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Abstract

Discrete graphical models are an essential tool in the identification of the rela-
tionship between variables in complex high-dimensional problems. When the num-
ber of variables p is large, computing the maximum likelihood estimate (henceforth
abbreviated mle) of the parameter is difficult. A popular approach is to estimate
the composite mle rather than the mle, that is the value of the parameter that max-
imizes the product of local conditional likelihoods centered around each vertex v of
the graph underlying the model. A more recent development is to have the com-
ponents of the composite likelihood be local marginal likelihoods centered around
each v.

The purpose of this paper is to first show that the estimates obtained through lo-
cal conditional and marginal likelihoods are identical. Second, we study the asymp-
totic properties of the composite mle obtained by averaging of the local estimates:
this is done under the double asymptotic regime when both p and N go to infinity
and compare the rate of convergence to the true parameter with that of the global
mle under the same conditions. We also look at the simple asymptotic regime where
p fixed and thus recover results by Liu and Ihler (2012).

Key words : discrete graphical models, distributed estimation, local conditional, lo-
cal marginal, composite likelihood, ”large p, large N” asymptotics. AMS 2000 Subject
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1 Introduction

Discrete graphical models are an essential tool in the analysis of complex high-dimensional
categorical data. Let V = {1, . . . , p} be a finite index set. Let G = (V,E) be an
undirected graph where E is the set of undirected edges in V × V . Then the distribution
of X = (Xv, v ∈ V ) is said to be Markov with respect to G if Xv is independent of Xu

given XV \{u,v} whenever the edge (v, u) is not in E. The set of distributions Markov with
respect to a given graph G is called a graphical model. When the variables Xv take values
in a finite set Iv, v ∈ V , the graphical model is said to be discrete. These models are used
extensively to represent interactions between individuals in physical or human networks.
Each data point is classified according to its values of Xv = iv, iv ∈ Iv, v ∈ V and the
data is thus gathered in a p-dimensional contingency table with cells i = (iv, v ∈ V ) and
cell counts n(i), i ∈ I =

∏
v∈V Iv. As we shall recall in Section 2, the density of the cell

counts can be written under a natural exponential family form as

f(t; θ) = exp{〈θ, t〉 −Nk(θ)} (1.1)

where t is a vector of marginal cell counts, 〈θ, t〉 denotes the inner product of t = t(x)
and θ is the canonical loglinear parameter.

For a given data set, the first task is to learn the underlying graph and once the
underlying graph has been learnt, the second task is to estimate the parameter θ of
the model. In this paper we will be concerned with the maximum likelihood estimate
(mle) of θ. When p is large, to obtain the mle of θ through a simple maximization
of the likelihood function is impossible because of the dimension of the parameter θ
and the complexity of the cumulant generating function k(θ) in (1.1). Approximate
techniques such as variational methods (see Jordan et al., 1999, Wainwright and Jordan,
2008) or MCMC techniques (see Geyer, 1991) have been developed in recent years. More
recently still, work has been done on a third type of approximate techniques based on the
maximization of composite likelihoods (see Besag, 1975 and Lindsay, 1988). For a given
data set x(1), . . . , x(N), a composite likelihood is typically the product of local conditional
likelihoods, coming from the local conditional probability of Xv given XNv , v ∈ V , which
we can write as

LPS(θ) =
∏
v∈V

N∏
k=1

p(Xv = x(k)
v |XNv = x

(k)
Nv

; θv,PS) (1.2)

where Nv indices the set of neighbours of v in G, and θv,PS is a subvector of θ.
Further in the vein of composite likelihood, recent research has focused on studying

each local model and combining all the local results to yield a global estimate of either the
underlying structure G or the parameter θ. For example, for model selection, with p large,
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Ravikumar et al. (2010) introduced a local approach to discrete graphical model selection
by looking at the regularized local conditional likelihood of Xv given XV \{v}, that is, due
to the Markov properties of the model, given XNv . The aim is to identify the components
of θv,PS, related to the interaction of v and its neighbours, that are not equal to zero.
For parameter estimation, with p large and G given, the local approach has been used
for Gaussian graphical models by Wiesel and Hero (2012) who consider the composite
likelihood based on local conditional likelihoods of Xv given XNv , v ∈ V . To obtain
the maximum composite likelihood estimate, the estimates obtained through each local
likelihood are combined using the ADDM optimization technique. For discrete models,
Liu and Ihler (2012) study the asymptotic properties, for p fixed and N going to infinity,
of a maximum composite likelihood estimate obtained through either an optimal linear
combination of the estimates of the components of θv,PS from different local conditional
models (linear consensus) or through the choice of a ”best”, in some sense, such estimate
(maximum consensus).

For the estimation of the precision matrix in graphical Gaussian models, Meng et al.
(2014) depart from the ideas of the two papers just mentioned, in two ways. First, they do
not consider local conditional models but rather local marginal models. Second they do
not look only at ”one-hop” marginal models, i.e., models built on v and its neighbours Nv
but they consider ”two-hop” local marginal models that is marginal models with vertex
set a vertex v, its neighbours and the neighbours of the neighbours. With the two-hop
local marginal likelihoods, they achieve such accuracy that, to obtain the overall estimate
of the parameter, they need not use a method more sophisticated than simple averaging
of the various local marginal likelihood estimates. While they prove that for the one-hop
case, the estimates obtained from local marginal models are identical to those obtained
from local conditional models, they do not make the same statement for the estimates
obtained from maximizing two-hop local marginal and conditional likelihoods.

In this paper, we are concerned with the maximum composite likelihood estimation of
θ in (1.1) for discrete graphical models and our purpose is twofold. First we extend the
local marginal method of Meng et al. (2014) to discrete graphical models and show that,
actually the estimates of the parameters obtained from these local marginal likelihoods
are equal to the estimates obtained from the more traditional local conditional likelihoods
and this holds whether we are looking at one-hop or two-hop neighbourhoods. Given
the complexity of computations for local marginal likelihoods, we suggest one should
therefore work only with local conditional likelihoods. We then define our maximum
composite likelihood estimate of θ in the following way: if a component θj of θ is obtained
from one local conditional model only, then this will be the estimate of θj. If the same
component θj is obtained from mj different local conditional models, then the estimate
of θj is the average of the estimates obtained from the mj local marginal models. This
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is a particular case of ”linear consensus” as defined in Liu and Ihler (2012). The second
aim of our paper is to study the asymptotic properties of our estimate under both the
classical and the double asymptotic regime, that is when |V | = p is fixed and the number
of data points N tends to infinity, and, when both p and N tend to infinity.

In Section 3.1, we first recall the definition of composite likelihood based on condi-
tional local likelihoods. The most important feature is that the parameter of each local
conditional likelihood which we denote θv,PS (see (1.2)) is a subvector of the parameter
θ of the global model in (1.1). Then, following what was done in Meng et al. (2014),
we define a relaxed local marginal likelihood and show that the parameter of this local
likelihood, denoted θMl,v contains θv,PS also. In Section 3.4, we show our first main result,
Theorem 3.1, which states that the estimate of θv,PS obtained from local marginal and
conditional likelihoods are identical. We illustrate this results with numerical examples.
It is interesting to note, at this point, that Mizrahi et al. (2014) who developped, also for
discrete models, a local marginal composite likelihood method centered around cliques
rather than vertices find that the performance of their new method is ”basically indistin-
guishable from that of the pseudolikelihood”. Though we have not verified it analytically,
we conjecture that the estimates obtained by their LAP-D and LAP-E method are equal
to the estimates obtained by pseudolikelihood.

In Section 4, we then look at the properties of our maximum composite likelihood esti-
mate of θ. We study its asymptotic properties under the classical and double asymptotic
regime. Our main result, Theorem 4.2, states that, when both p and N go to infinity,
under certain conditions, Conditions A and B, for N

log p
large enough, our estimate is close

to the true value of the parameter with high probability. Conditions A and B are similar
to the ”Dependency” condition of Ravikumar et al. (2010) for model selection. The De-
pendency condition are conditions on the variance function, or Fisher information matrix,
of the local conditional model that roughly state that the maximum eigenvalue of this
variance function is bounded above and the minimum eigenvalue is bounded away from
zero. Our Conditions A and B impose the same type of condition but on the sum, over
v ∈ V , of the local variance functions. Our result under the classical regime, Theorem
4.1, where p is fixed coincides with Theorem 4.1 of Liu and Ihler, 2012 and is given here
for the sake of completness .

Before proceeding to the next section, we ought to make some important remarks.
First when computing the estimates from the local conditional likelihoods, we need to
make sure that they exist, that is that there exists finite estimates of θv,PS that maximize
the local conditional likelihood. If they do not exist, our maximization software may
return values that are erroneous. It may happen also that the global maximum likelihood
estimate of θ does not exist and yet the local estimates of θv,PS exist and we can obtain
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a maximum composite likelihood estimate of the parameter. We expand on these points
in Lemma 3.3. Techniques to identify the existence of the global maximum likelihood es-
timate of θ have been developed in Fienberg and Rinaldo (2012) and Wang et al. (2016).
In the present paper, we will assume that all local estimates exist.
Our second remark is that in the sequel, we will only consider graphs that are not re-
ducible: a graph G is reducible if there exist three disjoint subsets A,B,C of V with
V = A∪B∪C such that every path from A to B goes through C and such that the graph
GC induced from G by C is complete, i.e. every vertex in C is linked to any other vertex
in C by an edge. If G can be so decomposed, then, we decompose each component GA∪C
and GC∪B and so on until the smallest components thus obtained are prime components,
i.e. nondecomposable induced subgraphs that are maximal with respect to inclusion. It
is easy to show that the prime components thus obtained can be ordered into a perfect
sequence P1, . . . , Pk of components that, for any i = 2, . . . , k, there exists j < i such that

Pi ∩
(
∪i−1
l=1 Pl

)
⊂ Pj and Sj = Pj ∩

(
∪j−1
l=1 Pl

)
is complete.

