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1 Introduction

In this paper, we consider graphical Gaussian models with symmetry constraints.

Symmetry restrictions in the multivariate Gaussian have a long history dating back to

Wilks (1946) and the reader is referred to Lauritzen and Gehrmann (2012) for a complete

list of references. In their thesis, Hylleberg et al. (1993) consider Gaussian models with

conditional independence and symmetry restrictions that could be described by a group

action, that is, graphical Gaussian models with group symmetry restrictions. This was

followed by Andersen et al. (1995) and Madsen (2000). More recently, Højsgaard, S. and

S. Lauritzen (2008) considered graphical Gaussian models with symmetry constraints

not necessarily described by a group action. Rather those symmetries are described by

coloured graphs G = (V, E) with skeleton G = (V,E) where V is the set of vertices, E

the set of undirected edges, V is the set of colour classes for the vertices and E the set of

colour classes for the edges. The models for X = (Xv, v ∈ V ) are therefore also called

coloured graphical Gaussian models. The symmetry is given by the equality of certain

entries either in the covariance, the correlation or the precision matrices. Coloured

graphical Gaussian models have two main advantages. First they may reflect true or

imposed symmetries. For example, variables could represent characteristics of twins (see

Frets heads data set, Frets 1921) and therefore be assumed to be equal. Second, since

conditional independences imply that certain entries of the precision matrix are set to

zero, these restrictions combined with the symmetry restrictions reduce the number of

free parameters and facilitate inference in high-dimensional models. Højsgaard, S. and

S. Lauritzen (2008) developed algorithms to compute the maximum likelihood estimate

of the covariance, correlation or precision matrix.

In Massam et al. (2015), the authors considered the coloured graphical Gaussian

model with symmetry restrictions on the precision matrix and they did so from a

Bayesian perspective. Given a sample X1, . . . , Xn from the coloured graphical Gaussian
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model with precision matrix K, the distribution of
∑n
i=1XiX

t
i is a Wishart distribution,

which is a natural exponential family with canonical parameter K. A convenient prior

for K is therefore the Diaconis-Ylvisaker (1979) distribution. Massam et al. (2015) gave

a method to sample from this distribution in order to estimate K as the mean of the

posterior Diaconis-Ylvisaker conjugate distribution. As illustrated in that paper, the

estimates are accurate but it is difficult to do the computations for models with more

than 30 variables. The accuracy decrease and the computational time increases with p,

the number of variables, and it is therefore not possible to estimate the posterior mean

for large models.

In order to be able to give a Bayesian estimate of the posterior mean of the precision

matrix for high-dimensional models, in this paper, we consider distributed estimation.

The idea behind distributed estimation is that one considers the conditional or marginal

models for each vertex v ∈ V and its neighbours, and show that some of the parameters,

say θ(v), v ∈ V , of the local models are the same as some of the components of the

parameter θ of the given, i.e. global, model. Then one estimates θ(v) in the local

model and then combines the local estimates to give an estimate of the parameter θ.

In this paper, the parameter that we want to estimate is the precision matrix θ = K.

Distributed estimation is usually done using local conditional models. Meng et al (2014)

were the first ones to use local marginal rather than conditional models in the context of

graphical Gaussian models. It is easy to find the unnormalized density of the X{v}∪Nv
-

marginal distribution of the Diaconis-Ylvisaker prior and using the results of Massam et

al. (2015) we know how to sample from this distribution. Like Meng et al. (2014), we

will therefore also use local marginal distributions for the DY prior but we will do so in

a Bayesian context. Having obtained our Bayesian estimate of K using local marginal

models, we will study its asymptotic properties. We will do so first under the traditional

asymptotic conditions, i.e. when the sample size n goes to infinity and the number of

variables p is fixed and second under the double asymptotic regime when both n and p

go to infinity.

The study of the asymptotic properties, for p fixed, of the Bayesian estimate goes back

to Bickel & Yahav (1969) who proved the convergence of the normalized posterior density

to the appropriate normal density as well as the consistency and efficiency of the posterior

mean. Since then, a lot of research has been devoted to Bayesian asymptotics for p fixed.

One of the most recent and well-known work in that area is Ghosal et al. (1995). For
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both p and n going to infinity, Ghosal (2000) studied the consistency and asymptotic

normality, under certain conditions, of the posterior distribution of the natural parameter

for an exponential family when the dimension of the parameter grows with the sample

size. The author also indicates that under additional conditions, the difference between

normalized posterior mean of the canonical parameter and the normalized sample mean

tends to 0 in probability.

We will prove in this paper first that, for p fixed, our estimate is consistent and

asymptotically normally distributed, second that, for both p and n going to infinity,

under certain boundedness conditions and for p13(log p)2√
n

→ 0, our estimate tends to the

true value of the parameter with probability tending to 1. For p fixed our arguments are

classical arguments adapted to our distributed estimate. Under the double asymptotic

regime, there are three main features to our proofs. For each local model, we follow an

argument similar to that given in Ghosal (2000). We therefore need to verify that our

DY conjugate prior and our sampling distribution satisfy the conditions and properties

assumed by Ghosal (2000) in his arguments. The second feature is that in the process of

proving that the norm of the difference between our estimate and the true value of the

parameter tends to 0, we need to prove that asymptotically, our sampling distribution

asymptotically satisfies so-called cumulant-boundedness condition. To do so, we use an

argument similar to that developed by Gao and Carrol (2016) who, in turn, were inspired

by the sharp deviation bounds given by Spokoiny and Zhilova (2013) for n fixed. Finally,

we have to combine the results obtained for each local model to show our result for the

estimate of the global parameter.

In Section 2, we recall definitions and basic properties of coloured graphical models

and distributed computing. We also recall the scheme for sampling from the posterior

coloured G-Wishart. In Section 3, we study the asymptotic properties of our estimate

when p is fixed. Section 4 is the most important section with the study of the asymptotic

properties under the double asymptotic regime. In Section 5 , we illustrate the efficacy

of our method to obtain the posterior mean of K through several simulated examples.

We demonstrate numerically how our method can scale up to any dimension by looking

at coloured graphical Gaussian model governed by a 10 × 10 grid. Even though our

theoretical results indicate that we need to have p13(log p)2√
n

→ 0, in practice, we found

that we obtain very accurate results for n ≈????. Section 6 contains proffs of some

ancillary results.
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2 Preliminaries

2.1 Colored graphical models

Suppose X1, X2, . . . , Xn be independent and identically distributed p-dimensional

random variables following a multivariate normal distribution Np(0,Σ). Let K = Σ−1

be the inverse of the covariance matrix and G = (V,E) be an undirected graph where

V = {1, 2, . . . , p} and E are the sets of vertices and edges, respectively. For any U ,

a subset of V , define EU as the set of all edges in E with both endpoints in U . For

X = (Xv, v ∈ V ), we say that the distribution of X is Markov with respect to G if

Xi ⊥ Xj |XV \{i,j}, where i ̸= j. Such models for X are called graphical Gaussian models.

Since conditional independence of the variables Xi and Xj is equivalent to Kij = 0, if

we denote PG as the cone of positive definite matrices with zero (i, j) entry whenever

the edge (i, j) does not belong to E, then the graphical Gaussian model Markov with

respect to G can be represented as

NG = {N(0,Σ)|K ∈ PG}. (1) Markov

Højsgaard & Lauritzen [2008] introduced the colored graphical Gaussian models with

additional symmetry on K. Let V= {V1, V2, . . . , VT } from a partition of V and E=
{E1, E2, . . . , ES} from a partition of E. If all the vertices belonging to an element Vi of

V have the same color, we say V is a colouring of V . Similarly if all the edges belonging

to an element Ei of E have the same color, we say that E is a coloring of E. We call

G = (V, E) a colored graph. Furthermore, if the model (1) is imposed with the following

additional restrictions

(a) if m is a vertex class in V, then for all i ∈ m, Kii are equal, and

(b) if s is an edge class in E , then for all (i, j) ∈ s, Kij are equal,

then the model is defined as a coloured graphical Gaussian model RCON(V, E) and

denoted as

NG = {N(0,Σ)|K ∈ PG}

where PG is the cone of positive symmetric matrix with zero and coloured constraints.

We operate within a Bayesian framework. The prior for K will be the colored G-

Wishart with density

π(K|δ,D) =
1

IG(δ,D)
(detK)(δ−2)/2 exp{−1

2
tr(KD)1K∈PG ,
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where δ > 0 and D, a symmetric positive definite p×p matrix, are the hyper parameters

of the prior distribution and IG(δ,D) is the normalizing constant, namely,

IG(δ,D) =

∫
PG

(detK)(δ−2)/2 exp{−1

2
tr(KD)dK.

