwise
lesS(y

and to write (3.3) as

eXp{ZjeJU,PS 0;fi(Ty, xn,)}
plfay,) = - (44)
1+ Zyuelv\{O} eXp{ZjeJ”vPS 0;fi(Yo, 2N,)}

In this section, we work exclusively with "5 (9"5). Therefore for simplicity of notation
we write 6 for 69, Also, for convenience, we scale the loglikelihood by the factor %
Then the v-local conditional loglikelihood function is

PFSO) = L3N logp(at|aly)
N n) .(n
= Zjer,Ps 0in 2 one1 i (xl(’ )’ xSVv)) (n)
. n
- % Znil log{l + ZvaIU\{O} eXp{ZjGJUvPS ij] (yv7 xNU )}}

The sufficient statistic is ¢; = + SN f (3:1(,"), :L’S\T,LU)) We write

tyops = [t1,ta, -+ ,ta,] (4.5)

v

and

N N
1 n 1 n,v
KOPS(0) = 5D log{l+ Y exp{ D0 0ifi(m W)} = 5 D_log 27 (),
n=1 n=1

Yo €1,\{0} jeJjv.ps
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Figure 2: Empirical and theoretical mean square errors for the global mle and the mcle
for the four-cycle graphical model.
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where

va =1+ Z eXp{ Z ef] yvaxN }

yo€lu\{0} JETVPS

Then the loglikelihood function is
POy = Y 0t —k"TS(0) .
jEJ'U,PS

Its first derivative is

8lU’PS(9) . akv,PS(e)

a6, " 06,
Ok75(0) _ 1 g el prs Gl )V o
905 N~ Zmv(6) AR TN
with -
exp{>_ e ju.rs 03 fi(ko, 7)) }} (n)
v =p(X, =k, 4.6
s P(X, = kol (4.6
We now want to compute 82817;;259) = —6252 ZZ k.l € JvPS. To simplify further our
notation, we set
w0 = D Ol ). (4.7)
jGJ'u,PS
For k, = [,, using (4.6), we obtain
82kv-PSs exp zg,, (0 exp 2, (0) n
Cann = & Lt (Tt — (Fstiy) )fk<kv,x§%)fl<lv,x )

& Yoot (P = kaofa)) = p(X, = kol >fk<kv,:c£3>fz<zmx]v>) -
if k, # [,, then
92k PS (0 N XD 2k, (0) exp 2 n n
aekael() = N mm1 I(c%("l((ge)% wll fk(kwxg\fj)fl(lwxgvg)

= LS (—p(Xy = ky|z)p(Xy = L|2§) fi (B, 280 fi (L, 27))

Let W™V = (fj(jv,x%)),j € J»PS) be the d, x 1 vector of indicators. We introduce the
notation

exp zg,, () . (expzkv (0))2 ifh =1
nkl (9 :CN)) Zex’p(zak)v 6) expzZlv(,9§6) if (48>
- (Zn,u(g))z ) 1 k'u 7£ lv .

21



Let H”’”(G,x%})) be the d, x d, matrix with (k,[) entry an(@,xg\?j) Then the Fisher
information matrix derived from [%FS is

N
1" 1
(KOP5)'(8) = 55 D H™(0.2() o (W™ (W]
n=1
where o denotes the Hadamard product of two matrices. We make two assumptions on
the behaviour of the cumulant generating function k"%, v € V at 6*, similar to those

made by Ravikumar et al. (2010) and Meng (2014).

(A) For the design matrix of the v-local conditional models, we assume that there exists
D0 > 0 such that

N
LNy gyt
n,v n,v <D .
eV A’”‘””(N an ( )> - e

(B) We assume the minimum eigenvalue of the Fisher Information matrices (k75" (6*), v €
V' is bounded, i.e., there exists C,,;, > 0 such that

N
: 1 n,v [ N* (n) n,v n,v
Cmm - Igél‘l} /\mznﬁ ; [H ’ (0 7'va) © [W (W )tH

We are now ready to state our theorem on the asymptotic behaviour of 6.