In that case, it is well-known, that the cell probabilities p(i) = P (X = i), i ∈ I can
be expressed analytically in terms of the cell probabilities pPl(iPl

) and pSl(iSl
) in the

Pl-marginal and Sl-marginal, l = 1, . . . , k models respectively, as follows

p(i) =

∏k
l=1 p

Pl(iPl
)∏k

l=2 p
Sl(iSl

)
.

Since, as we shall see in the next section, knowing p(i), i ∈ I in a given model is equivalent
to knowing θ as in (1.1), it is sufficient to work on the induced graphs GPl

, l = 1, . . . , k.
Thus in the sequel, all graphs considered in this paper are irreducible prime graphs. In
this case, there is no possibility to see cuts in the natural exponential family (1.1), that
is no possibility to split the parameter θ into functionally independent components and
the task at hand is to estimate θ.

2 Preliminaries

2.1 Discrete graphical and hierarchical loglinear models

Let p, V and X = (Xv, v ∈ V ) be as described in Section 1 above. If N individuals are
classified according to the p criteria, the resulting counts are gathered in a contingency
table such that

I =
∏
v∈V

Iv
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is the set of cells i = (iv, v ∈ V ). For D ⊂ V , iD denotes the marginal cell iD = (iv, v ∈ D)
with iv ∈ Iv. Let D be a family of non empty subsets of V such that D ∈ D, D1 ⊂ D and
D1 6= ∅ implies D1 ∈ D. In order to avoid trivialities we assume ∪D∈DD = V. The family
D is called the generating class of the hierarchical loglinear model. We denote by ΩD the
linear subspace of y ∈ RI such that there exist functions θD ∈ RI for D ∈ D depending
only on iD and such that y =

∑
D∈D θD, that is

ΩD = {y ∈ RI : ∃θD ∈ RI , D ∈ D such that θD(i) = θD(iD) and y =
∑
D∈D

θD}

The hierarchical model generated by D is the set of probabilities p = (p(i))i∈I on I such
that p(i) > 0 for all i and such that log p ∈ ΩD.

The class of discrete graphical models Markov with respect to an undirected graph G
is a subclass of the class of hierarchical discrete loglinear models. Indeed, let G = (V,E)
be an undirected graph where V is the set of vertices and E ⊂ V × V denotes the set
of undirected edges. We say that the distribution of X is Markov with respect to G if
(v1, v2) 6∈ E implies

Xv1 ⊥ Xv2 | XV \{v1,v2}.

Let D be the set of all cliques (not necessarily maximal) of the graph G. If the distribution
of X = (X1, . . . , Xp) is Multinomial(1, p(i), i ∈ I) Markov with respect to the graph
G, and if we assume that all p(i), i ∈ I, are positive, then, by the Hammersley-Clifford
theorem, log p(i) is a linear function of parameters dependent on the marginal cells iD, D ∈
D only, and therefore the graphical model is a hierarchical loglinear model with generating
set the set D of cliques of G. The reader is referred to Darroch & Speed (1983), Lauritzen
(1996) or Letac & Massam (2012) for a detailed description of the hierarchical loglinear
model and the subclass of discrete graphical loglinear models.

We now set our notation and recall some basic results for discrete hierarchical loglinear
models. The following notation and results can be found in Letac & Massam (2012) and
the corresponding supplementary file.

Among all the values that Xv can take in Iv, v ∈ V , we call one of them 0. For a cell
i ∈ I, we define its support S(i) as

S(i) = {v ∈ V ; iv 6= 0}

and we define also the following subset J of I

J = {j ∈ I, S(j) ∈ D}. (2.1)

From here on, we will call this set the J-set of the model. For i ∈ I and j ∈ J , we define
the symbol

j / i
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to mean that S(j) is contained in S(i) and that jS(j) = iS(j). The relation / has the
property that if j, j′ ∈ J and i ∈ I, then

j / j′ and j′ / i⇒ j / i.

The loglinear parametrization that we use for the multinomial is the so-called baseline
parametrization with general expression, for i ∈ I, S(i) = E ⊂ V ,

θi =
∑
F⊂E

(−1)|E|−|F | log p(iF , 0V \F ) . (2.2)

With the notation above, in Proposition 2.1 of Letac and Massam (2012), it is shown that
for i 6∈ J, θi = 0 and that

θj =
∑

j′∈J, j′/j

(−1)|S(j)|−|S(j′)| log
p(j′)

p(0)
, j ∈ J

log p(i) = θ0 +
∑
j∈J,j/i

θj, i ∈ I (2.3)

log p(0) = θ0. (2.4)

One then readily derives the density of the multinomial M(N, p(i), i ∈ I) of the cell counts
n = (n(i), i ∈ I), Markov with respect to G to be, up to a multiplicative constant, equal
to

f(t; θ) = exp{〈t, θ〉 −Nk(θ)}, θ ∈ RJ (2.5)

with θ = (θj, j ∈ J), t = t(n) = (t(j), j ∈ J) where t(j) = n(jS(j)) are the jS(j)-marginal
cell counts and

k(θ) = log
(∑

i∈I

exp
∑
j∈J,j/i

θj

)
= log

(
1 +

∑
i∈I\{0}

exp
∑
j∈J,j/i

θj

)
. (2.6)

For θ ∈ RJ , these distributions form a natural exponential family of dimension J generated
by a measure µ which we will now identify. Let ej, j ∈ J be the canonical basis of RJ

and, for i ∈ I, let

fi =
∑
j∈J,j/i

ej. (2.7)

Then (2.3) and (2.4) can be written in matrix form as

log p = Aθ̃ (2.8)
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where θ̃t = (θ0, θ
t), A is an (|I|) × (1 + |J |) matrix. We call A the design matrix of the

model. The rows of A are indexed by i ∈ I and equal to f̃i
t

= (1, f ti ) ∈ RJ+1. It is
immediate to see that the Laplace transform of the generating measure µ is

ek(θ) =
∑
i∈I

e〈θ,fi〉

and therefore the measure µ generating (2.5) is

µ(dx) =
∑
i∈I

δfi(x). (2.9)

This exponential family is concentrated on the convex hull of fi, i ∈ I, which is a bounded
set of RJ , and therefore the set of parameters θ for which k(θ) is finite is the whole space
RJ . From the definition of X, fi, i ∈ I and t = (t(jS(j), j ∈ j), it is easy to see that

(N, t(j), j ∈ J)t = Atn =
∑

i∈I n(i)f̃i and the vector of sufficient statistics t, which we
also write as t = tJ to emphasize its length, is such that

tJ
N

=
(t(j)
N

, j ∈ J
)t

=
∑

i∈I\{0}

n(i)

N
fi =

∑
i∈I

n(i)

N
fi (2.10)

and thus belongs to the convex hull of (fi)i∈I . The (fi)
′s are the extreme points of the

closure of the convex hull of the fi, i ∈ I.

3 The conditional and marginal composite maximum

likelihood estimators

When the dimension of the discrete graphical model is large, computing the maximum
likelihood estimate of θ in (2.5) is challenging, if not impossible. As mentioned in the
introduction, a recent approach to this problem has been local with the use of a composite
likelihood which is equal to the product, over all vertices v ∈ V , of the local conditional
likelihood for Xv given XNv whereNv denotes the set of neighbours of v in G. Recently, for
Gaussian high-dimensional graphical models, Wiesel & Hero (2012) and Meng & al. (2013,
2014) worked with a different composite likelihood which is the product, over all vertices
v ∈ V , of local marginal likelihoods. In this section, we will first recall the definition
of the conditional composite likelihood estimate, then extend the marginal composite
likelihood to discrete graphical models and finally show that the maximum likelihood
estimates obtained from these two types, conditional and marginal, of local models are
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in fact identical and thus the composite likelihood obtained by any type of consensus
from these two types of likelihood are equal. Since the computational complexity of the
marginal computations is exponential in the number of vertices in the neighbourhood of
v while the conditional computations are linear in this number, there is no advantage in
working with marginal composite likelihoods.

3.1 The conditional composite likelihood function

We first define the standard conditional composite likelihood function. For i = (iv, v ∈ V ),
let i(1), . . . , i(N) be a sample of size N from the distribution of X Markov with respect to
G. We recall that the global likelihood function is

L(θ) ∝
N∏
k=1

p(Xv = i(k)
v , v ∈ V ) = exp{〈θ, t〉 −Nk(θ)} (3.1)

where k(θ) is as in (2.6).
For a given vertex v ∈ V , let Nv the set of neighbours of v in the given graph G.

The composite likelihood function based on the local conditional distribution of Xv given
XV \{v} or equivalently, due to the Markov property, the conditional distribution of Xv

given its neighbours XNv is LPS(θ) =
∏

v∈V L
v,PS(θ) where

Lv,PS(θ) =
N∏
k=1

p(Xv = i(k)
v |XNv = i

(k)
Nv

; θ) (3.2)

and the superscript PS stands for ”pseudo-likelihood”, the name often given to the con-
ditional composite lilelihood (Besag, 1974). As given by (2.3), for a given cell i, we have

log p(i) = log p(Xv = iv, v ∈ V ) = θ0 +
∑
j/i

θj

= θ0 +
∑

j/i, S(j)⊆v∪Nv ,S(j)6⊆Nv

θj +
∑

j/i, S(j)⊆Nv

θj +
∑

j/i, S(j)6⊆v∪Nv

θj

The set J is as defined in (2.1) for the global model. Let

JPSv = {j ∈ J | S(j) ⊆ v ∪Nv, S(j) 6⊆ Nv} = {j ∈ J | v ∈ S(j)}.