In the previous expression, tr(·) represents the trace and detK represents the determi-

nant of a matrix K.

Massam et al. [2015] proposed a sampling scheme for the colored G-Wishart dis-

tribution. This sampling method is based on the Metropolis - Hastings algorithm and

the Choleskey decomposition of matrices. The authors first consider the Choleskey de-

composition of D−1 and K ∈ PG . Write D−1 = QtQ, K = ΦtΦ and ψ = ΦQ−1, where

Q = (Qij)1≤i≤j≤p and Φ = (Φij)1≤i≤j≤p are upper triangular matrices with real positive

diagonal entries.

We are interested in the posterior mean of K as an estimator of K.

2.2 Local relaxed marginal model

Massam et al. [2015] developed a Metropolis-Hastings (MH) algorithm to sample from

the posterior colored G-Wishart and obtain the estimate of the posterior mean of K.

However, for a large colored graph, the algorithm has a computational challenge because

of the matrix completion step. The main purpose of the current work is to circumvent

those computational difficulties. In order to do that, we employ local computation

approach similar to that has been done for the MLE in large graphical Gaussian models

(see Meng et al. [2014]). In what follows, we describe the developed approach.

For a given vertex i ∈ V , define the set of immediate neighbors of vertex i as Ii =

{j|(i, j) ∈ E}. Consider two types of estimators: the one-hop estimator and two-hop

estimator. For the one-hop estimator, let Ni = {i}∪Ii, while Ni = {i}∪Ii∪{k|(k, j) ∈ E

and j ∈ Ii} for the two-hop estimator. Consider the local marginal model overXi = XNi ,

this is a Gaussian model with precision matrix denoted by Ki. Then

Ki = (ΣNi,Ni)
−1 = KNi,Ni −KNi,V \Ni

[KV \Ni,V \Ni
]−1KV \Ni,Ni

. (2) inverse

Define the buffer set Bi = {j|j ∈ Ni and Ij ∩ (V \Ni) ̸= ∅} and the protected set

Pi = Ni\Bi. Due to the Markov Property XPi ⊥ XV \Ni
|XBi , we have

Ki
Pi,V \Ni

= 0. (3) conditional
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By decomposing Ni into Pi and Bi, the equation (2) becomes Ki
Pi,Pi

Ki
Pi,Bi

Ki
Bi,Pi

Ki
Bi,Bi


=

 KPi,Pi KPi,Bi

KBi,Pi KBi,Bi

−

 KPi,V \Ni

KBi,V \Ni

 (KV \Ni,V \Ni
)−1

(
KV \Ni,Pi

KV \Ni,Bi

)

=

 KPi,Pi KPi,Bi

KBi,Pi KBi,Bi

−

 0 0

0 KBi,V \Ni
(KV \Ni,V \Ni

)−1KV \Ni,Bi



where the 0’s in the matrix above follows from the identity (3). Therefore, we obtain

the following relationships

Ki
Pi,Pi

= KPi,Pi , Ki
Pi,Bi

= KPi,Bi (4) relax1

Ki
Bi,Bi

= KBi,Bi −KBi,V \Ni
(KV \Ni,V \Ni

)−1KV \Ni,Bi
. (5) relax2

which shows the local parameters of Ki indexed by (Pi,Pi) and (Pi, Bi) are equal to

the global ones and the local parameters of Ki indexed by (Bi, Bi) are modified by

KBi,V \Ni
(KV \Ni,V \Ni

)−1KV \Ni,Bi
. Based on these observations, the local relaxed local

model can be defined as follows. First, a relaxed edge set Ri is defined as Ri = ENi ∪
{Bi×Bi} and the local relaxed undirected graph is defined as Gi = (Ni, Ri). According

to (4) and (5), the relaxed zero and colored constraints on Ki require

(a) if j ∈ Ni\Bi and j ∈ Vk, k = 1, 2, . . . , T , then the entries Ki
jj are equal,

(b) if j ∈ Bi, then the entries Ki
jj are different from each other,

(c) if (j, h) ∈ Ri\{Bi × Bi} and (j, h) ∈ Ek, k = 1, 2, . . . , S, then the entries Ki
jh are

equal,

(d) if (j, h) ∈ {Bi ×Bi}, then the entries Ki
jh are different from each other,

(e) for j, h ∈ Ni, if (j, h) /∈ Ri, then the entries Ki
jh = 0.

The local relaxed colored graph is denoted by Gi = (Vi, Ei) where Vi is the coloring

of vertex set Ni and Ei is the coloring of edge set Ri. We use the notation At for

the transpose matrix of A. In each local Gi, i ∈ V , we use the method proposed by

Massam et al. [2015] to obtain the Bayesian estimator K̃i, the posterior mean of Ki

with prior distribution the colored G-Wishart. The authors first express the density of

the colored G-Wishart in terms of the Cholesky components of Ki scaled by Di. Then
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they consider the Cholesky components of (Di)−1 and Ki, written as (Di)−1 = (Qi)tQi

and Ki = (Φi)tΦi. Let Ψi = Φi(Qi)−1. Finally, they use the MH algorithm to obtain

the samples of Ψi and so the samples of Ki. The sample mean of Ki will be used to

estimate Ki. In the global model, denote θVk
, k = 1, 2, . . . , T , as the common value of

Kjj for all (j, j) ∈ Vk and denote θEk
, k = 1, 2, . . . , S, as the common value of Kjh for

all (j, h) ∈ Ek. Define the global parameter as θ = (θV1 , θV2 , . . . , θVT , θE1 , θE2 , . . . , θES )
t

and the corresponding composite estimator as θ̃ = (θ̃V1 , θ̃V2 , . . . , θ̃VT
, θ̃E1 , θ̃E2 , . . . , θ̃ES

)t.

The true value of θ is denoted by θ0. In each local model Gi, i ∈ V , we define the

local parameter as θi = (θi1, θ
i
2, . . . , θ

i
Si
)t and the corresponding local estimator as θ̃i =

(θ̃i1, θ̃
i
2, . . . , θ̃

i
Si
)t. The true value of θi is denoted by θi0. Furthermore, we introduce a

p∑
i=1

Si dimensional vector

θ̄ = ((θ̃1)t, (θ̃2)t, . . . , (θ̃p)t)t (6) thetabar

and its true value θ̄0. After obtaining the local estimators, a composite estimate of θ̃

can be constructed by extracting the non-zero estimators of Ki
ii and K

i
ij , j ∈ Ii, in θ̃

i.

Therefore, our composite estimate θ̃ is defined as

θ̃Vk
=

1

|Vk|
∑
i∈Vk

Si∑
j=1

θ̃ij1θij=θVk
= gVk

(θ̄), k = 1, 2, . . . , T,

and

θ̃Ek
=

1

2|Ek|
∑
i∈Gk

Si∑
j=1

θ̃ij1θij=θEk
= gEk

(θ̄), k = 1, 2, . . . , S,

where Gk = {i|∃h ∈ Ni, (i, h) ∈ Ek} and 1A is a indicator function of the set A.

Define g(θ̄) = (gV1(θ̄), gV2(θ̄), . . . , gVT (θ̄), gE1(θ̄), gV2(θ̄), . . . , gVS (θ̄))
t=θ̃. The first order

derivative of g(θ̄) is a (S + T )× (
p∑
i=1

Si) matrix with the following expression

∂g(θ̄)

∂(θ̄)t
=



∂gV1 (θ̄)

∂θ11
· · · ∂gV1 (θ̄)

∂θ1S1

∂gV1 (θ̄)

∂θ21
· · · ∂gV1 (θ̄)

∂θ2S2

∂gV1 (θ̄)

∂θp1
· · · ∂gV1 (θ̄)

∂θpSp

...
. . .

...
...

. . .
...

...
. . .

...
∂gVT

(θ̄)

∂θ11
· · · ∂gVT

(θ̄)

∂θ1S1

∂gVT
(θ̄)

∂θ21
· · · ∂gVT

(θ̄)

∂θ2S2

∂gVT
(θ̄)

∂θp1
· · · ∂gVT

(θ̄)

∂θpSp

...
. . .

...
...

. . .
...

. . .
...

∂gE1 (θ̄)

∂θ11
· · · ∂gE1 (θ̄)

∂θ1S1

∂gE1 (θ̄)

∂θ21
· · · ∂gE1 (θ̄)

∂θ2S2

∂gE1 (θ̄)

∂θp1
· · · ∂gE1 (θ̄)

∂θpSp

...
. . .

...
...

. . .
...

...
. . .