Theorem 4.2 Assume conditions (A) and (B) hold. If the sample size N and |V| = p

satisfy
N 10C Dypaady

LU0 Dmaz o \o
logp — hev C? i

man

where C'is a positive constant such that p*° > 2|.J|, then the mcle 6 = (0;,5 € J) is such

that
~ 5C cy dylogp
_ ES < v 4'
160l < 2y (4.9

2|J]|
5 .
pQC

with probability greater than 1 —

The proof is given in the Appendix. With a similar argument, we can derive the behaviour
of the global mle, which we will denote by #%. We need to make assumptions similar to
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(A) and (B). We assume that

(A") there exists D, > 0 such that )\mm(z fi® fi) < Dinazs

iel
(B') 0 < K* = Apim [k:”(@*)].
The asymptotic behaviour of 6% is given in the following theorem.
Theorem 4.3 Assume conditions (A") and (B') hold. If N and p satisfy the condition

N 40C|J|Dpas
1 2 ( *2 )2’
ogp K

where C'is a positive constant such that p** > 2|.J|, then the global mle 69 = (éjG,j eJ)

18 such that
. 5C [|J] logp
G_ g, < =/ L =8 4.1
166 — 1 < 25/ S (4.10)

with probability greater than 1 — pil%.

The proof is provided in the Supplementary file. Comparing Theorems 4.2 and 4.3, we
see that for 2 = O(|J]%), |6% — 0*[|r = O(y/Z222) with high probability while for

101;73 = O(max,cy (d?)), |0 — 0*||r = O(1/ M). This implies that for the mcle, the

requirement on the sample size N are not as stringent as for the global mle but of course,
we lose some accuracy in the approximation of #*. The situation is, however, not bad

since
\/Zvevdvl()gp/\/|=]| log p _ > vey o
N N |J|

which is the square root of the ratio of the sum over v € V' of the number of parameters
in the v-local conditional models and the number of parameters in the global model. If

the number of neighbours for each vertex is bounded by d, we see that this ratio is at
2d+1

most equal to T and usually much smaller than that. For example, in an Ising model,
J| =p+|F| and d, = p + 2|F| and therefore Luevd _ g + B <2 Of course,
veV [J] p+|E|

the size of the v-local model can grow with p (see Ravikumar et al., 2011) but like in
Meng et al. (2014), since we are concerned with parameter estimation, we assume that
the graph structure is known, that is >, d, and |.J| are known.
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5 Conclusion

In this paper, we have made a detailed study of the maximum composite likelihood
estimate of the parameter in a discrete graphical model, obtained through simple averaging
of the mle of the parameters of local likelihoods. A basic result is that the components of
65 =(0; | j € J: veS()), veV are parameters of the global model, more precisely
(0vF5 v e V) =0=(0;,j € J), and also that "7 is a subvector of the parameter vector
of the local conditional likelihood as well as of the local marginal likelihood: see Remarks
3.1 and 3.2. Therefore combining the estimates of #*7% obtained from the local models
yields an estimate of the global parameter 6.

We then first show in Theorem 3.1 that whether, we deal with local conditional or
marginal likelihoods, the local estimates of #%"° are identical. It thus follows that we
should use only local conditional estimates given their much simpler computational com-
plexity. We call this estimate obtained through local conditional likelihoods the mcle.
Second, we study the asymptotic properties of the mcle. Our result, Theorem 4.2, un-
der the double asymptotic regime, p and N going to infinity, is new. It is stated under
conditions similar to those imposed by Ravikumar et al. (2010) for local model selection
through local conditional likelihoods. It indicates that for % large enough, the mcle is
close to the true value of the parameter with probability tending to 1. This behaviour
compares well to the asymptotic behaviour of the global mle (see Theorem 4.3).
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6 Appendix

6.1 Proof of Lemma 3.1

We will use the notation j <y j to mean that j < j' or j = 0, the zero cell. Let p™v (i)
denote the marginal probability of i € Irs,. We know that the M, -marginal distribution
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of X\, is multinomial. By the general parametrization of the multinomial model (2.2),
for j € J,S(j) € M,, since S(j) is complete,

e = Y (—1)SOISU |1OgiMz(£))7 (6.1)

J'ed, j'y

where by abuse of notation, j such that S(j) C M, is considered as an element of I, .