9



Then for iv 6= 0, we have

p(Xv = iv| XNv = iNv) = p(Xv = iv| XV \{v} = iV \{v}) =
p(XV = iV )

p(XV \{v} = iV \{v})

=
eθ0+

∑
j/i, j∈JPSv θj+

∑
j/i, S(j)⊆Nv

θj+
∑

j/i, S(j)6⊆v∪Nv
θj∑

k∈I| kV \{v}=iV \{v}

(
eθ0+

∑
j/k, j∈JPSv θj+

∑
j/k, S(j)⊆Nv

θj+
∑

j/k, S(j)6⊆v∪Nv
θj
)

=
e
∑

j/i, j∈JPSv θj

1 +
∑

k∈I| kV \{v}=iV \{v}, kv 6=0 e
∑

j/k, j∈JPSv θj
(3.3)

and

p(Xv = 0| XV \{v} = iV \{v}) =
1

1 +
∑

k∈I| kV \{v}=iV \{v}, kv 6=0 e
∑

j/k, j∈JPSv θj
(3.4)

Equality (3.3) is due to the fact that the set of j ∈ J such that j / k, S(j) 6⊆ v ∪Nv, is

the same whether kv = iv or kv 6= iv and therefore the term e
θ0+

∑
j/k, S(j)6⊆kv∪Nv

θj cancels
out at the numerator and the denominator. The same goes for the set of j ∈ J such that
j / k, S(j) ⊆ Nv.

Remark 3.1 In the equation above, we worked with p(Xv|XV \{v}) rather than with P (Xv|XNv),
though the two are equal, in order to emphasize that the parameter

θv,PS = (θj, j ∈ JPSv), v ∈ V (3.5)

of the v-th component Lv,PS of conditional composite distribution is a subvector of θ, the
parameter of the global likelihood function.

We now define the two-hop conditional composite likelihood function.

Definition 3.1 For a given v ∈ V , we will say that Mv is a one-hop neighbourhood of v
if it comprises v and its immediate neighbours in G, i.e. if Mv = {v} ∪Nv. We will say
that Mv is a two-hop neighbourhood if it comprises v, its immediate neighbours and the
neighbours of the immediate neighbours in G. We use the notation

N2v =Mv \
(
{v} ∪ Nv

)
to denote the set of neighbours of the neighbours of v. For simplicity of notation, we will
denote both the one-hop and two-hop neighbourhoods by Mv.
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The two-hop conditional composite likelihood function is LPS2(θ) =
∏

v∈V L
v,PS2(θ) where

Lv,PS2(θ) =
N∏
k=1

p(Xv = i(k)
v , XNv = i

(k)
Nv
|XN2v = i

(k)
N2v

). (3.6)

The expression of p(Xv = i
(k)
v , XNv = i

(k)
Nv
|XN2v = i

(k)
N2v

) is the same as (3.3) and (3.4) but
with Jv,PS replaced by Jv,PS2 where

Jv,PS2 = {j ∈ J | S(j) ⊆Mv, S(j) 6⊆ N2v}.

In a parallel way to Remark 3.1, we note that

θv,PS2 = {θj, j ∈ Jv,PS2}

is a subvector of θ = (θj, j ∈ J), the argument of the global likelihood function.

3.2 The marginal composite likelihood

LetMv be the one-hop or two-hop neighbourhood of v. The marginal composite likelihood
is the product

LM(θ) =
∏
v∈V

N∏
k=1

p(XMv = i
(k)
Mv

) =
∏
v∈V

LMv(θ). (3.7)

where LMv(θ) =
∏N

k=1 p(XMv = i
(k)
Mv

). The Mv-marginal model is clearly multinomial
and the corresponding data can be read in the Mv-marginal contingency table obtained
from the full table. The density of the Mv-marginal multinomial distribution is of the
general exponential form

f(tMv ; θMv) = exp{〈tMv , θMv〉 −NkMv(θMv)} (3.8)

where tMv , θMv and kMv are respectively theMv-marginal canonical statistic, canonical
parameter and cumulant generating function.

In order to identify theMv-marginal model, we first establish the relationship between
θ and θMv . In the sequel, the symbol j will be understood to be an element of IMv when
used in the notation θMv

j while it will be understood to be the element of J obtained by
padding it with entries jV \Mv = 0 when used in the notation θj. We now give the general
relationship between the parameters of the overall model and those of the Mv-marginal
model. Proofs are given in the Appendix.
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Lemma 3.1 Let Mv be the one-hop or two-hop neighbourhood of v ∈ V . For j ∈
J, S(j) ⊂Mv, the parameter θj of the overall model and the parameter θMv

j of the marginal
model are linked by the following:

θMv
j = θj +

∑
j′ | j′/0j

(−1)|S(j)−S(j′)| log
(

1 +
∑

i∈I, iMv=j′

exp
∑
k | k/i
k 6/j′

θk

)
. (3.9)

We want to identify which of the marginal parameters are equal to the corresponding
overall parameter and in particular which marginal parameters are equal to 0 when the
global parameter is equal to zero. LetMc

v denote the complement ofMv in V . We define
the buffer set at v as follows:

Bv = {w ∈Mv | ∃w′ ∈Mc
v with (w,w′) ∈ E}. (3.10)

We have the following result.

Lemma 3.2 Let Mv be the one-hop or two-hop neighbourhood of v ∈ V . For j ∈
J, S(j) ⊂Mv the following holds:

(1.) if S(j) 6⊂ Bv, then θMv
j = θj,

(2.) if S(j) ⊂ Bv, then in general θMv
j 6= θj, and (3.9) holds.

Moreover, for i ∈ I, S(i) ⊂Mv,

(3.) If S(i) 6⊂ Bv, then θMv
i = 0 whenever θi = 0.

From the lemma above, we see that, for j ∈ J such that S(j) ⊂ Mv, S(j) 6⊂ Bv, the
corresponding global and Mv-marginal loglinear parameters are equal. We see also that
for i ∈ I such that S(i) ∈ Mv, S(i) 6⊂ Bv, if the loglinear parameter is zero in the global
model, it remains zero in the Mv-marginal model.

3.3 A convex relaxation of the local marginal optimization prob-
lems

It is clear from (3.9) that even though maximizing the marginal likelihood from (3.8) is
convex in θMv , it is not convex in θ. We would therefore like to replace the problem of
maximizing (3.8) non convex in θ by a convex relaxation problem. We know from (1.) of
Lemma 3.2 that θMv

j = θj for j in the set {j ∈ J : S(j) ⊂Mv, S(j) 6⊂ Bv} .

12



We also know from (3.) of Lemma 3.2 that if the global model parameter θi, S(i) ⊂
Mv, S(i) 6⊂ Bv is equal to zero, then θMv

i is also equal to zero. Following what has been
done for Gaussian graphical models in Meng et al. (2014), it is natural to consider the
following graphical model relaxation of the Mv-marginal model.

Let Ml,v denote the relaxed hierarchical loglinear model obtained from the Mv-
marginal model by keeping interactions given by edges with at least one endpoint in
Mv \ Bv and all interactions in the power set 2Bv . The index l takes values l = 1 or l = 2
when Mv is respectively the one-hop or two-hop neighbourhood of v. The J-set of this
local model is

JMl,v = {j ∈ J | S(j) ⊂Mv, S(j) 6⊂ Bv} ∪ {i ∈ I | S(i) ⊂ Bv} . (3.11)

Let pMl,v(XMv) denote the marginal probability of XMv in theMl,v-marginal model.
The local estimates of θj, j ∈ {j ∈ J | S(j) ⊂Mv, S(j) 6⊂ Bv} are obtained by maximizing
the Ml,v-marginal loglikelihood

LMl,v(θ) =
N∏
k=1

pMl,v(XMv = i
(k)
Mv

) = exp{〈θMl,v , tMl,v〉 −NkMl,v(θMl,v)} (3.12)

which is a convex maximization problem in

θMl,v = (θj, j ∈ JMl,v).

At this point, we need to make two important remarks.

Remark 3.2 The vector θv,PS defined in (3.5) is a subvector of θMl,v . Therefore maxi-
mizing (3.12) for either l = or l = 2 will yield an estimate of θv,PS.

Remark 3.3 The Ml,v, l = 1, 2-marginal model is a hierarchical loglinear model but
not necessarily a graphical model. For example, if we consider a four-neighbour lattice
and a given vertex v0 and its four neighbours that we will call 1, 2, 3, 4 for now, then the
generating set of the relaxed M1,v0-marginal model is

DM1,v0 = {(v0, 1), (v0, 2), (v0, 3), (v0, 4), (1, 2, 3, 4)}.

This is not a discrete graphical model since a graphical model would also include the
interactions (v0, 1, 2), (v0, 2, 3), (v0, 3, 4), (v0, 1, 4), (v0, 1, 2, 3, 4). It was therefore crucial to
set up our problem, as we did it in Section 2, within the framework of hierarchical loglinear
models rather than the more restrictive class of discrete graphical models.
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Figure 1: Two vertices in a 5× 10 lattice: Theorem 3.1 applies for vertex 25 while it does
not apply for vertex 39.

3.4 Equality of the maximal conditional and marginal composite
likelihood estimate

Let θ̂Ml,v , l = 1, 2 denote the maximum likelihood estimate of θMl,v obtained from the
local likelihood (3.12).