...
∂gES

(θ̄)

∂θ11
· · · ∂gES

(θ̄)

∂θ1S1

∂gES
(θ̄)

∂θ21
· · · ∂gES

(θ̄)

∂θ2S2

∂gES
(θ̄)

∂θp1
· · · ∂gES

(θ̄)

∂θpSp


where

∂gVk
(θ̄)

∂θij
= 1

|Vk| if θ
i
j = θVk

and i ∈ Vk,
∂gEk

(θ̄)

∂θij
= 1

2|Ek| if θ
i
j = θEk

and i ∈ Gk.
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3 The asymptotic property of the Bayesian estimator

θ̃ when p is fixed and n → ∞

Let
£−→ and

p−→ denote the convergence in distribution and in probability, respectively.

In each local model corresponding to the vertex i ∈ V , let Li(θi) and li(θi) denote

the likelihood and log likelihood, respectively. The Fisher information is denoted by

I(θi) = Eθi [
∂
∂θi logL(θ

i|Xi)( ∂
∂θi logL(θ

i|Xi))t]. Define a Si dimensional vector Uij =

1√
n
I−1(θi0)

∂li(θi|Xi
j)

∂θi

∣∣
θi=θi0

for j = 1, . . . , n and i = 1, . . . , p, a
p∑
i=1

Si dimensional vector

Uj = (U t1j , U
t
2j , . . . , U

t
pj)

t and Ḡ = nCov(U1). The following Theorem 3.1 shows that

the global estimator has the property of asymptotic normality when the number of

parameters p is fixed and the sample size n goes to infinity.

⟨pfix⟩
Theorem 3.1 Let θ0, θ̃ and Ḡ be defined above. Then

√
n(θ̃ − θ0)

£−→ N(0, A) as n→ ∞

where A = ∂g(θ̄)

∂θ̄t
Ḡ(∂g(θ̄)

∂θ̄t
)t.

Proof. For any i ∈ V , we have that
√
n(θ̃i − θi0) =

√
n(θ̃i − T i) +

√
n(T i − θi0) where

T i = θi0+
1
nI

−1(θi0)
∂li(θi)
∂θi

∣∣
θi=θi0

. It then follows from Theorem 8.3 in Lehmann & Casella

[1998] that
√
n(θ̃i−T i) p−→ 0 and

√
n(T i−θi0)

£−→ N(0, I−1(θi0)) as n→ ∞. Furthermore,

we have

√
n(T i − θi0) =

1√
n
I−1(θi0)

∂li(θi)

∂θi
∣∣
θi=θi0

=
1√
n
I−1(θi0)

n∑
j=1

∂li(θi|Xi
j)

∂θi
∣∣
θi=θi0

=
n∑
j=1

Uij .

Since p is fixed, then
√
n(θ̄− θ̄0) has the same limiting distribution as

n∑
j=1

Uj as n→ ∞,

where θ̄ is defined as in (6). Clearly the Uj , j = 1, 2, . . . , n, are i.i.d. We are going to

compute their mean and variance. First, since E[Uij ] = E[ 1√
n
I−1(θi0)

∂li(θi|Xi
j)

∂θi

∣∣
θi=θi0

] =

0, it follows that E[Uj ] = 0 for j = 1, 2, · · · , n. Second, we will compute the (
p∑
i=1

Si) ×

(
p∑
i=1

Si) covariance matrix Cov(U1) with (i, k) entry

Cov(Ui1, U
t
k1) = Cov

( 1√
n
I−1(θi0)

∂li(θi|Xi
1)

∂θi
∣∣
θi=θi0

, (
1√
n
I−1(θk0 )

∂lk(θk|Xk
1 )

∂θk
∣∣
θk=θk0

)t
)

=
1

n
I−1(θi0)Cov

(∂li(θi|Xi
1)

∂θi
∣∣
θi=θi0

, (
∂lk(θk|Xk

1 )

∂θk
∣∣
θk=θk0

)t
)
I−1(θk0 )

=
1

n
I−1(θi0)E

[∂li(θi|Xi
1)

∂θi
∣∣
θi=θi0

(
∂lk(θk|Xk

1 )

∂θk
∣∣
θk=θk0

)t
]
I−1(θk0 ). (7) variance
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For each j, j = 1, 2, . . . , Si, let δij be the Si × Si matrix with entries (δij)hl = 1 if

Ki
hl = θij and 0 otherwise. We rewrite the (l, h) entry of Ki as Ki

ljhj
if Ki

lh = θij and

denote τ ij , j = 1, 2, · · · , Sj , as the numbers of Ki
ljhj

and (Xi
1)lj (X

i
1)hj

. Therefore,

θi0 = (
1

|τ i1|
tr(δijK

i
0),

1

|τ i2|
tr(δi2K

i
0), · · · ,

1

|τ iSi
|
tr(δiSj

Ki
0))

t. (8) k and theta

Since Xi has a multivariate normal distribution N(0, (Ki
0)

−1), we have

∂li(θi|Xi
1)

∂θij

∣∣
θi=θi0

=
1

2
tr(δij(K

i
0)

−1)− 1

2
tr(δijX

i
1(X

i
1)
t).

Therefore, the (q,m) entry of E
[∂li(θi|Xi

1)
∂θi

∣∣
θi=θi0

(
∂lk(θk|Xk

1 )
∂θk

∣∣
θk=θk0

)t
]
in (7) is

E
[∂li(θi|Xi

1)

∂θiq

∣∣
θi=θi0

∂lk(θk|Xk
1 )

∂θkm

∣∣
θk=θk0

]
=

1

4
tr(δiqΣ

i
0)× tr(δkmΣk0)−

1

4
tr(δiqΣ

i
0)× tr(δkmE[Xk

1 (X
k
1 )
t])

−1

4
tr(δkmΣk0)× tr(δiqE[Xi

1(X
i
1)
t]) +

1

4
E[tr(δiqX

i
1(X

i
1)
t)× tr(δkmX

k
1 (X

k
1 )
t)]

=
1

4
tr(δiqΣ

i
0)× tr(δkmΣk0)−

1

4
tr(δiqΣ

i
0)× τkmE[(Xk

1 )1m(Xk
1 )hm ]

−1

4
tr(δkmΣk0)× τ iqE[(Xi

1)lq (X
i
1)hq ] +

1

4
τ iqτ

k
mE[(Xk

1 )lm(Xk
1 )hm(Xi

1)lq (X
i
1)hq ]

where Σi0 = (Ki
0)

−1 and Σk0 = (Kk
0 )

−1. According to Isserlis’ Theorem (see Lemma 6.1

in the Appendix), we have that

E[(Xk
1 )lm(Xk

1 )hm(Xi
1)lq (X

i
1)hq ]

= E[(Xk
1 )lm(Xk

1 )hm ]E[(Xi
1)lq (X

i
1)hq ] + E[(Xk

1 )lm(Xi
1)lq ]E[(Xk

1 )hm(Xi
1)hq ]

+E[(Xk
1 )lm(Xi

1)hq ]E[(Xk
1 )hm(Xi

1)lq ]

= (Σ0)lmhm(Σ0)lqhq + (Σ0)lmlq (Σ0)hmhq + (Σ0)lmhq (Σ0)hmlq

Therefore,

E
[∂li(θi|Xi

1)

∂θiq

∣∣
θi=θi0

∂lk(θk|Xk
1 )

∂θkm

∣∣
θk=θk0

]
=

1

4
tr(δiqΣ

i
0)× tr(δkmΣk0)−

1

4
tr(δiqΣ

i
0)× τkm(Σk0)lmhm − 1

4
tr(δkmΣk0)× τ iq(Σ

i
0)lqhq

+
1

4
τ iqτ

k
m[(Σ0)lmhm(Σ0)lqhq + (Σ0)lmlq (Σ0)hmhq + (Σ0)lmhq (Σ0)hmlq ] (9) well
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By the Multivariate Central Limit Theorem, we have
√
n(θ̄− θ̄0)

£−→ N(0, Ḡ) as n→ ∞,

where Ḡ = nCov(U1) and each entry of nCov(U1) is well-defined in (9). Finally, using

the Delta method, since θ̃ = g(θ̄), we have that

√
n(θ̃ − θ0)

£−→ N(0, A)

where A = ∂g(θ̄)

∂θ̄t
Ḡ(∂g(θ̄)

∂θ̄t
)T .

We now want to give a result similar to Theorem 3.1 above but with the MLE

replacing the posterior mean. We consider the same local models that we have used to

compute our composite posterior mean θ̃. Instead of evaluating θ̃i for each model, we

compute the local MLE θ̂i of θi and obtain a composite MLE, which is denoted by θ̂.