Moreover,

Moy = Y p)= > exp{ > O+ > 0}

1€ ipm, =] i€T, ipm, =] J' | j'<0j 3’1 g«
L7
i’
I, 907
= (exp E er) <1 + E exp E 6’]-/> .
J' | 3'<0j 1€T, ipm, =] 3’| il
LA
I M,y 07

Therefore logp™* () = 305 jp; 0 + 108 <1 D et ipgy = XD 2 A 93") , which we
J A

can write

Z 0, = logp™(j) — log <1+ Z exp Z 9k> : (6.2)

7' 1 3'<07 i€T, iy =) k| ki

ki

Moebius inversion formula states that for a C V' an equality of the form } 7, - ®(b) = ¥(a)

is equivalent to ®(a) = >, (— 1)!\*[ (). Here, using a generalization of the Moebius
inversion formula to the partially ordered set given by < on J, we derive from (6.2) that
for j € JMe C J

0;

7' 3'<0g
_ Z (—1)I8@-5 10g (1 4 Z exp Z gk)
3" 3'<0j 1€L, ip, =]’ k| k<i

ki’

= 0?/‘” - Z (—1)IS0)=50 g <1 + Z exp Z Hk,) (6.3)

J' |j/<]0j 1€Z, i/\/lv—.j k| k<
kst

which we prefer to write as (3.9).
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6.2 Proof of Lemma 3.2

Since (3.9) is already proved, (2.) holds. Let us prove that (1.) holds, i.e., that when
S(j) ¢ B,, the alternating sum on the right-hand side of (3.9) is equal to 0. Since j € J,
S(j) is necessarily complete and j’ < j is obtained by removing one or more vertices from
S()).

If S(j) N B, # 0 but S(j) & B, there is at least one vertex w € S(j) which is not in
B,. Let [y and [,, be the log terms in the alternating sum corresponding to 7/ = 0 and
Jr, <j such that S(j.,) = {w} respectively. Since for any neighbours u of w in M,, and for
any ¢ € I such that iy, = j’, the u-th coordinate i,, must be zero and since w cannot have
a neighbour outside M,, the set {0, k<i" &k Aj'} in [y for i) such that is\l/[)v =0 is the
same as the set {0, k<i® k A4j'} in I, for i®® such that isav = j!, and igin = igin.
The terms in [y and [, in (3.9) are therefore exactly the same except for their sign and
these two terms cancel out. Similarly, for any given j’ <j with w & S(j'), let j/, € J be
such that S(j') = S(j) U {w} and j/, <7, then, the set Oy, k<i) k Aj’ in [; and the set
0, k <i® k Aji, in 1, are identical where, similarly to the argument above, i is such
that is\ljv = 4" and i? is such that i5\1/1)v = j/, and igiMU = ig{MU. Therefore the terms [
and l;; cancel out and (1.) is proved.

To prove that (3.) holds, following (2.2), we have, for S(i) = F C M,

6 = Y (=) og p (ip, Ou,\p)

FCE
= Z(—1)|E\F|10g (P(iF,OV\F)+ Z Zp<iF7OMU\FakbOV\(MUUL)))
FCE LCV\M, krely
= 20 og (e 30 6)+ > Pew( 4+ D 6)
FCE jeJ jip LCV\F k€l jeJ jip Jtir,ja(ir kL)
= D (-1 og (exp( Y 0y) (6.4
FCE j€Tjaip
+Z(—1)|E\F‘log(1+ Z Z exp( @-))
FCE LCV\F kp€ly, JiF,3<(ir,kL)
= 0+ Y (D og+ Y Y ew( Y @-)) (6.5)
FCE LCV\F kpel, Jir,j<(ir,kL)