Theorem 3.1 The PS component of θ̂M1,v ,i.e. (θ̂
M1,v

j , j ∈ Jv,PS) is equal to the maxi-
mum likelihood estimate of θv,PS obtained from the local conditional likelihood (3.2).

Similarly, The PS2 component of θ̂M2,v ,i.e. (θ̂
M2,v

j , j ∈ Jv,PS2) is equal to the maximum
likelihood estimate of θv,PS2 obtained from the local conditional likelihood (3.6).

The proof is given in the Appendix.
At this point, we ought to make an important observation. In the case of the two-

hop marginal likelihood, it may happen that the buffer Bv is no longer equal to N2v.
For example, if we consider a four-neighbour 5 × 10 lattice and number the vertices by
rows starting from the left, vertex 39 is such that N2v = {19, 28, 30, 37, 48, 50} while
Bv = N2v \ {50}. The argument in the proof of Theorem 3.1 for j such that S(j) 6⊂ N2v

then breaks down since in the M2,v-marginal model, some cells such as iMv = (i30 =
1, i50 = 1, 0Mv\{30,50}) with support in N2v no longer have a complete support. This
situation is illustrated in Figure 1 where for the sake of comparison, we also look at
vertex 25 for which N2v = Bv and Theorem 3.1 applies..

In Tables 1 and 2, we give the numerical values of the maximum likelihood estimate
θj, j ∈ JM2,v obtained by the four local model PS, PS2,M1,v and M2,v for j such that
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j ∈ JPS25 and for j such that j ∈ JPS39 , respectively. We see that in the first case, the
values of θ̂j obtained from the local likelihoods lPS25 and lM1,25 are identical and similarly
for those obtained from lPS2,25 and lM2,25 , while in the second case, the values obtained
through the PS2 and M2,v models are slightly different. The values obtained from the
PS andM1,v models are identical since then Bv = Nv and the proof of Theorem 3.1 does
not break down.

Models θ̂25 θ̂15,25 θ̂24,25 θ̂25,26 θ̂25,35

M1,v -0.0536 0.5914 -0.4808 -0.8314 -0.8461
M2,v -0.0779 0.5221 -0.5310 -0.7274 -0.7459

(v, PS) -0.0536 0.5914 -0.4808 -0.8314 -0.8461
(v, 2PS) -0.0779 0.5221 -0.5310 -0.7274 -0.7459

Table 1: The local mle of some θj, j ∈ J25,PS in the 5× 10 lattice

Models θ̂39 θ̂29,39 θ̂38,39 θ̂39,40 θ̂39,49

M1,v -1.0799 -0.3306 -0.3647 -0.5791 1.1749
M2,v -1.0386 -0.3519 -0.5020 -0.5445 1.1946

(v, PS) -1.0799 -0.3306 -0.3647 -0.5791 1.1749
(v, 2PS) -1.0381 -0.3531 -0.5019 -0.5448 1.1947

Table 2: The local mle of some θj, j ∈ J39,PS in the 5× 10 lattice

Remark 3.4 The equality of the estimates holds also for the marginal estimates obtained
by Mizrahi et al. (2014) if, for q a clique of G and v ∈ q ⊂ Aq, satisfying the strong LAP
condition with respect to Aq, we retain only the parameters θj, j ∈ JPSv ∩ q. We also note
that Theorem 9 in that paper may not be verified in some cases. For example, take vertex
7 in a 3× 3 lattice numbered from left to right starting with the top row, take q = {7, 8}
as the clique of interest. Then Aq = {4, 7, 8} satisfies the strong LAP condition but θ8 in
the Aq-marginal model cannot be equal to θ8 in the joint model as our Lemma 3.2 shows.

3.5 The maximum composite likelihood estimate

Since we have proved that the estimates of θv,PS obtained from local conditional and
relaxed marginal likelihoods are identical, given the computational complexity in the
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relaxed marginal model, we will work only with the local estimates obtained from local
conditional lilkelihoods. More precisely, for each local conditional likelihood lv,PS or lv,PS2 ,
we consider the local maximum likelihood estimate θ̂v,PS or θ̂v,PS2 . We define

θ̂v =

{
θ̂v,PS if we work with lv,PS

(θ̂v,PS2

j , S(j) ⊂ {v} ∪ Nv) if we work with lv,PS2 .
(3.13)

In other words, from either lv,PS or lv,PS2 , we retain θ̂v = (θ̂vj , S(j) ⊂ ({v} ∪Nv) \Nv) =

(θ̂vj , , v ∈ S(j)) only. If we have mj estimates θ̂vlj , l = 1, . . . ,mj, then we define the
maximum composite likelihood estimate of θ to be

θ̄ = (θ̄j =

∑mj

l=1 θ̂
vl
j

mj

, j ∈ J), (3.14)

which from now on, we will abbreviate by ”mcle”.
Let θ̂PS denote the vector obtained by stacking up the vectors θ̂v, v ∈ V . We then

have
θ̄ = Aθ̂PS

where A is a |J | ×
∑

v∈V |Jv,PS| where Jv,PS is as defined in (3.5). If S(j) = {v}, clearly,
the row of A corresponding to θ̄j has all its entries equal to 0 except for one entry equal
to 1 in the column block Jv,PS. If j ∈ Jvl,PS, l = 1, . . . ,mj, and S(j) ⊂ ({vl}∪Nvl) \Nvl
the row corresponding to θ̄j has all its entries equal to 0 except for one entry equal to 1

mj

in each of the column blocks Jvl,PS, l = 1, . . . ,mj. For example, if the model considered
is the discrete graphical model Markov with respect to the four-cycle with vertex set
V = {a, b, c, d} and D = {ab, ac, bd, cd}, we have

θ̄ =



θ̄a
θ̄ab
θ̄b
θ̄bd
θ̄c
θ̄cd
θ̄d
θ̄db


=



1 0 0 0 0 0 0 0 0 0 0 0
0 0.5 0 0 0.5 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0.5 0 0 0 0 0.5 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0.5 0 0 0.5
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0.5 0 0 0 0 0.5 0





θ̂aa
θ̂aab
θ̂aac
θ̂bb
θ̂bab
θ̂bbd
θ̂cc
θ̂cca
θ̂ccd
θ̂dd
θ̂dbd
θ̂dcd



.
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In general, for j ∈ J and k ∈ Jv,PS, v ∈ V , the matrix A is defined by

Aj,k =

{ 1
mj

if jvl∪Nvl
= k ∈ Jvl,PS, l = 1, . . . ,mj

0 otherwise.
(3.15)

We have now defined our mcle which we use to replace the global mle maximizing (3.1).
It is natural to ask whether the mcle exists when the global mle exists and conversely
whether global mle exists when the mcle exists. The existence of the global mle is an
important problem that has been considered in Fienberg and Rinaldo (2012) and more
recently in Wang et al. (2016). We say that the mle does not exist if we cannot find θ̂ such
the corresponding cell probabilities p(i) and p(0) as given by (2.3) and (2.4) are strictly
positive. The nonexistence of the global mle has important consequences for inference.
However, if we are only concerned with estimation of the parameter θ or equivalently
(p(i), i ∈ I, as the following lemma shows, the global mle may not exist but we may
accept still accept the mcle as an estimate of the parameter.

Lemma 3.3 For a discrete log-linear model, if the global mle exists, then the mcle exists.
However, the mcle may exist and yet the global mle does not.

Proof: If the global mle exists, then p̂(X = i) > 0 and p̂(XNv = iNv) > 0,

p̂(Xv = iv|XNv = iNv) =
p̂(X = i)

p̂(XNv = iNv)
> 0,

i.e. the composite mle exists. We now give an example where the mcle exists but the
global mle does not. Consider the four-cycle graphical model as described above, with
binary variables.

Let the data be such that n(i) = 1, i ∈ {0000, 1000, 0100, 1010, 0101, 1011, 0111, 1111}
and n(i) = 0 otherwise so that the marginal counts are tc = td = 4, tab = 1, tbd = tcd =
tac = 3 where for A ⊂ V , tA denotes tj with jv = 1 if v ∈ A and jv = 0 otherwise. Thus
the data vector lies on the facet tc + td + tab− tbd− tcd− tac = 0 of the marginal polytope
of the four-cycle model. The reader is referred to Letac and Massam (2012, Theorem 5.3)
for the equations of the facets of the polytope corresponding to the four-cycle. From the
theory on the existence of the global maximum likelihood estimate developed in Fienberg
and Rinaldo (2012) references therein, this implies that the global mle does not exist.
The facets corresponding to the local models built on v = a have equation

tab = 0;
ta − tab = 0;
tb − tab = 0;
1− ta − tb + tab = 0;
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We can verify immediately that none of these equations are satisfied with the given data
and therefore the mle iof θv,PS inn the a-local model. Similarly the mle of θv,PS, v = b, c, d
exist and thus the mcle exist. �

4 Asymptotic properties of the maximum composite

likelihood estimate

In this section, we look at the asymptotic properties of the mcle θ̄ when p is fixed and
then when both p and N go to infinity. Though asymptotics in the case p is fixed have
been given by Liu and Ihler (2012), we give our result here in Section 4.1 for completeness
in our own notation.

4.1 The classical asymptotic regime

We consider here the behaviour of the mcler θ̄ when p = |V | is fixed and the sample size
N goes to infinity. We have the following result.