?⟨covariance⟩?
Theorem 3.2 Let θ̂ be the composite MLE. Then

√
n(θ̂ − θ0)

£−→ N(0, A) as n→ 0

where A was defined as in Theorem 3.1 above.

Proof. For any i ∈ V , we use the well known result for MLE as follows

√
n(θ̂i − θi0) =

1√
n
I−1(θi0)

n∑
j=1

∂li(θi|Xi
j)

∂θi
∣∣
θi=θi0

+Ri (10) MLE

where Ri
p−→ 0 as n → ∞. Comparing identity (10) with (7) in Theorem 3.1, it is easy

to get the desired result.

We thus see that the composite Bayesian estimator θ̃ has the same limiting distribu-

tion as the composite MLE θ̂.

4 Properties of the Bayesian estimator under the dou-

ble asymptotic regimes p → ∞ and n → ∞

In this section, we study the consistency of the global estimator θ̃ when both p and

n go to infinity. For a vector x = (x1, x2, . . . , xp), let ||x|| stand for its Euclidean norm

(
p∑
i=1

x2i )
1/2. For a square p × p matrix A, let ||A|| stand for its operator norm defined

by sup{||Ax|| : ||x|| ≤ 1}, ||A||F stand for its Frobenius norm defined by ||A||F =

(
p∑
j=1

p∑
k=1

|ajk|2)
1
2 , and denote λ(A), λmin(A) and λmax(A) as the eigenvalues, the smallest

eigenvalues and largest eigenvalues of A, respectively. The vector obtained by stacking

10



columnwise the entries of A is denoted by vec(A). Let Ip be the identity matrix with p

dimension. In the local model Gi, i ∈ V , we write the density of Xi
j , j = 1, 2, . . . , n, as

f(Xi
j ;K

i) =
(detKi)

1
2 exp

{
− 1

2 tr(K
iXi

j(X
i
j)
t)
}

(2π)
pi
2

1Ki∈PGi
(11) density

where pi = |Ni|. The normalized and non-normalized local colored G-Wishart distribu-

tion of Ki is denoted by

πi(Ki|δi, Di) =
1

IiGi
(δi, Di)

(detKi)(δ−2)/2 exp{−1

2
tr(KiDi)}1Ki∈PGi

,

where IiGi
(δi, Di) is the normalizing constant for the local model, and

πi0(K
i|δi, Di) = (detKi)(δ−2)/2 exp{−1

2
tr(KiDi)}1Ki∈PGi

,

respectively. In order to obtain our results, we will follow the argument similar to that

of Ghosal [2000] who gives the asymptotic distribution of posterior mean when both the

dimension p of the model and the sample size n go to ∞. Ghosal consider x from a

natural exponential family written under the form

f(x; θ) = exp[xtθ − ψ(θ)]

where x is the canonical statistic, θ is the canonical parameter and ψ(θ) is the cumulant

generating function. To follow the notations of Ghosal [2000], we define an Si dimensional

vector

Y ij = −1

2
(tr(δi1X

i
j(X

i
j)
t), tr(δi2X

i
j(X

i
j)
t), . . . , tr(δiSi

Xi
j(X

i
j)
t))t, (12) sufficient

where δi1, δ
i
2, · · · , δiSi

are indicator matrices for each color class. We reparameterize the

equation (11) in terms of the canonical parameter vector θi and the canonical statistic

Y ij . We get that

f(Xi
j ;K

i) = exp
[
− 1

2
tr(KiXi

j(X
i
j)
t) +

1

2
log detKi − π

2
log 2π

]
1Ki∈PGi

= exp
[ Si∑
k=1

1

τk
tr(δikK

i)tr(−1

2
δikX

i
j(X

i
j)
t) +

1

2
log detKi − π

2
log 2π

]
1Ki∈PGi

= exp
[ Si∑
k=1

θik(Y
i
j )k +

1

2
log detKi − π

2
log 2π

]
1Ki∈PGi

= exp
[
(Y ij )

tθi − ψ(θi)
]

(13) density1

where ψ(θi) = (−1
2 log(detK

i)+ pi
2 log(2π))1Ki∈PGi

is the cumulant generating function,

(Y ij )k represents the kth element of Y ij and the third equality above is obtained by

11



definitions (8) and (12). Since (13) represents a natural exponential family distribution,

we have that

µi = ψ′(θi0) and F i = ψ′′(θi0) (14) F

are the mean vector and the covariance matrix of Y ij , respectively. Note that F i is also

the Fisher information for the canonical parameter θi and is positive semidefinite. Let

J i be a square root of F i, i.e. J i(J i)t = F i. Let

V ij = (J i)−1(Y ij − Eθi(Y
i
j )) (15) stand

be the standardized version of the canonical statistic. Following Ghosal [2000], for any

constant c, c > 0, we define

Bi1n(c) = sup{Eθi |atV ij |3 : a ∈ RSi , ||a|| = 1, ||J i(θi − θi0)||2 ≤ cSi
n

}

and

Bi2n(c) = sup{Eθi |atV ij |4 : a ∈ RSi , ||a|| = 1, ||J i(θi − θi0)||2 ≤ cSi
n

}.

Define

ui =
√
nJ i(θi − θi0),

then θi = θi0+n
−1/2(J i)−1ui. Therefore, the likelihood ratio can be written as a function

of ui in the following form

Zin(u
i) =

n∏
j=1

f(Y ij ; θ
i)

n∏
j=1

f(Y ij ; θ
i
0)

= exp{
√
n(Ȳ i)t(J i)−1ui − n[ψ(θi0 + n−

1
2 (J i)−1ui)− ψ(θi0)]} (16) ?znu?

where Ȳ i = 1
n

n∑
j=1

Y ij . Furthermore, we denote

∆i
n =

√
n(J i)−1(Ȳ i − µi). (17) delta

The following three conditions will be assumed.

(1) The orders of log p and log n are the same, i.e. log p
logn → λ > 0 as n→ ∞ (see similar

condition in Ghosal [2000]).

(2) There exists two constants κ1 and κ2 such that 0 < κ1 ≤ λmin(K0) < λmax(K0) ≤
κ2 <∞.

(3) For any i ∈ V , the numbers of the entriesKi
jk in the same color class is bounded, i.e.

there exists a constant ζ such that for any 1 ≤ l ≤ Si, max
i

|{Ki
jk|Ki

jk = θil}| ≤ ζ.

12



(4) The dimension p of the matrix K is allowed to grow slowly with n satisfying
p13(log p)2

n
1
2

→ 0.

Remark: Condition (2) implies 0 < 1
κ2

≤ λmin(Σ0) < λmax(Σ0) ≤ 1
κ1

< ∞. By

the interlacing property of eigenvalues, we have that 0 < 1
κ2

≤ λmin((Σ0)Ni,Ni) <

λmax((Σ0)Ni,Ni) ≤ 1
κ1

< ∞ where Ni is defined as in section 2.2. Therefore, 0 < κ1 ≤
λmin((Σ0)Ni,Ni)

−1 < λmax((Σ0)Ni,Ni)
−1 ≤ κ2 <∞. By the definition (2), for any i ∈ V ,

we have 0 < κ1 ≤ λmin(K
i
0) < λmax(K

i
0) ≤ κ2 <∞.

We will show in Proposition 4.2 that if Condition (2) is satisfied, then every entry of

Ki
0 is bounded. We will use this property throughout the paper. Our aim in this section

is to prove that under the assumption (1), (2) (3) and (4), for n−
1
2 p13(log p)

1
2 → 0, the

composite estimator θ̃ tends to θ0 in Frobenius norm with probability tending to 1. We

state this now in Theorem 4.1.

⟨converge⟩
Theorem 4.1 Under Conditions (1)-(4), there exists a constant c̄ such that

P (||θ̃ − θ0|| ≤
{
κ22

[3a2p3
n

+
p2(p+ 1)

2n
A(p, n, c̄)

]} 1
2

) ≥ 1− 10.4 exp{−1

6
p2 log p+ log p}.

where

A(p, n, c̄) = c5(c̄)
p13 log p√

n
+ exp[−c9(c̄)p2 log p] +

2√
2π
p−3a2+2 +

√
3a2

2√
2π
p−3a2+1,

and c5(c̄) and c9(c̄) are constants.

Proof. In this theorem, we study the consistency of θ̃ in the context of Frobenius norm.