Now, following an argument similar to that of (1.) above, we can show that the second
component of the sum in (6.5) is equal to zero. It follows that when 6; = 0 then ' = 0.
This completes the proof of Lemma 3.2.
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6.3 Proof of Theorem 3.1

The local relaxed marginal loglikelihood is

N
Mo (M) = 3 logpMie (X, =il ) = > nlim,) logpMe(in,)

k=1 iy €M,
— <6Ml,v,tMl,'u> _ Nle,v (eMl,v)
My (0M o
It is immediate to see that % =1t(j)—p Js()) wWhere p
the jg(;-marginal cell probability in the M;,-marginal model. Therefore the likelihood

My gM v X .
equations %‘gl) =0, j € JMuv yield

Ml,v( Ml,'u (

Js()) denotes

t(j) = ™" (jsi) = 0, (6.6)

where ¢(j) = n(js())-

For the argument to follow is essentially the same for the one-hop or two-hop neigh-
bourhood. We present it for the more general case of the two hop neighbourhood. The
local conditional log likelihood is

Z’UQPS 9’1},2PS — n(1 log p( ? v 1'17 2v 2v
@ = 2, nlis) DXz, = i)

My €Iy
./\/(2’1}
P (XM, = i)
= n(im,)log s
. 2,v . . 2,v .

iMy €M, N, €Ny,

- ZMZ’U <9M2’U) - Z n<ZN2'U) log Z pMZU (X'UUNU - xUUMJ7 XN2’U = Z’N2v)
Ny EING, TyUNy €Luuny

_ le,u (0M2,v> _ Q (67)

where

Q = Z n(in,, ) log Z exp (90+ Z 9k> (6.8)

TNy €IN, ToUNy ELouNy, k(U 1IN, )
resM2v

and 0 = —1og(D_; <\, €XP D, resMoo Or). The second equality above is due to the

fact that in the expression (3.3) of p(X“:iU’XN”:Z‘A_[”-’XN%:WQ”), the ¢; such that S(j) ¢ M,
P(X Ny, =iNy,) J
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and the 0; such that S(j) C Na, cancel out at the numerator and denominator and it
therefore does not matter, for the conditional distribution of X,y given Xy, , what the
relationship between the neighbours are. The only thing that matters is the relationship
between the vertices in v UN,, and the vertices in M, and according to Lemma 3.2, that
remains unchanged when we change from the global model to the M, ,-marginal models.

We will now differentiate the expression of [*2F% in (6.8) with respect to 6,5 € JM2v.

We first note that 50
U0 o MEY s
90, ~ 7 (Js))-

If we use the notation

. 1 e (T i)
FULVUN N, ) 0 otherwise ’

and the notation pMQ*“(iE), E C M, to denote the marginal probability of Xz = ig in
the My ,-marginal model, we have

2,v . 2,v .
aQ Z ( . )vaquEIquﬂ pM (mUUNv’ ZN2,U) <1j<1(1’vuj\/}, viNQU) - pM (jS(J))>

—_Y = NN, Ry :
60] ’ pM2 (ZNQ,U)

iNQ’U GINQ'U

If j € JM2v is such that S(j) C Na,, then 14 and

TyUNy 77;./\/21,) = 1jN21,<]iN2U

2,0 /. Lv /.
M (i) (Liny i, =P Gis)

pM* (i, )
. 20, .
= Y n(wzv)<1m2,,,<w2,v—pM (]S(j))>
iN2U€IN2v

. 2v , .
= n(jsy) — No™ (si)