Theorem 4.1 The mcle θ̄ as defined in (3.14) is asymptotically consistent and

√
N(θ̄ − θ∗)→ N(0, AGAt) (4.1)

where A is as defined in (3.15), G is the square
∑

v∈V |Jv,PS|-dimensional matrix with
(vl, vm)-block entry

Gvl,vm = I−1(θvl,∗)E(
∂l(θ∗vl)

∂θ∗vl

(∂l(θ∗vm)

∂θ∗vm

)t
)I−1(θ∗vm), (4.2)

l(θ∗vl) = lvl,PS((θ∗)vl,PS|X) is the local conditional likelihood, given one sample point X,

evaluated at the true local parameter (θ∗)vl,PS and I(θ∗vl) = E(∂l(θ
∗vl )

∂θ∗vl

(
∂l(θ∗vl )
∂θ∗vl

)t
) is the

vl-local information matrix evaluated at the true value θ∗vl , vl ∈ V.
The mean square error therefore satisfies

NE(‖θ̄j − θ∗j‖2)
N→∞−−−→

mj∑
l=1

1

m2
j

[Ivl(θvl,∗)]−1
j,j +

mj∑
l1=1

mj∑
l2=l1+1

2

m2
j

[Gvl1 ,vl2
]j,j (4.3)

In the expression of the mean square error (4.3) above, we note that to the diagonal
elements of the inverse information matrix for each local model are added the cross-
product terms [Gvl1 ,vl2

]j,j because the estimates of θ̂vj coming from the vl1 and vl2 local
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conditional models with j ∈ Jvl1 ,PS ∩Jvl2 ,PS are not independent. We also note here that
our Theorem above coincides with Theorem 4.1 in Liu and Ihler (2012) with our matrix
A being equal to their (

∑
iW

i)−1.
To illustrate our result above, we simulate data from the model Markov with respect

to the four cycle G as described above. We simulate our data for the following values of the
parameters [θa, θb, θc, θd, θab, θac, θbd, θcd] = [0.53, 1.83,−2.25, 0.86, 0.31,−1.30,−0.43, 0.34].
The results are illustrated in Figure 2.

4.2 The double asymptotic regime

In this section, we consider the asymptotic properties of the mcle when both p and N go
to +∞. In Theorem 4.2 below, we give its rate of convergence to the true value θ∗. In
order to compare the behaviour of the mcle with the global mle, we also give, in Theorem
4.3, the rate of convergence of the global mle under the same asymptotic regime.
It will be convenient to introduce the notation

fj(x) =
∏
l∈S(j)

1(xl = jl) =

{
1 if j / x
0 otherwise

,

and to write (3.3) as

p(xv|xNv) =
exp{

∑
j∈Jv,PS θjfj(xv, xNv)}

1 +
∑

yv∈Iv\{0} exp{
∑

j∈Jv,PS θjfj(yv, xNv)}
. (4.4)

In this section, we work exclusively with lv,PS(θv,PS). Therefore for simplicity of notation
we write θ for θv,PS. Also, for convenience, we scale the loglikelihood by the factor 1

N
.

Then the v-local conditional loglikelihood function is

lv,PS(θ) = 1
N

∑N
n=1 log p(x

(n)
v |x(n)

Nv
)

=
∑

j∈Jv,PS θj
1
N

∑N
n=1 fj(x

(n)
v , x

(n)
Nv

)

− 1
N

∑N
n=1 log{1 +

∑
yv∈Iv\{0} exp{

∑
j∈Jv,PS θjfj(yv, x

(n)
Nv

)}}

The sufficient statistic is tj = 1
N

∑N
n=1 fj(x

(n)
v , x

(n)
Nv

). We write

tJv,PS = [t1, t2, · · · , tdv ] (4.5)

and

kv,PS(θ) =
1

N

N∑
n=1

log{1 +
∑

yv∈Iv\{0}

exp{
∑

j∈Jv,PS

θjfj(yv, x
(n)
Nv

)}} =
1

N

N∑
n=1

logZn,v(θ),
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Figure 2: Empirical and theoretical mean square errors for the global mle and the mcle
for the four-cycle graphical model.
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where
Zn,v(θ) = 1 +

∑
yv∈Iv\{0}

exp{
∑

j∈Jv,PS

θjfj(yv, x
(n)
Nv

)}.

Then the loglikelihood function is

lv,PS(θ) =
∑

j∈Jv,PS

θjtj − kv,PS(θ) .

Its first derivative is

∂lv,PS(θ)

∂θk
= tk −

∂kv,PS(θ)

∂θk
,

∂kv,PS(θ)

∂θk
=

1

N

N∑
n=1

exp{
∑

j∈Jv,PS θjfj(kv, x
(n)
Nv

)}}
Zn,v(θ)

fk(kv, x
(n)
Nv

)

with
exp{

∑
j∈Jv,PS θjfj(kv, x

(n)
Nv

)}}
Zn,v(θ)

= p(Xv = kv|x(n)
Nv

) (4.6)

We now want to compute ∂2lv,PS(θ)
∂θk∂θl

= −∂2kv,PS(θ)
∂θk∂θl

, k, l ∈ Jv,PS. To simplify further our
notation, we set

zyv(θ) =
∑

j∈Jv,PS

θjfj(yv, x
(n)
Nv

). (4.7)

For kv = lv, using (4.6), we obtain

∂2kv,PS(θ)
∂θk∂θl

= 1
N

∑N
n=1

(
exp zkv (θ)

Zn,v(θ)
− (

exp zkv (θ)

Zn,v(θ)
)2
)
fk(kv, x

(n)
Nv

)fl(lv, x
(n)
Nv

)

= 1
N

∑N
n=1

(
p(Xv = kv|x(n)

Nv
)− p(Xv = kv|x(n)

Nv
)2)fk(kv, x

(n)
Nv

)fl(lv, x
(n)
Nv

)
.

if kv 6= lv, then

∂2kv,PS(θ)
∂θk∂θl

= 1
N

∑N
n=1−

exp zkv (θ) exp zlv (θ)

(Zn,v(θ))2
fk(kv, x

(n)
Nv

)fl(lv, x
(n)
Nv

)

= 1
N

∑N
n=1(−p(Xv = kv|x(n)

Nv
)p(Xv = lv|x(n)

Nv
))fk(kv, x

(n)
Nv

)fl(lv, x
(n)
Nv

) .

Let W n,v = (fj(jv, x
(n)
Nv

), j ∈ Jv,PS) be the dv × 1 vector of indicators. We introduce the
notation

ηn,vk,l (θ, x
(n)
Nv

) =

{
exp zkv (θ)

Zn,v(θ)
− (

exp zkv (θ)

Zn,v(θ)
)2, if kv = lv

− exp zkv (θ) exp zlv (θ)

(Zn,v(θ))2
, if kv 6= lv .

(4.8)
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Let Hn,v(θ, x
(n)
Nv

) be the dv × dv matrix with (k, l) entry ηn,vk,l (θ, x
(n)
Nv

). Then the Fisher

information matrix derived from lv,PS is

(kv,PS)
′′
(θ) =

1

N

N∑
n=1

Hn,v(θ, x
(n)
Nv

) ◦ [W n,v(W n,v)t]

where ◦ denotes the Hadamard product of two matrices. We make two assumptions on
the behaviour of the cumulant generating function kv,PS, v ∈ V at θ∗, similar to those
made by Ravikumar et al. (2010) and Meng (2014).

(A) For the design matrix of the v-local conditional models, we assume that there exists
Dmax > 0 such that

max
v∈V

λmax

( 1

N

N∑
n=1

W n,v(W n,v)t
)
≤ Dmax;

(B) We assume the minimum eigenvalue of the Fisher Information matrices (kv,PS)
′′
(θ∗), v ∈

V is bounded, i.e., there exists Cmin > 0 such that

Cmin = min
v∈V

λmin
1

N

N∑
n=1

[
Hn,v(θ∗, x

(n)
Nv

) ◦ [W n,v(W n,v)t]
]
.

We are now ready to state our theorem on the asymptotic behaviour of θ̄.

Theorem 4.2 Assume conditions (A) and (B) hold. If the sample size N and |V | = p
satisfy

N

log p
≥ max

v∈V
(
10CDmaxdv

C2
min

)2,

where C is a positive constant such that p2C2 ≥ 2|J |, then the mcle θ̄ = (θ̄j, j ∈ J) is such
that

‖θ̄ − θ∗‖F ≤
5C

Cmin

√∑
v∈V dv log p

N
(4.9)

with probability greater than 1− 2|J |
p2C2 .

The proof is given in the Appendix. With a similar argument, we can derive the behaviour
of the global mle, which we will denote by θ̂G. We need to make assumptions similar to
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(A) and (B). We assume that

(A′) there exists Dmax > 0 such that λmax

(∑
i∈I

fi ⊗ fi
)
≤ Dmax,

(B′) 0 < κ∗ = λmin

[
k
′′
(θ∗)

]
.

The asymptotic behaviour of θ̂G is given in the following theorem.

Theorem 4.3 Assume conditions (A′) and (B′) hold. If N and p satisfy the condition

N

log p
≥ (

40C|J |Dmax

κ∗2
)2,

where C is a positive constant such that p2C2 ≥ 2|J |, then the global mle θ̂G = (θ̂Gj , j ∈ J)
is such that

‖θ̂G − θ∗‖F ≤
5C

κ∗

√
|J | log p

N
(4.10)

with probability greater than 1− 2|J |
p2C2 .