In order to do this, first, we evaluate the norm ||θ̃i − θi0||2 in each local model. Since

||
√
nJ i(θ̃i − θi0)||2 = n(θ̃i − θi0)

t(J i)tJ i(θ̃i − θi0) ≥ nλmin(F
i)||θ̃i − θi0||2, we obtain

||θ̃i − θi0||2 ≤ 1

nλmin(F i)
||
√
nJ i(θ̃i − θi0)||2

=
1

nλmin(F i)
||∆i

n +

∫
ui[πi∗(u

i)− ϕ(ui;∆i
n, ISi)]du

i||2 by Lemma 4.8

≤ 1

nλmin(F i)

(
||∆i

n||2 + ||
∫
ui[πi∗(u

i)− ϕ(ui;∆i
n, ISi)]du

i||2
)

(18) T1

where ϕ(·; v,Σ) stands for the multivariate normal density of N(v,Σ) and πi∗(u
i) stands

for the posterior distribution of ui. Next, for every element of the vector
∫
ui[πi∗(u

i) −
ϕ(ui; ∆i

n, ISi)]du
i in (18), we will find out it’s upper bound. Denote ui = (ui1, u

i
2, · · · , uiSi)t.

Then for the jth element of
∫
ui[πi∗(u

i)− ϕ(ui; ∆i
n, ISi)]du

i, we have that∫
uij [π

i
∗(u

i)− ϕ(ui;∆i
n, ISi)]du

i ≤
∫

||ui||[πi∗(ui)− ϕ(ui;∆i
n, ISi)]du

i (19) absolute

13



Set c̄ = max{c, C}, where c is defined in Lemma 4.6 and C is defined in Lemma 4.7.

According to the argument of Theorem 2.3 in Ghosal [2000], the integral
∫
||ui||[πi∗(ui)−

ϕ(ui; ∆i
n, ISi

)]dui in (19) can be bounded by a sum of three integrands as follows.∫
||ui|| × |πi∗(ui)− ϕ(ui;∆i

n, ISi)|dui

≤

∫
||ui||2≤c̄M(p)

||ui|| · |πi(θi0 + n−
1
2 (J i)−1ui)Zin(u

i)− πi(θi0)Z̃
i
n(u

i)|dui∫
πi(θi0)Z̃

i
n(u

i)dui

+[

∫
πi(θi0)Z̃

i
n(u

i)dui]−1

∫
||ui||2>c̄M(p)

||ui|| · Zin(ui)πi(θ0 + n−
1
2 (J i)−1ui)dui

+

∫
||ui||2>c̄M(p)

||ui||ϕ(ui;∆i
n, ISi

)dui,

By Lemmas 4.5, 4.6 and 4.7, every element of
∫
ui[πi∗(u

i)−ϕ(ui;∆i
n, ISi

)]dui in (18) can

be bounded by

A(p, n, c̄) = c5(c̄)
p13 log p√

n
+ exp[−c9(c̄)p2 log p] +

2√
2π
p−3a2+2 +

√
3a2

2√
2π
p−3a2+1

with a probability greater than 1− 10.4 exp{− 1
6p

2}. Consequently,∫
uij [π

i
∗(u

i)− ϕ(ui;∆i
n, ISi)]du

i ≤ A(p, n, c̄).

Since the dimension of
∫
ui[πi∗(u

i)−ϕ(ui;∆i
n, ISi)]du

i is Si, from the inequality (18), we

get

||θ̃i − θi0||2 ≤ 1

λmin(F i)

( ||∆i
n||2

n
+
Si
n
A(p, n, c̄)

)

with a probability greater than 1− 10.4 exp{− 1
6p

2}. Finally, we will estimate the Frobe-

nius norm ||θ̃ − θ0|| for the composite estimator θ̃ in terms of ||θ̃i − θi0|| from the local

model. By Lemma 4.1, for any i ∈ V , λmin(F
i) ≥ 1

κ2
2
. Therefore, we have

||θ̃ − θ0|| ≤ ||θ̄ − θ̄0||

≤ (

p∑
i=1

||θ̃i − θi0||2)
1
2 by triangle inequality

≤
{ p∑
i=1

[ 1

λmin(F i)

( ||∆i
n||2

n
+
Si
n
A(p, n, c̄)

)]} 1
2

≤
{
κ22

[p||∆i
n||2

n
+
p2(p+ 1)

2n
A(p, n, c̄)

]} 1
2
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According to Lemma 4.4, we have ||∆i
n||2 ≤ 3a2p2 with a probability greater than

1− 10.4 exp{− 1
6p

2}. Therefore,

||θ̃ − θ0|| ≤
{
κ22

[p3a2p2
n

+
p2(p+ 1)

2n
A(p, n, c̄)

]} 1
2

with a probability greater than 1− 10.4p exp{− 1
6p

2} by the Bonferroni inequality. Fur-

thermore, Condition (4) implies A(p, n, c̄) → 0, p2(p+1)
2n → 0 and p3

n → 0. It follows

||θ̃ − θ0|| → 0 with a probability greater than 1− 10.4 exp{−1
6p

2 + log p} → 1.

⟨Fbound⟩
Proposition 4.1 Let F i be defined in definition (14) for any i ∈ V , then there exists

two constants ρ1 and ρ2 such that 1
κ2
2
≤ λmin(F

i) ≤ λmax(F
i) ≤ 1

κ2
1
.

Proof. Let Gi be the Fisher information matrix for the uncolored graphical models e.g.

Gi = ψ′′
u(θ

i) where ψu(θ
i) = (− 1

2 log(detK
i) + pi

2 log(2π))1Ki∈PGi
. Let τ and ϖ be the

numbers of eigenvalues of Gi and F i. Since it is a linear projection from Gi to F i, then

τ > ϖ. Under Condition (2) and by Proposition (6.1) in Appendix, for any l, 1 ≤ l ≤ ϖ,

we have

1

κ22
≤ min{ 1

λj(Gi)λk(Gi)
|1 ≤ j, k ≤ τ} ≤ λl(Fi) ≤ max{ 1

λj(Gi)λk(Gi)
|1 ≤ j, k ≤ τ} ≤ 1

κ21
.

⟨entrybound⟩
Proposition 4.2 For any i ∈ V , let Ki,0

αβ be the (α, β) entry of Ki
0. Then |Ki,0

αβ | ≤ κ2.

Proof. By Condition (2), we have λmax(K
i
0) ≤ κ2 for any i ∈ V . Therefore, κ2 −

λj(K
i
0), j = 1, 2, · · · , pi, are the eigenvalues of κ2Ipi −Ki

0. Since λmax(K
i
0) ≤ κ2, then

κ2 ≥ λ′j , j = 1, 2, · · · , pi. It follows that κ2Ipi − Ki
0 is a positive semidefinite matrix.

Since the diagonal elements of a positive semidefinite bIpi −Ki
0 are all non negative, then

κ2 −Ki,0
αα ≥ 0, α = 1, 2, . . . , pi. It follows 0 < K0

αα ≤ κ2. Since Ki
0 is a positive definite

matrix, then each 2 by 2 principal sub matrices Ki,0
αα Ki,0

αβ

Ki,0
βα Ki,0

ββ


of Ki

0 are positive definite. Therefore, Ki,0
ααK

i,0
ββ − (Ki,0

αβ)
2 > 0, from which we get

|Ki,0
αβ | < (Ki,0

ααK
i,0
ββ)

1/2 < κ2.

⟨trace⟩
Proposition 4.3 For any i ∈ V , we have the trace of F i satisfies tr(F i) = O(p2) and

the determinant det(F i) satisfies log(det(F i)) = O(p2).
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Proof. Since ∂2ψ(θi)
∂θij∂θ

i
k

= 1
2 tr(δ

i
jΣ

i
0δ
i
kΣ

i
0), then tr(F

i) = 1
2

Si∑
j=1

tr((δijΣ
i
0)

2). Furthermore,

by Condition (3), tr(δijΣ
i
0) is bounded. Therefore, tr((δ

i
jΣ

i
0)

2) is bounded. It follows

tr(F i) =
1

2

Si∑
j=1

tr((δijΣ
i
0)

2) ≤ 1

2

pi(pi + 1)

2
tr((δijΣ

i
0)

2) ≤ 1

2

p(p+ 1)

2
tr((δijΣ

i
0)

2) = O(p2).

Next, let us consider log(det(F i)). Since

det(F i) =

Si∏
j=1

λj(F
i) ≤

( Si∑
j=1

λj(F
i)

Si

)Si

=
( tr(F i)

Si

)Si

,

then

log(det(F i)) ≤ Si log
tr(F i)

Si
≤ pi(pi + 1)

2
log

1
2
pi(pi+1)

2 tr((δijΣ
i
0)

2)
pi(pi+1)

2

= O(p2).

The proposition is proved.