5 D
a—g =Y ali)

iNQ’U GINQU

At the mle of the local M;, model, from standard likelihood equations (see Lauritzen,
1996, Theorem 4.11), we have pM"" (4sy)) = W and therefore
0
a_eQ =0, je JM S(j) C Ny (6.9)
J
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If j € JM2v is such that S(j) ¢ N, i.e. if j € JU205,

2,v

. 2,v . 2,v /.
0Q P UsGineun)s ine ) Ling aing, — P (Gs)PM (i)
W = Z n(ZNQU) M2,v(- )
J Ny EING, p Nz
2v , ., . n(/LN v) 2,v .
= ™" Use) D, nliw)+ Y A () (;N )pM (JS(IN@UND) s TNow) Lingy, <ing,
iNQv GINQU iNQUEIN%J >

Since in the Ms ,-marginal model, all the vertices in N, are connected by construction,
at the mle of the local My, model, p" (in,,) = “22) and therefore

N
aQ 2v , ., 2,v . .
20. —NPM (Jsi)) + N Z PM (]S(j)ﬂ(vu/\/y%Z./\/’zv)]'jjv%qi,\/%
J Z'-/\/’21)61-/\/21)
2v , ., 2,v .
= —NpM" (js) + NoM 7 (Gs)) =0 (6.10)

It follows from (6.9) and (6.10) that the 2PS component of 02+ i.e.
ALC R 2,PS
0,75 ed

is the mle of the local two-hop conditional likelihood. We therefore have

91} 2PS (9/\/12 v )QPS-

6.4 Proof of Theorem 4.1
Given the definition of #, to show (4.1), we only need to show that

VNG - 6*) = N(0,G)

where 6* is the column vector obtained by stacking up 6*¥,v € V into one column vec-
tor. Through a classical expansion of the local conditional likelihood function 1(6V) =
S 0P8 (0vPS| X () we have that

N

\/N(év o é*v) _ 9*1} Z al eae*v ) RN
k=1

QH
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: . *v| x (k)
where R, tends to 0 in probability as n — +oo. Let U, = [‘1(6*”)81(989—5}(}6) and let Uy,
be the vector obtained by stacking up the vectors U, ,v € V into a column vector. For

U, = chvzl Uy, we can then write
VN — 6"y =V NUy + Ry.

Each vector Uy, k = 1,..., N clearly have mean 0 and covariance G as defined in (4.2).
It is immediate to show that G is finite. By the central limit theorem we then have that

VN —60%) = N(0,G) and VN(0 — 6*) — N(0, AGA?). The asymptotic expression for
(4.3) is also an immediate consequence of this asymptotic distribution.

6.5 Proof of Theorem 4.2

To prove Theorem 4.2, we need two preliminary results.

Lemma 6.1 Let 6% = (*)>F9 be the true value of the parameter for the conditional
model of X, given Xy,, and let V5 be the value of 0°T° that mazimizes [V75(9VF5).
Then, for turs asin (4.5), if there exists € > 0 such that
I N C2,
tjops — (K 0" N oo <e < —42— A1
ltgers = (575 (6" ) < € < 1o (6.11)

then

~ dv
”ev,PS . ev,*HF < 58’/_6

Proof. To simplify our notation in this proof, we drop any subscripts and superscripts
containing v or P.S, except when it is necessary to keep them to make the argument clear.

Let Q(A) = 1(0*) — 1(0* + A). Clearly Q(0) = 0 and Q(A) < Q(0) = 0, where
A=0—-6" Let |Al|p =, /> e vps AF denote the Frobenius norm of A. Define C'(§) =

{A] ||Al|r = d}. Since Q(A) is a convex function of A, if we can prove

(6.12)

inf QA 1
AQ@Q()>Q (6.13)

then, by convexity of @, it will follow that A must lie within the sphere defined by C/(9),
ie. ||Allr < 6. We are now going to prove that there exists 6 > 0 such that on C(J),
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Q(A) > 0. For A € C(0), we have
Q(A) = 1(07) — 16" + A) = 0"t — k(0%) — (6" + A)'t — k(6" + A))