The proof is provided in the Supplementary file. Comparing Theorems 4.2 and 4.3, we

see that for N
log p

= O(|J |2), ‖θ̂G − θ∗‖F = O(
√
|J | log p

N
) with high probability while for

N
log p

= O(maxv∈V (d2
v)), ‖θ̄− θ∗‖F = O(

√∑
v∈V dv log p

N
). This implies that for the mcle, the

requirement on the sample size N are not as stringent as for the global mle but of course,
we lose some accuracy in the approximation of θ∗. The situation is, however, not bad
since √∑

v∈V dv log p

N

/√ |J | log p

N
=

√∑
v∈V dv

|J |

which is the square root of the ratio of the sum over v ∈ V of the number of parameters
in the v-local conditional models and the number of parameters in the global model. If
the number of neighbours for each vertex is bounded by d, we see that this ratio is at
most equal to 2d+1

|J | and usually much smaller than that. For example, in an Ising model,

|J | = p + |E| and
∑

v∈V dv = p + 2|E| and therefore
∑

v∈V dv
|J | = 1 + |E|

p+|E| ≤ 2. Of course,

the size of the v-local model can grow with p (see Ravikumar et al., 2011) but like in
Meng et al. (2014), since we are concerned with parameter estimation, we assume that
the graph structure is known, that is

∑
v∈V dv and |J | are known.
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5 Conclusion

In this paper, we have made a detailed study of the maximum composite likelihood
estimate of the parameter in a discrete graphical model, obtained through simple averaging
of the mle of the parameters of local likelihoods. A basic result is that the components of
θv,PS = (θj | j ∈ J : v ∈ S(j)), v ∈ V are parameters of the global model, more precisely
(θv,PS, v ∈ V ) = θ = (θj, j ∈ J), and also that θv,PS is a subvector of the parameter vector
of the local conditional likelihood as well as of the local marginal likelihood: see Remarks
3.1 and 3.2. Therefore combining the estimates of θv,PS obtained from the local models
yields an estimate of the global parameter θ.

We then first show in Theorem 3.1 that whether, we deal with local conditional or
marginal likelihoods, the local estimates of θv,PS are identical. It thus follows that we
should use only local conditional estimates given their much simpler computational com-
plexity. We call this estimate obtained through local conditional likelihoods the mcle.
Second, we study the asymptotic properties of the mcle. Our result, Theorem 4.2, un-
der the double asymptotic regime, p and N going to infinity, is new. It is stated under
conditions similar to those imposed by Ravikumar et al. (2010) for local model selection
through local conditional likelihoods. It indicates that for N

log p
large enough, the mcle is

close to the true value of the parameter with probability tending to 1. This behaviour
compares well to the asymptotic behaviour of the global mle (see Theorem 4.3).
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6 Appendix

6.1 Proof of Lemma 3.1

We will use the notation j /0 j
′ to mean that j / j′ or j = 0, the zero cell. Let pMv(i)

denote the marginal probability of i ∈ IMv . We know that theMv-marginal distribution
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of XMv is multinomial. By the general parametrization of the multinomial model (2.2),
for j ∈ J, S(j) ⊂Mv, since S(j) is complete,

θMv
j =

∑
j′∈J, j′/j

(−1)|S(j)|−|S(j′)| log
pMv(j′)

pMv(0)
, (6.1)

where by abuse of notation, j such that S(j) ⊂Mv is considered as an element of IMv .
Moreover,

pMv(j) =
∑

i∈I: iMv=j

p(i) =
∑

i∈I, iMv=j

exp{
∑

j′ | j′/0j

θj′ +
∑

j′ | j′/i
j′ 6/j

j′Mv
/0j

θj′}

=
(

exp
∑

j′ | j′/0j

θj′
)(

1 +
∑

i∈I, iMv=j

exp
∑

j′ | j′/i
j′ 6/j

j′Mv
/0j

θj′
)
.

Therefore log pMv(j) =
∑

j′ | j′/0j θj′ + log
(

1 +
∑

i∈I, iMv=j exp
∑

j′ | j′/i
j′ 6/j

θj′
)
, which we

can write ∑
j′ | j′/0j

θj′ = log pMv(j)− log
(

1 +
∑

i∈I, iMv=j

exp
∑
k | k/i
k 6/j

θk

)
. (6.2)

Moebius inversion formula states that for a ⊆ V an equality of the form
∑

b⊆a Φ(b) = Ψ(a)

is equivalent to Φ(a) =
∑

b⊆a(−1)|a\b|Ψ(b). Here, using a generalization of the Moebius
inversion formula to the partially ordered set given by / on J , we derive from (6.2) that
for j ∈ JMv ⊂ J

θj =
∑

j′ | j′/0j

(−1)|S(j)−S(j′)| log pMv(j′)

−
∑

j′ | j′/0j

(−1)|S(j)−S(j′)| log
(

1 +
∑

i∈I, iMv=j′

exp
∑
k | k/i
k 6/j′

θk

)
= θMv

j −
∑

j′ | j′/0j

(−1)|S(j)−S(j′)| log
(

1 +
∑

i∈I, iMv=j′

exp
∑
k | k/i
k 6/j′

θk

)
(6.3)

which we prefer to write as (3.9).
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6.2 Proof of Lemma 3.2

Since (3.9) is already proved, (2.) holds. Let us prove that (1.) holds, i.e., that when
S(j) 6⊂ Bv, the alternating sum on the right-hand side of (3.9) is equal to 0. Since j ∈ J ,
S(j) is necessarily complete and j′ / j is obtained by removing one or more vertices from
S(j).

If S(j) ∩ Bv 6= ∅ but S(j) 6⊂ Bv, there is at least one vertex w ∈ S(j) which is not in
Bv. Let l0 and lw be the log terms in the alternating sum corresponding to j′ = 0 and
j′w / j such that S(j′w) = {w} respectively. Since for any neighbours u of w inMv and for
any i ∈ I such that iMv = j′, the u-th coordinate iu must be zero and since w cannot have

a neighbour outside Mv, the set {θk, k / i(1), k 6 /j′} in l0 for i(1) such that i
(1)
Mv

= 0 is the

same as the set {θk, k / i(2), k 6 /j′} in lw for i(2) such that i
(2)
Mv

= j′w and i
(2)
V \Mv

= i
(1)
V \Mv

.

The terms in l0 and lw in (3.9) are therefore exactly the same except for their sign and
these two terms cancel out. Similarly, for any given j′ / j with w 6∈ S(j′), let j′w ∈ J be
such that S(j′w) = S(j) ∪ {w} and j′w / j, then, the set θk, k / i

(1), k 6 /j′ in lj′ and the set
θk, k / i

(2), k 6 /j′w in lj′w are identical where, similarly to the argument above, i(1) is such

that i
(1)
Mv

= j′ and i(2) is such that i
(1)
Mv

= j′w and i
(2)
V \Mv

= i
(1)
V \Mv

. Therefore the terms lj′

and lj′w cancel out and (1.) is proved.
To prove that (3.) holds, following (2.2), we have, for S(i) = E ⊂Mv

θMv
i =

∑
F⊂E

(−1)|E\F | log pMv(iF , 0Mv\F )

=
∑
F⊂E

(−1)|E\F | log
(
p(iF , 0V \F ) +

∑
L⊂V \Mv

∑
kL∈IL

p(iF , 0Mv\F , kL, 0V \(Mv∪L))
)

=
∑
F⊂E

(−1)|E\F | log
(

exp(
∑

j∈J,j/iF

θj) +
∑

L⊂V \F

∑
kL∈IL

exp(
∑

j∈J,j/iF

θj +
∑

j 6/iF ,j/(iF ,kL)

θj)
)

=
∑
F⊂E

(−1)|E\F | log
(

exp(
∑

j∈J,j/iF

θj)
)

(6.4)

+
∑
F⊂E

(−1)|E\F | log(1 +
∑

L⊂V \F

∑
kL∈IL

exp(
∑

j 6/iF ,j/(iF ,kL)

θj)
)

= θi +
∑
F⊂E

(−1)|E\F | log(1 +
∑

L⊂V \F

∑
kL∈IL

exp(
∑

j 6/iF ,j/(iF ,kL)

θj)
)

(6.5)

Now, following an argument similar to that of (1.) above, we can show that the second
component of the sum in (6.5) is equal to zero. It follows that when θi = 0 then θMv

i = 0.
This completes the proof of Lemma 3.2.
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6.3 Proof of Theorem 3.1

The local relaxed marginal loglikelihood is

lMl,v(θMl,v) =
N∑
k=1

log pMl,v(XMv = i
(k)
Mv

) =
∑

iMv∈IMv

n(iMv) log pMl,v(iMv)

= 〈θMl,v , tMl,v〉 −NkMl,v(θMl,v)

It is immediate to see that ∂l
Ml,v (θ

Ml,v )
∂θj

= t(j) − pMl,v(jS(j)) where pMl,v(jS(j)) denotes

the jS(j)-marginal cell probability in the Ml,v-marginal model. Therefore the likelihood

equations ∂l
Ml,v (θ

Ml,v )
∂θj

= 0, j ∈ JMl,v yield

t(j)− pMl,v(jS(j)) = 0, (6.6)

where t(j) = n(jS(j)).
For the argument to follow is essentially the same for the one-hop or two-hop neigh-

bourhood. We present it for the more general case of the two hop neighbourhood. The
local conditional log likelihood is

lv,2PS(θv,2PS) =
∑

iMv∈IMv

n(iMv) log
p(Xv = iv, XNv = iNv , XN2v = iN2v)

p(XN2v = iN2v)

=
∑

iMv∈IMv

n(iMv) log
pM

2,v
(XMv = iMv)

pM2,v(XN2v = iN2v)

=
∑

iMv∈IMv

n(iMv) log pM
2,v

(XMv = iNv)−
∑

iN2v
∈IN2v

n(iN2v) log pM
2,v

(XN2v = iN2v)

= lM2,v(θM2,v)−
∑

iN2v
∈IN2v

n(iN2v) log
∑

xv∪Nv∈Iv∪Nv

pM
2,v

(Xv∪Nv = xv∪Nv , XN2v = iN2v)

= lM2,v(θM2,v)−Q (6.7)

where

Q =
∑

iN2v
∈IN2v

n(iN2v) log
∑

xv∪Nv∈Iv∪Nv

exp
(
θ0 +

∑
k/(xv∪Nv

,iN2v
)

k∈JM2,v

θk

)
(6.8)

and θ0 = − log(
∑

iMv∈IMv
exp

∑
k/iMv ,k∈J

M2,v θk). The second equality above is due to the

fact that in the expression (3.3) of
p(Xv=iv ,XNv=iNv ,XN2v

=iN2v
)

p(XN2v
=iN2v

)
, the θj such that S(j) 6∈ Mv
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and the θj such that S(j) ⊂ N2v cancel out at the numerator and denominator and it
therefore does not matter, for the conditional distribution of Xv∪Nv given XN2v , what the
relationship between the neighbours are. The only thing that matters is the relationship
between the vertices in v ∪Nv and the vertices inMv and according to Lemma 3.2, that
remains unchanged when we change from the global model to theM2,v-marginal models.