⟨prior⟩
Proposition 4.4 For any i ∈ V , we have log πi0(K

i
0) ≥ − 1

2piκ2 + δ−2
2 pi log κ1 when

Di = Ipi .

Proof.

πi0(K
i
0) = exp

{
− 1

2
tr(Ki

0Ipi) +
δ − 2

2
log(det(Ki

0))
}

= exp
{
− 1

2

pi∑
j=1

λj(K
i
0) +

δ − 2

2
log

pi∏
j=1

λj(K
i
0)
}

≥ exp
{
− 1

2
piκ2 +

δ − 2

2
pi log κ1

}
.

⟨lipschiz⟩
Proposition 4.5 (Lipschitz continuity) For any i ∈ V and any constant c, there exists

a constant M1 such that | log πi(θi) − log πi(θi0)| ≤ M1p||θi − θi0|| when ||θi − θi0|| ≤√
||(F i)−1||cp2 log p/n→ 0.

Proof. By mean value theorem, we have

| log πi(θi)− log πi(θi0)| = | log πi0(θi)− log πi0(θ
i
0)|

= |(θi − θi0)
t ∂ log π

i
0(θ

i)

∂θi
|θi=θ̌i |

≤ ||θi − θi0|| · ||
∂ log πi0(θ

i)

∂θi
|θi=θ̌i ||

= ||θi − θi0|| ·

√√√√ Si∑
j=1

[
− 1

2
tr(δijD

i) +
δ − 2

2
tr(δijΣ

i
0)
]2
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where θ̌i is the point on the line segment joining θi and θi0. Since tr(δ
i
jD

i) and tr(δijΣ
i
0)

are bounded. Therefore, there exists a constant M1 such that√√√√ Si∑
j=1

[
− 1

2
tr(δijD

i) +
δ − 2

2
tr(δijΣ

i
0)
]2

≤
√
pi(1 + pi)

2
M2

1 ≤
√
p(1 + p)

2
M2

1 =M1p.

⟨exp⟩
Proposition 4.6 For any i ∈ V , let Y ij and V ij be defined in (12) and (15), respectively.

Then Bi1n(c) = O(p9) and Bi2n(c) = O(p12).

Proof. LetBαβ , α, β ∈ {1, 2, . . . , Si}, be the entries of (J i)−1. Define b = max{|Bαβ |;α, β ∈
{1, 2, . . . , Si}}. Then for the vectors Y ij = (Y ij1, Y

i
j2, . . . , Y

i
jSi

)t and a = (a1, a2, . . . , aSi)
t,

the following property holds for h = 1, 2, 3, 4

E|at(J i)−1Y ij |h ≤ E
[
(|a1|, |a2|, . . . , |aSi

|)



b
Si∑
k=1

|Y ijk|

b
Si∑
k=1

|Y ijk|

...

b
Si∑
k=1

|Y ijk|


]h

= E
[
(b

Si∑
k=1

|Y ijk|)
Si∑
k=1

|ak|
]h

≤ E
[
b(

Si∑
k=1

|Y ijk|)
√
Si||a||

]h
by Cauchy - Schwarz inequality

≤ bh(Si)
h/2E

[ Si∑
k=1

|Y ijk|
]h

≤ bh(Si)
h/2E

[ Si∑
k1=1

. . .

Si∑
kh=1

|Y ijk1 | · · · |Y
i
jkh

|
]

Each entry of θi is bounded when ||J i(θi−θi0)||2 ≤ cSi

n → 0. By Lemma 6.2 in Appendix,

we have E
[
|Y ijk1 | · · · |Y

i
jkh

|
]
is bounded for h = 1, 2, 3, 4. Therefore, E|at(J i)−1Y ij |h =

O(p3hi ). Similarly, |at(J i)−1E(Y ij )|h = O(p3hi ). Hence, we have

E|atV ij |3 = E|at(J i)−1Y ij − at(J i)−1E(Y ij )|3

≤ E|at(J i)−1Y ij |3 + 3|at(J i)−1E(Y ij )|E(at(J i)−1Y ij )
2

+3(at(J i)−1E(Y ij ))
2E|at(J i)−1Y ij |+ |(at(J i)−1E(Y ij ))

3|

= O(p9i ) = O(p9).
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A similar argument deduces E|atV ij |4 = O(p12). By the definition Bi1n(c) and Bi2n(c),

the desired result follows.

⟨boundcondition⟩
Lemma 4.1 Let Y i1 be defined in (12) and GiY (γ

i) = logE(e(γ
i)tY i

1 ) be the cumulant

generating function of Y i1 , for any i ∈ V , there exist constants η and C1 such that with

||γi|| ≤ η, the absolute value of all the third derivatives of GiY (γ
i) satisfy

∣∣∣ ∂3Gi
Y (γi)

∂γi
k∂γ

i
l∂γ

i
m

∣∣∣ ≤
C1 for all k, l,m such that 1 ≤ k, l,m ≤ Si under Condition (2) and (3).

Proof. Let γi be a Si dimensional vector, by Theorem 3.2.3 in Muirhead [1982], the

moment generating function of Y i1 is

M i(γi) = E{exp[(γi)tY i1 ]} = det(Ipi + T i(γi)Σi0)
− 1

2

where T i(γi) is a pi × pi matrix with T iαβ = γik if Ki
αβ = θik. Therefore, the cumulant

generating function GiY (γ
i) of Y i1 is given by

GiY (γ
i) = logM i(γi) = −1

2
log det(Ipi + T i(γi)Σi0).

It is easy to obtain the first, second and third derivative of the cumulant generating

function GiY (γ
i), which can be expressed as

∂GiY (γ
i)

∂γik
= −1

2
tr
(
(Ipi + T i(γi)Σi0)

−1(δikΣ
i
0)
)
,

∂2GiY (γ
i)

∂γik∂γ
i
l

=
1

2
tr
(
δikΣ

i
0(Ipi + T i(γi)Σi0)

−1(δilΣ
i
0)(Ipi + T i(γi)Σi0)

−1
)
and

∂3GiY (γ
i)

∂γik∂γ
i
l∂γ

i
m

= −1

2
tr
(
δikΣ

i
0(Ipi + T i(γi)Σi0)

−1(δimΣi0)(Ipi + T i(γi)Σi0)
−1(δilΣ

i
0)(Ipi + T i(γi)Σi0)

−1

+δikΣ
i
0(Ipi + T i(γi)Σi0)

−1(δilΣ
i
0)(Ipi + T i(γi)Σi0)

−1(δimΣi0)(Ipi + T i(γi)Σi0)
−1

)
,

respectively. First, Condition (3) implies λmax(Σ
i
0) ≤ 1

κ1
. By Proposition 4.2, the

absolute value of each element of Σi0 is bounded by 1
κ1
. Next, by

p∑
j=1

|λj(A)| ≤ ||A||F

and ||AB|| ≤ ||AB||F ≤ ||A||F ||B|| for any two p × p symmetric matrix, we have that

|λj(T i(γi)Σi0)| ≤ ||T i(γi)||F ||Σi0|| ≤ η 1
κ1
. It implies 1 − η 1

κ1
≤ λ(Ipi + T i(γi)Σi0) ≤

1+η 1
κ1
. Moreover, according to Lemma 6.3 in the Appendix, Ipi +T

i(γi)Σi0 is a positive

definite. Therefore, by Proposition 4.2 again, the absolute value of each element of

(Ipi + T i(γi)Σi0)
−1 is bounded. Finally, combining the above results and Condition (3),

for any i ∈ V , there exists a constant C1 such that | ∂
3Gi

Y (γi)

∂γi
k∂γ

i
l∂γ

i
m
| ≤ C1 for any k,m, l.

⟨center⟩ Lemma 4.2 For any i ∈ V , let Ū i1 = (J i)−1(Y i1 − µi), then there exist constants η

and C2 with ||γi|| ≤ η, the absolute value of all the third derivatives of the cumulant
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generating function Gi
Ū
(γi) of Ū i1 satisfy

∣∣∣ ∂3Gi
Ū
(γi)

∂γi
k∂γ

i
l∂γ

i
m

∣∣∣ ≤ C2 for all k, l,m such that 1 ≤
k, l,m ≤ Si under Condition (2) and (3).

Proof. The cumulant generating function of Ū i1 is

GiŪ (γ
i) = logE[e(γ

i)t(Ji)−1(Y i
1−µ

i)] = logE[e(γ
i)t(Ji)−1Y i

1−(γi)t(Ji)−1µi

]

= logE[e(γ
i)t(Ji)−1Y i

1 ] + log e−(γi)t(Ji)−1µi

= logE[e(γ
i)t(Ji)−1Y i

1 ]− (γi)t(J i)−1µi

= GiY ((J
i)−1γi)− (γi)t(J i)−1µi

By lemma 4.1, there exists a constant C2 such that | ∂
3Gi

Ū
(γi)

∂γi
k∂γ

i
l∂γ

i
m
| ≤ C2 for ||γi|| ≤ η.