= k(0" +A) — k(0") — Alt = AR (6") + LA (0" + aA)A — A, a €0,1]

_ AUE(O7) — 1]+ AT (0" + aA)A
~—_—— 2

S/

Q1 P

Q2
(6.14)
By Holder’s and Cauchy’ s inequality, we have the following bound for Q).
Qi = |AT[E'(07) = ]| < [IK'(0%) = tlol |AllL < eVd[|Allp = ev/db (6.15)
For ()5, we have
]. " 1 "
> - 2 : ) * N 2 : ) * )
Q> 2HAHFaI£[i)I,i] Amink (0" + aA) 25 min Amink (6% + aA) (6.16)

We now want to bound the term ¢ = minae(o 1] Amin [k (0*+aA)] from below. Following

(4.7), we can write 2z, (6 + @A) =37, ) )0 + ad; )f](yv,xN)) then we can rewrite
the entries of H in (4.8) as

exp zg,, (0 +al) . ( exp zp,, (0*+al) )2 ifE =1
% 1+Zyuelv\{0} exp 2y, (0*+al) 1+Zyuelu\{0} exp 2k, (0*+aA)/ 7 o
nk l (9 +al ‘TN ) _expzg, (8" +al) exp z;, (0" +aA)

(1+Zyv€fv\{0} EXP Zyy (6*+ai))2’ if kv 7£ lv
then .
o (0° + al ) ) 0z,
O - Z (nkl) (0" + oA, xN )%,

Yy €L \{0}
/ “rada(
where (nzf)yv(@* +a, x%ﬁ}) Oni (98: 2N,

all be expressed in terms of probabilities of the type (4.6) and that they are always less

Ozy, (0+al)
’ (8a+ b = Z]GJUES A; f](yvamN ) we have

. It is easy to see that these derivatives can

than 1 in absolute value. Therefore, since

8772’;)(9*+04A,a:5\73)
= |

Ozy, n
Zyven,\{o} o Zyvélu\{()} Zje];ves(j) A 1Yo, 77%,) (6.17)
Z]GJ;@GS(Q A; Zyvelv\{()} fj(yvaxibvv) = (A, W),

A

since for each j € J*P9, > pwernfoy JiWe, T%,) = fi(o, Ty,) = W}
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The Taylor series expansion of nkl J(0F 4+ aA, x ) yields

n,v [ N* n n,v n 877 (0*+O/A xN) /
nk:l (9 + O‘Awrg\fu)) = nk,’l (0 ) gv)) +a da

€[0,q].

onpy (0 +anzy))

Let K0 +a' A :BN )} denote the d, x d, matrix with entry oo Coming back

to (6.16), we have

E' (0 +ad) = ~ Zn L [H (6 +aA xN Yo o [Wr(Wm)1] /
= LS HEG ) o W W] 4 ak SN K07 + /A 2)) o W)

We write || X||2 = Anax(X) for the operator norm of a matrix X. By Lemma 7.4 of the
Supplementary file,

A (K 0740)) = A ZH W”(W”)]>—||oz%ﬁ:K(9*+a'A,x§\’,‘3)o[W”(W")t]||2

Then since |a| < 1, we have

q = minae[o 1] mzn[ Zn 1 H(Q* + al $N )Wn(Wn> ]
> Nin( & o0, [H(0%,2)) 0 (W wm])
—maXae[ou Ha (SN K (0% + al,z()) o (W (IW™)H)]]
. (6.18)

Cinin — MaXae0,1] HN Z AW (W™l

n=1
N -~ 7
A

= Cpin — maxaep ||A]]2,

where the last but one inequality is due to our Assumption (B). We now need to bound
the spectral norm of A = + SN AW W (W ™). For any o € [0,1] and y € R% with
lyl|l» = 1, we have

(v Ay) = + Z (AW (y' )2 Z AW (y' )2,
AT < \/_||A||F =Vds . (6.19)
and, by definition of the operator norm and from Assumption (B),
1 > t n\2 1 > n n\t
T 2@ D WV 2 < Dy (6.20)
n=1 n=1
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From (6.18), (6.19) and (6.20), we obtain maxae(o1) ||A||2 < Dz V/dd and therefore

q 2 Cmm - l)maz\/a(S .