We will now differentiate the expression of lv,2PS in (6.8) with respect to θj, j ∈ JM2,v .
We first note that

∂θ0

∂θj
= pM

2,v

(jS(j)).

If we use the notation

1j/(xv∪Nv ,iN2v
) =

{
1 if j / (xv∪Nv , iN2v)
0 otherwise

,

and the notation pM2,v(iE), E ⊂ Mv to denote the marginal probability of XE = iE in
the M2,v-marginal model, we have

∂Q

∂θj
=

∑
iN2v

∈IN2v

n(iN2v)

∑
xv∪Nv∈Iv∪Nv

pM
2,v

(xv∪Nv , iN2,v)
(
1j/(xv∪Nv ,iN2v

) − pM
2,v

(jS(j))
)

pM2,v(iN2,v)
.

If j ∈ JM2,v is such that S(j) ⊂ N2v, then 1j/(xv∪Nv ,iN2v
) = 1jN2v

/iN2v
and

∂Q

∂θj
=

∑
iN2v

∈IN2v

n(iN2v)
pM

2,v
(iN2v)

(
1jN2,v

/iN2v
− pMl,v

(jS(j))
)

pM2,v(iN2v)

=
∑

iN2v
∈IN2v

n(iN2v)
(
1jN2,v

/iN2,v
− pM2,v

(jS(j))
)

= n(jS(j))−NpM
2,v

(jS(j))

At the mle of the local Ml,v model, from standard likelihood equations (see Lauritzen,

1996, Theorem 4.11), we have p̂M
l,v

(jS(j)) =
n(jS(j))

N
and therefore

∂Q

∂θj
= 0, j ∈ JM2,v , S(j) ⊂ N2v. (6.9)
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If j ∈ JM2,v is such that S(j) 6⊂ N2v, i.e. if j ∈ Jv,2PS,

∂Q

∂θj
=

∑
iN2v

∈IN2v

n(iN2v)
pM

2,v
(jS(j)∩(v∪Nv), iN2v)1jN2v

/iN2v
− pM2,v

(jS(j))p
M2,v

(iN2v)

pM2,v(iN2v)

= −pM2,v

(jS(j))
∑

iN2v
∈IN2v

n(iN2v) +
∑

iN2v
∈IN2v

n(iN2v)

pM2,v(iN2v)
pM

2,v

(jS(j)∩(v∪Nv), iN2v)1jN2v
/iN2v

Since in theM2,v-marginal model, all the vertices in N2,v are connected by construction,

at the mle of the local M2,v model, p̂M
2,v

(iN2v) =
n(iN2v

)

N
and therefore

∂Q

∂θj
= −NpM2,v

(jS(j)) +N
∑

iN2v
∈IN2v

pM
2,v

(jS(j)∩(v∪Nv), iN2v)1jN2v
/iN2v

= −NpM2,v

(jS(j)) +NpM
2,v

(jS(j)) = 0 (6.10)

It follows from (6.9) and (6.10) that the 2PS component of θ̂M2,v , i.e.

θ̂
M2,v

j , j ∈ J2,PS

is the mle of the local two-hop conditional likelihood. We therefore have

θ̂v,2PS = (θ̂M2,v)2PS.

6.4 Proof of Theorem 4.1

Given the definition of θ̄, to show (4.1), we only need to show that

√
N(θ̂ − θ̃∗)→ N(0, G)

where θ̃∗ is the column vector obtained by stacking up θ∗v, v ∈ V into one column vec-
tor. Through a classical expansion of the local conditional likelihood function l(θv) =∑N

k=1 l
v,PS(θv,PS|X(k)), we have that

√
N(θ̂v − θ̃∗v) =

1√
N
I−1(θ∗v)

N∑
k=1

∂l(θ∗v|X(k))

∂θ∗v
+RN
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where Rn tends to 0 in probability as n→ +∞. Let Uv,k = I−1(θ∗v)∂l(θ
∗v |X(k))
∂θ∗v

and let Uk
be the vector obtained by stacking up the vectors Uv,k, v ∈ V into a column vector. For

Ūn =
∑N

k=1 Uk, we can then write

√
N(θ̂v − θ̃∗v) =

√
NŪN +RN .

Each vector Uk, k = 1, . . . , N clearly have mean 0 and covariance G as defined in (4.2).
It is immediate to show that G is finite. By the central limit theorem we then have that√
N(θ̂ − θ̃∗) → N(0, G) and

√
N(θ̂ − θ∗) → N(0, AGAt). The asymptotic expression for

(4.3) is also an immediate consequence of this asymptotic distribution.

6.5 Proof of Theorem 4.2

To prove Theorem 4.2, we need two preliminary results.

Lemma 6.1 Let θv,∗ = (θ∗)v,PS be the true value of the parameter for the conditional
model of Xv given XNv , and let θ̂v,PS be the value of θv,PS that maximizes lv,PS(θv,PS).
Then, for tJv,PS as in (4.5), if there exists ε > 0 such that

‖tJv,PS − (kv,PS)
′
(θv,∗)‖∞ ≤ ε ≤ C2

min

10Dmaxdv
(6.11)

then

‖θ̂v,PS − θv,∗‖F ≤
5
√
dvε

Cmin
(6.12)

Proof. To simplify our notation in this proof, we drop any subscripts and superscripts
containing v or PS, except when it is necessary to keep them to make the argument clear.

Let Q(∆) = l(θ∗) − l(θ∗ + ∆). Clearly Q(0) = 0 and Q(∆̂) ≤ Q(0) = 0, where

∆̂ = θ̂ − θ∗. Let ||∆||F =
√∑

j∈Jv,PS ∆2
j denote the Frobenius norm of ∆. Define C(δ) =

{∆ | ‖∆‖F = δ}. Since Q(∆) is a convex function of ∆, if we can prove

inf
∆∈C(δ)

Q(∆) > 0, (6.13)

then, by convexity of Q, it will follow that ∆̂ must lie within the sphere defined by C(δ),
i.e. ‖∆̂‖F ≤ δ. We are now going to prove that there exists δ > 0 such that on C(δ),
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Q(∆) > 0. For ∆ ∈ C(δ), we have

Q(∆) = l(θ∗)− l(θ∗ + ∆) = θ∗tt− k(θ∗)− ((θ∗ + ∆)tt− k(θ∗ + ∆))
= k(θ∗ + ∆)− k(θ∗)−∆tt = ∆tk

′
(θ∗) + 1

2
∆tk

′′
(θ∗ + α∆)∆−∆tt, α ∈ [0, 1]

= ∆t[k
′
(θ∗)− t]︸ ︷︷ ︸
Q1

+
1

2
∆tk

′′
(θ∗ + α∆)∆︸ ︷︷ ︸
Q2

(6.14)
By Hölder’s and Cauchy’ s inequality, we have the following bound for Q1.

|Q1| = |∆t[k
′
(θ∗)− t]| ≤ ‖k′(θ∗)− t‖∞||∆||1 ≤ ε

√
d‖∆‖F = ε

√
dδ (6.15)

For Q2, we have

Q2 ≥
1

2
‖∆‖2

F min
α∈[0,1]

λmink
′′
(θ∗ + α∆) =

1

2
δ2 min

α∈[0,1]
λmink

′′
(θ∗ + α∆) (6.16)

We now want to bound the term q = minα∈[0,1] λmin[k
′′
(θ∗+α∆)] from below. Following

(4.7), we can write zyv(θ + α∆) =
∑

j∈J ;v∈S(j)(θj + α∆j)fj(yv, x
(n)
Nv

), then we can rewrite

the entries of H in (4.8) as

ηn,vk,l (θ∗ + α∆, x
(n)
Nv

) =


exp zkv (θ∗+α∆)

1+
∑

yv∈Iv\{0} exp zyv (θ∗+α∆)
− (

exp zkv (θ∗+α∆)

1+
∑

yv∈Iv\{0} exp zkv (θ∗+α∆)
)2, if kv = lv

− exp zkv (θ∗+α∆) exp zlv (θ∗+α∆)

(1+
∑

yv∈Iv\{0} exp zyv (θ∗+α∆))2
, if kv 6= lv

then
∂ηn,vk,l (θ∗ + α∆, x

(n)
Nv

)

∂α
=

∑
yv∈Iv\{0}

(ηn,vk,l )
′

yv(θ∗ + α∆, x
(n)
Nv

)
∂zyv
∂α

,

where (ηn,vk,l )
′
yv(θ∗+α∆, x

(n)
Nv

) =
∂ηn,v

k,l (θ∗+α∆,x
(n)
Nv

)

∂zyv
. It is easy to see that these derivatives can

all be expressed in terms of probabilities of the type (4.6) and that they are always less

than 1 in absolute value. Therefore, since ∂zyv (θ+α∆)

∂α
=
∑

j∈J ;v∈S(j) ∆jfj(yv, x
n
Nv

), we have

|∂η
n,v
k,l (θ∗+α∆,x

(n)
Nv

)

∂α
| ≤

∑
yv∈Iv\{0}

∂zyv
∂α

=
∑

yv∈Iv\{0}
∑

j∈J ;v∈S(j) ∆jfj(yv, x
n
Nv

)

=
∑

j∈J ;v∈S(j) ∆j

∑
yv∈Iv\{0} fj(yv, x

n
Nv

) = 〈∆,W n〉 ,
(6.17)

since for each j ∈ Jv,PS,
∑

yv∈Iv\{0} fj(yv, x
n
Nv

) = fj(jv, x
n
Nv

) = W n
j .
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The Taylor series expansion of ηn,vk,l (θ∗ + α∆, x
(n)
Nv

) yields

ηn,vk,l (θ∗ + α∆, x
(n)
Nv

) = ηn,vk,l (θ∗, x
(n)
Nv

) + α
∂ηn,vk,l (θ∗ + α′∆, x

(n)
Nv

)

∂α
, α

′ ∈ [0, α] .