In the following proof, we letM(p) = p2 log p. The following result holds for a random

vector when its cumulant generating function satisfies some conditions, which was first

established in Lemma 1 of Gao & Carroll [2015].

⟨Xin⟩
Lemma 4.3 Let Ū ij = (J i)−1(Y ij − µi), j = 1, 2, . . . , n, and ∆i

n = 1√
n

n∑
j=1

Ū ij as defined

in equation (17). Then for any arbitrary constant a such that a2 > 1, if C2p
3

3
√
n

≤ a − 1,

we have that the cumulant generating function Gi∆i
n
(γi) = log

(
E{exp[(γi)t∆i

n]}
)

≤
a2||γi||2/2 for ||γi|| < p under condition (2) and (3).

Proof. By a Taylor expansion of Gi
Ū
(γi) around 0, there exists a vector γi,∗ on the line

segment between 0 and γi such that

GiŪ (γ
i) = GiŪ (0) +

Si∑
k=1

(∂Gi
Ū
(γi)

∂γik
|γi=0

)
γik +

1

2

Si∑
k=1

Si∑
l=1

(∂2Gi
Ū
(γi)

∂γik∂γ
i
l

|γi=0

)
γikγ

i
l

+
1

6

Si∑
k=1

Si∑
l=1

Si∑
m=1

( ∂3Gi
Ū
(γi)

∂γik∂γ
i
l∂γ

i
m

|γi=γi,∗
)
γikγ

i
lγ
i
m.

Since Ū ij has zero mean and identity covariance matrices, then
∂Gi

Ū
(γi)

∂γi
k

|γi=0 = 0,
∂2Gi

Ū
(γi)

∂γi
k∂γ

i
l

|γi=0 =

1 for k = l and
∂2Gi

Ū
(γi)

∂γi
k∂γ

i
l

|γi=0 = 0 for k ̸= l. Furthermore, since Gi
Ū
(0) = 0, we have

GiŪ (γ
i) =

1

2

(
γi)tγi +

1

6

Si∑
k=1

Si∑
l=1

Si∑
m=1

(
∂3Gi

Ū
(γi)

∂γik∂γ
i
l∂γ

i
m

|γi=γi,∗
)
γikγ

i
lγ
i
m.
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By the definition (17), we have ∆i
n = 1√

n

n∑
j=1

Ū ij . Since the moment generating function

of Ū ij is expGi
Ū
(γi), then the moment generating function of ∆i

n is

E[e(γ
i)t∆i

n ] = E[e
(γi)t 1√

n

n∑
j=1

Ūi
j

] =

n∏
j=1

E[e
( γi
√

n
)tŪi

j ]

=
n∏
j=1

exp
{1

2

( γi√
n

)t γi√
n
+

1

6

Si∑
k=1

Si∑
l=1

Si∑
m=1

( ∂3GiŪ ( γi

√
n
)

∂γik∂γ
i
l∂γ

i
m

|γi=γi,∗
) γik√

n

γil√
n

γim√
n

}

= exp
{1

2
n
( γi√

n

)t γi√
n
+

1

6
n

Si∑
k=1

Si∑
l=1

Si∑
m=1

( ∂3GiŪ ( γi

√
n
)

∂γik∂γ
i
l∂γ

i
m

|γi=γi,∗
) γik√

n

γil√
n

γim√
n

}

= exp
{1

2
(γi)tγi +

1

6

1√
n

Si∑
k=1

Si∑
l=1

Si∑
m=1

( ∂3GiŪ ( γi

√
n
)

∂γik∂γ
i
l∂γ

i
m

|γi=γi,∗
)
γikγ

i
lγ
i
m

}

Since ||γi,∗|| < ||γi||, we have ||γ
i,∗

√
n
|| < || γ

i

√
n
|| < p√

n
. Moreover, Condition (4) implies

p√
n

→ 0, we can thus choose a constant η1 small enough such that ||γi|| ≤ η1 ≤ η.

Therefore, by Lemma 4.2, there exists a constant C2 such that
∣∣∣ ∂3Gi

Ū
(γi)

∂γi
k∂γ

i
l∂γ

i
m

∣∣∣ ≤ C2. It

follows

E[e(γ
i)t∆i

n ] ≤ exp
{1

2
(γi)tγi +

1

6

C2√
n

Si∑
k=1

Si∑
l=1

Si∑
m=1

γikγ
i
lγ
i
m

}
= exp

{1

2
(γi)tγi

[
1 +

1

3

C2√
n

Si∑
m=1

γim
]}
.

Therefore, for any arbitrary constant a such that a2 > 1, if 1
3
C2√
n

Si∑
m=1

γim ≤ a2 − 1, then

we have

logE[e(γ
i)tηi ] ≤ a2||γi||2/2.

Actually, the inequality 1
3
C2√
n

Si∑
m=1

γim ≤ a2−1 holds under Condition (4). Since ||γi|| < p,

we have |γim| ≤ ||γi|| < p for any 1 ≤ m ≤ Si. Therefore, according to Condition (4), we

have

1

3

C2√
n

Si∑
m=1

γim = O
( p3√

n

)
= o(1).

It implies 1
3
C2√
n

Si∑
m=1

γim ≤ a2 − 1 for any constant a such that a2 > 1.

⟨max⟩
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Lemma 4.4 Under Condition (2)-(4), for any i ∈ V , there exists a constant a, a2 > 1,

such that

P{||∆i
n||2 > 3a2p2} ≤ 10.4 exp{−1

6
p2}

where ∆i
n is defined as in (17).

Proof. According to Lemma 4.3, we have

log
(
E{exp[(γi)t∆i

n]}
)
≤ a2||γi||2/2 for ||γi|| ≤ p

where a is a constant with a2 > 1. Let g = ap and ti1 = aγi, then the subsequent

inequality holds

log[E{exp((ti1)t
∆i
n

a
)}] ≤ ||ti1||2/2 for ||ti1|| ≤ g.

Next we apply the large deviation result from Corollary 3.2 in Spokoiny & Zhilova [2013].

Following the notations in Spokoiny & Zhilova [2013], we introduce wic satisfying the

equation
wi

c(1+w
i
c)

[1+(wi
c)

2]
1
2
= gS

−1/2
i . Based on wic, we define x

i
c = 0.5Si[(w

i
c)

2− log(1+(wic)
2)].

Since g2 = a2p2 > p2+p
2 ≥ Si, by the arguments in Spokoiny & Zhilova [2013], we have

xic >
1
4g

2 = 1
4a

2p2. Let x = 1
6p

2, then Si

6.6 ≤ p2+p
2×6.6 < x < xic. By Corollary 3.2 in

Spokoiny & Zhilova [2013], the following inequality holds

P (||∆
i
n

a
||2 ≥ Si + 6.6× 1

6
p2) ≤ 2e−

1
6p

2

+ 8.4e−x
i
c ,

which implies P (||∆
i
n

a ||2 ≥ 3p2) ≤ 10.4e−
1
6p

2

. Hence, P (||∆i
n||2 ≥ 3a2p2) ≤ 10.4e−

1
6p

2

,

which means ||∆i
n||2 = Op(p

2).

Denote Z̃in(u
i) = exp[(ui)t∆i

n − 1
2 ||u

i||2].