Substituting this into (6.16), we get
Qs > %52(Cmm — DypoeVd9). (6.21)
From the two inequalities (6.15) and (6.21), it follows that
QA) 2 Qs ~ Q1] > 30 (Coin — D) — /s (6.22)

To simplify the problem, we can choose ¢ such that C,,;, — DoV A6 > %, that is,

0 < 213(;%/&' Then inequality (6.22) becomes

C’m'in(s2
>

QA) = =" — eVds

and Q(A) is positive if we let § = g‘gj Moreover ¢ < - Dcmi” 7 yields the following bound

of €
2

min

< —.
= 10D,n0nd
We have therefore shown that (6.13) holds for 6 = g_\/ﬁe and the theorem is proved. [

In the next lemma, we will make use of Hoeffding inequality (see Hoeffding (1963),
Theorem 2) which states the following. If X7, X5, -+, X,, are independent and a; < X; <
bi(i=1,2,---,n), then for e > 0

(X = > €) < 2exp ( 2 ) (6.23)
— € X ) )
! M= = AT b = wp
Lemma 6.2 Let t o.rs, k7% and d, be as defined above. For any ¢ > 0, we have
p({mz%}”tt,v,ps — (k;”’PS)/(GU’*)HOO > €}) < 2|J]exp(—2Ne?) . (6.24)
ve
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Proof. For j € J""5 we clearly have

Bor (%) = i (1= 202) = i (33 )t = b o = ne) =0

We note that since x%’ is given and f; (5", xg\?)) takes values 0 or 1, we have E(f; (5", :1:5\7)))

p(xy = Jolzy ) fi(zy = ju, @ ) and by Hoeffding’s inequality (6.23), we have

2N?2e?

2N

p(|t; — k;(@*)| >€) <2exp— = 2exp(—2Né?)

Since {max,cy ||t jo.rs — (k:”’PS)I(é’*)HOO < e} = Njeugurs{|tjors — (k”’PS)/(Q*)H < e},
we have that

Plma|t rs = (P (@)oo <€) = 1= PUjeiorsltyrs — (6775 (07)] > o)
> 1- Y P(ltgers = (7% (67)] 2 o),
jEUJ”’PS

> 1—2|J|exp(—2N¢?)

which proves the lemma. []

Proof of Theorem 4.2 Let ¢ = C'4/ ION , where C' is a constant that we will choose

later in this proof. From Lemma 6.2, we have

v 1(n* logp 2|J|
p(max|[t ju.rs — (K"75) (0%)]| > Cy/ N ) < 2]J|exp(—2C?log p) = poTeE (6.25)

veV

— logp
From Lemma 6.1, for e = C'y/=%F < e,

ie. for N > (10CCD2¢””C[“)2 log p, we have

min

c?. N 5v/d,€e
t e o kU,PS / o* <e< min QU,PS — pv* < v )
ltgers = (P (0o < € < 172 = | I < 2

The mcle § obtained by the local averaging of the 6v-FS from each conditional model
can then be bounded as follows:

L il )

5v/d,C vy dvl
< (2@@/( v )2) :CSmC;n ngv ogp

D=
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2log p, we have

Therefore under the condition N > max,cy (mCCDQ—méW)

min

2] * 5C ZU Vdv logp "v,PS ( p* logp 2|J|
p([|6—6"(|F < Cmm\/ € N ) > p(rll)leag(\|tjv,zvs—k (0] < C ~ ) > 1—Iw

with the last inequality due to (6.25).
The theorem would make no sense if probability of the convergence rate was negative
and thus C must satisfy

log(2]J])

1 :
2logp

2
—£%>0:02
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