Let K(θ∗+α
′
∆, x

(n)
Nv

) denote the dv × dv matrix with entry
∂ηn,v

k,l (θ∗+α∆,x
(n)
Nv

)

∂α
. Coming back

to (6.16), we have

k
′′
(θ∗ + α∆) = 1

N

∑N
n=1

[
H(θ∗ + α∆, x

(n)
Nv

) ◦ [W n(W n)t]
]

= 1
N

∑N
n=1H(θ∗, x

(n)
Nv

) ◦ [W n(W n)t] + α 1
N

∑N
n=1K(θ∗ + α

′
∆, x

(n)
Nv

) ◦ [W n(W n)t] .

We write ||X||2 = λmax(X) for the operator norm of a matrix X. By Lemma 7.4 of the
Supplementary file,

λmin

(
k
′′
(θ∗+α∆)

)
≥ λmin

( 1

N

N∑
n=1

H(θ∗, x
(n)
Nv

)◦[W n(W n)t]
)
−‖α 1

N

N∑
n=1

K(θ∗+α
′
∆, x

(n)
Nv

)◦[W n(W n)t]‖2

Then since |α| < 1, we have

q = minα∈[0,1] λmin[ 1
N

∑N
n=1H(θ∗ + α∆, x

(n)
Nv

)W n(W n)t]

≥ λmin( 1
N

∑N
n=1

[
H(θ∗, x

(n)
Nv

) ◦ (W n(W n)t)
]
)

−maxα∈[0,1] ‖α 1
N

[
∑N

n=1K(θ∗ + α∆, x
(n)
Nv

) ◦ (W n(W n)t)]‖2

≥ Cmin −maxα∈[0,1]‖
1

N

N∑
n=1

∆tW n(W n(W n)t)︸ ︷︷ ︸
A

‖2

= Cmin −maxα∈[0,1] ||A||2 ,

(6.18)

where the last but one inequality is due to our Assumption (B). We now need to bound
the spectral norm of A = 1

N

∑N
n=1 ∆tW n(W n(W n)t). For any α ∈ [0, 1] and y ∈ Rdv with

||y||F = 1, we have

〈y, Ay〉 =
1

N

N∑
n=1

(∆tW n)(ytW n)2 ≤ 1

N

N∑
n=1

|∆tW n|(ytW n)2,

|∆tW n| 6
√
d||∆||F =

√
dδ . (6.19)

and, by definition of the operator norm and from Assumption (B),

1

N

N∑
n=1

(ytW n)2 ≤ || 1
N

N∑
n=1

W n(W n)t||2 < Dmax . (6.20)
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From (6.18), (6.19) and (6.20), we obtain maxα∈[0,1] ||A||2 ≤ Dmax

√
dδ and therefore

q ≥ Cmin −Dmax

√
dδ .

Substituting this into (6.16), we get

Q2 ≥
1

2
δ2(Cmin −Dmax

√
dδ). (6.21)

From the two inequalities (6.15) and (6.21), it follows that

Q(∆) ≥ Q2 − |Q1| ≥
1

2
δ2(Cmin −Dmax

√
dδ)− ε

√
dδ. (6.22)

To simplify the problem, we can choose δ such that Cmin − Dmax

√
dδ ≥ Cmin

2
, that is,

δ ≤ Cmin

2Dmax

√
d
. Then inequality (6.22) becomes

Q(∆) ≥ Cminδ
2

4
− ε
√
dδ

and Q(∆) is positive if we let δ = 5
√
dε

Cmin
. Moreover δ ≤ Cmin

2Dmax

√
d

yields the following bound

of ε:

ε ≤ C2
min

10Dmaxd
.

We have therefore shown that (6.13) holds for δ = 5
√
dε

Cmin
and the theorem is proved. �

In the next lemma, we will make use of Hoeffding inequality (see Hoeffding (1963),
Theorem 2) which states the following. If X1, X2, · · · , Xn are independent and ai ≤ Xi ≤
bi(i = 1, 2, · · · , n), then for ε > 0

p(|X̄ − µ| ≥ ε) ≤ 2 exp
( −2n2ε2∑n

i=1(bi − ai)2

)
. (6.23)

Lemma 6.2 Let tJv,PS , kv,PS and dv be as defined above. For any ε > 0, we have

p({max
v∈V
‖tJv,PS − (kv,PS)

′
(θv,∗)‖∞ ≥ ε}) ≤ 2|J | exp(−2Nε2) . (6.24)
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Proof. For j ∈ Jv,PS, we clearly have

Eθ∗
(∂l(θ)
∂θj

)
= Eθ∗

(
tj−

∂k(θ)

∂θj

)
= Eθ∗

( 1

N

N∑
n=1

fj(x
(n)
v , x

(n)
Nv

)−p(xv = jv|xnNv
)fj(xv = jv, x

(n)
Nv

)
)

= 0

We note that since x
(n)
Nv

is given and fj(x
(n)
v , x

(n)
Nv

) takes values 0 or 1, we have E(fj(x
(n)
v , x

(n)
Nv

)) =

p(xv = jv|xnNv
)fj(xv = jv, x

(n)
Nv

) and by Hoeffding’s inequality (6.23), we have

p(|tj − k
′

j(θ
∗)| ≥ ε) ≤ 2 exp−2N2ε2

2N
= 2 exp(−2Nε2)

Since {maxv∈V ‖tJv,PS − (kv,PS)
′
(θ∗)‖∞ ≤ ε} = ∩j∈∪Jv,PS{‖tJv,PS − (kv,PS)

′
(θ∗)‖ ≤ ε},

we have that

P (max
v∈V
‖tJv,PS − (kv,PS)

′
(θ∗)‖∞ ≤ ε) = 1− P (∪j∈∪Jv,PS‖tJv,PS − (kv,PS)

′
(θ∗)‖ ≥ ε)

≥ 1−
∑

j∈∪Jv,PS

P (‖tJv,PS − (kv,PS)
′
(θ∗)‖ ≥ ε),

≥ 1− 2|J | exp(−2Nε2)

which proves the lemma. �

Proof of Theorem 4.2 Let ε = C
√

log p
N

, where C is a constant that we will choose

later in this proof. From Lemma 6.2, we have

p(max
v∈V
‖tJv,PS − (kv,PS)′(θ∗)‖∞ ≥ C

√
log p

N
) ≤ 2|J | exp(−2C2 log p) =

2|J |
p2C2 (6.25)

From Lemma 6.1, for ε = C
√

log p
N
≤ C2

min

10Dmaxdv
, i.e. for N ≥ (10CDmaxdv

C2
min

)2 log p, we have

‖tJv,PS − (kv,PS)′(θ∗)‖∞ ≤ ε ≤ C2
min

10Dmaxdv
⇒ ‖θ̂v,PS − θv,∗‖F ≤

5
√
dvε

Cmin
.

The mcle θ̄ obtained by the local averaging of the θ̂v,PS from each conditional model
can then be bounded as follows:

‖θ̄ − θ∗‖F ≤
(∑

v∈V ‖θ̂v,PS − θv,∗‖2
F

) 1
2

≤ (
∑

v∈V (
5
√
dvC
√

log p
N

Cmin
)2)

1
2 = 5C

Cmin

√∑
v∈V dv log p

N
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Therefore under the condition N ≥ maxv∈V (10CDmaxdv
C2

min
)2 log p, we have

p(‖θ̄−θ∗‖F ≤
5C

Cmin

√∑
v∈V dv log p

N
) ≥ p(max

v∈V
‖tJv,PS−k′v,PS(θ∗)‖∞ ≤ C

√
log p

N
) ≥ 1− 2|J |

p2C2

with the last inequality due to (6.25).
The theorem would make no sense if probability of the convergence rate was negative

and thus C must satisfy

1− 2|J |
p2C2 > 0⇒ C ≥

√
log(2|J |)

2 log p
.

�

36


	Introduction
	Preliminaries
	 Discrete graphical and hierarchical loglinear models

	The conditional and marginal composite maximum likelihood estimators
	The conditional composite likelihood function
	The marginal composite likelihood
	A convex relaxation of the local marginal optimization problems
	Equality of the maximal conditional and marginal composite likelihood estimate 
	The maximum composite likelihood estimate

	Asymptotic properties of the maximum composite likelihood estimate
	The classical asymptotic regime
	The double asymptotic regime

	Conclusion
	Appendix
	Proof of Lemma 3.1
	Proof of Lemma 3.2
	Proof of Theorem 3.1
	Proof of Theorem 4.1
	Proof of Theorem 4.2