⟨firsttermnorm⟩
Lemma 4.5 If p12(log p)

1
2√

n
→ 0, then for any given i ∈ V and a given constant c, there

exists a constant c5(c) such that

P
(∫

||ui||2≤cM(p)
||ui|| · |πi(θi0 + n−

1
2 (J i)−1ui)Zin(u

i)− πi(θi0)Z̃
i
n(u

i)|dui∫
πi(θi0)Z̃

i
n(u

i)dui
≤ c5(c)

p13 log p√
n

)
> 1− 10.4 exp{−1

6
p2}.
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Proof. Let Qi denote the set {ui
∣∣||ui||2 ≤ cM(p)}. We get that

[

∫
πi(θi0)Z̃

i
n(u

i)dui]−1

∫
Q

||ui|| · |πi(θi0 + n−1/2(J i)−1ui)Zin(u
i)− πi(θi0)Z̃

i
n(u

i)|dui

= [

∫
πi(θi0)Z̃

i
n(u

i)dui]−1

∫
Qi

||ui|| · |π
i(θi0 + n−1/2(J i)−1ui)

πi(θi0)
Zin(u

i)− Z̃in(u
i)|πi(θi0)dui

=

∫
Qi ||ui|| · |π

i(θi0+n
−1/2(Ji)−1ui)

πi(θi0)
Zin(u

i)− Zin(u
i) + Zin(u

i)− Z̃in(u
i)|πi(θi0)dui∫

πi(θi0)Z̃
i
n(u

i)dui

=

∫
Qi ||ui|| · |π

i(θi0+n
−1/2(Ji)−1ui)

πi(θi0)
Zin(u

i)− Zin(u
i) + Zin(u

i)− Z̃in(u
i)|dui∫

Z̃in(u
i)dui

≤

∫
Qi ||ui|| · |(π

i(θi0+n
−1/2(Ji)−1ui)

πi(θi0)
− 1)Zin(u

i)|dui +
∫
Qi ||ui|| · |Zin(ui)− Z̃in(u

i)|dui∫
Z̃in(u

i)dui

≤
sup
ui∈Qi

{
||ui|| · |π

i(θi0+n
−1/2(Ji)−1ui)

πi(θi0)
− 1|

}∫
Qi Z

i
n(u

i)dui∫
Z̃in(u

i)dui
+

∫
Qi ||ui|| · |Zin(ui)− Z̃in(u

i)|dui∫
Z̃in(u

i)dui
.

Since

cM(p) ≥ ||ui||2 = ||
√
nJ i(θi − θi0)||2 = (

√
nJ i(θi − θi0))

t
√
nJ i(θi − θi0)

= n(θi − θi0)
tJ tJ(θi − θi0) = n(θi − θi0)

tF i(θi − θi0)

≥ nλmin(F
i)(θi − θi0)

t(θi − θi0) = nλmin(F
i)||θi − θi0||2

then

||θi − θi0|| ≤

√
cM(p)

nλmin(F i)
=

√
cM(p)||(F i)−1||

n
.

By Proposition 4.1, we have κ21 ≤ ||(F i)−1|| ≤ κ22. Since
p12(log p)

1
2√

n
→ 0, then p2 log p

n → 0.

Therefore, ||θi − θi0|| → 0. Using the fact |ex − 1| ≤ 2|x| for sufficiently small |x|, we
obtain

sup
ui∈Qi

{
||ui|| · |π

i(θi0 + n−1/2(J i)−1ui)

πi(θi0)
− 1|

}
≤ 2 sup

ui∈Qi

{||ui|| · | log π
i(θi0 + n−1/2(J i)−1ui)

πi(θi0)
|}

≤ 2
√
cM(p)M1p||θi − θi0|| by Proposition 4.5

≤ 2
√
cM(p)M1p

√
cM(p)||(F i)−1||

n

≤ 2cM1κ2M(p)p√
n

22



where M1 is a constant. We also have that∫
Qi Z

i
n(u

i)dui∫
Z̃in(u

i)dui
=

∫
Qi Z

i
n(u

i)dui +
∫
Qi Z̃n(u

i)dui −
∫
Qi Z̃

i
n(u

i)dui∫
Z̃in(u

i)dui

=

∫
Qi Z̃

i
n(u

i)dui +
∫
Qi [Z

i
n(u

i)− Z̃in(u
i)]dui∫

Z̃in(u
i)dui

≤
∫
Z̃in(u

i)dui +
∫
Qi |Zin(ui)− Z̃in(u

i)|dui∫
Z̃in(u

i)dui

≤ 1 +
(∫

Z̃in(u
i)dui

)−1
∫
Qi

|Zin(ui)− Z̃in(u
i)|dui.

According to Lemma ?? in the Appendix, we can obtain(∫
Z̃in(u

i)dui
)−1

∫
Qi

|Zin(ui)− Z̃in(u
i)|dui ≤ f i(||∆i

n||, c) (20) ff

where

f i(||∆i
n||, c) = φin(c)[p

2 +
(
1− 2φin(c)

)−1||∆i
n||2]

(
1− 2φin(c)

)−(
p2i
2 +1)

× exp
{φin(c)||∆i

n||2

1− 2φin(c)

}
,

and

φin(c) =
1

6
[n−

1
2

(
cM(p)

) 1
2Bi1n(0) + n−1cM(p)Bi2n(c

M(p)

Si
)]

Furthermore, since ||ui|| ≤
√
cM(p), by the inequality (20), it is easy to see that∫

Qi ||ui|| · |Zin(ui)− Z̃in(u
i)|dui∫

Z̃in(u
i)dui

≤
√
cM(p)f(||∆i

n||, c).

Combining the above results, we can show that the LHS in (20) is bounded by

R1(||∆i
n||, c) =

2cM1κ2M(p)p√
n

[1 + f i(||∆i
n||, c)] +

√
cM(p)f i(||∆i

n||, c).

According to Proposition 4.6, we have Bi1n(0) = O(p9) and Bi2n(c
M(p)
Si

) = O(p12). There-

fore, there exist two constants c1 and c2 such that

φin(c) ≤ 1

6
[n−

1
2

(
cM(p)

) 1
2 c1p

9 + n−1cM(p)c2p
12]

=
1

6
[
√
c

√
p2 log p√
n

c1p
9 +

cp2 log p

n
c2p

12]

=
1

6
[
√
cc1

p10
√
log p√
n

+ c2
p14 log p

n
]

=
1

6

p10
√
log p√
n

[
√
cc1 + c2

p4
√
log p√
n

]. (21) cc
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Since the first term in (21) is the dominating term, then there exists a constant c3(c)

such that φin ≤ c3(c)
p10

√
log p√
n

. Since p12(log p)
1
2√

n
→ 0, then immediately φin(c) → 0.

Furthermore, using the fact (1 − x)−1 ≤ 2 and − log(1 − x) ≤ 2x for sufficiently small

x, we have [1− 2φin(c)]
−1 ≤ 2 and e−(

p2i
2 +1) log

(
1−2φi

n(c)
)
≤ e(

p2i
2 +1)4φi

n(c). Therefore, the

following inequality holds

f i(||∆i
n||, c) ≤ φin(c)[p

2 + 2||∆i
n||2] exp{(

p2

2
+ 1)4φin(c)} exp

{
2φin(c)||∆i

n||2
}
.

According to Lemma 4.4, we see that P (||∆i
n||2 ≤ 3a2p2) > 1− 10.4 exp{− 1

6p
2}. There-

fore,

f i(||∆i
n||, c) ≤ c3(c)

p10
√
log p√
n

[p2 + 6a2p2] exp
{
c3(c)

p10
√
log p√
n

(6a2p2 + 2p2 + 4)
}

with a probability greater than 1−10.4 exp{−1
6p

2}. Since p12
√
log p√
n

→ 0, then p10
√
log p√
n

(6a2p2+

2p2 + 2) → 0. Therefore, exp
{
c3(c)

p10
√
log p√
n

(4a2p2 + 2p2 + 2)
}
< 2. It follows

f i(||∆i
n||, c) ≤ 2(1 + 6a2)c3(c)

p12
√
log p√
n

with a probability greater than 1 − 10.4 exp{−1
6p

2}. Let c4(c) = 2(1 + 6a2)c3(c), then

f i(||∆i
n||, c) ≤ c4(c)

p12
√
log p√
n

with a probability greater than 1 − 10.4 exp{− 1
6p

2}. Fur-

thermore, we can get

R1(||∆i
n||, c) =

2cM1κ2M(p)p√
n

[1 + c4(c)
p12

√
log p√
n

] +
√
cM(p)c4(c)

p12
√
log p√
n

=
2cM1κ2p

3 log p√
n

+ c4(c)
2cM1κ2p

15 log
3
2 p

n
+
√
cc4(c)

p13 log p√
n

=
2cM1κ2p

3 log p√
n

+
p13 log p√

n
[c4(c)

2cM1κ2p
2 log

1
2 p√

n
+
√
cc4(c)] (22) b3

with a probability greater than 1 − 10.4 exp{−1
6p

2}. It is easy to see that the third

term in (22) is the dominating term. Therefore, there exists a constant c5(c) such that

R1(||∆i
n||, c) ≤ c5(c)

p13 log p√
n

with a probability greater than 1 − 10.4 exp{−1
6p

2}. The

proof is completed.

⟨secondtermnorm⟩
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Lemma 4.6 There exists a constant c and a constant c9(c) such that for any given

i ∈ V ,

P
(∫

||ui||2>cM(p)
||ui||πi(θi0 + n−

1
2 (J i)−1ui)Zin(u

i)dui∫
πi(θi0)Z̃

i
n(u

i)dui
≤ exp[−c9(c)p2 log p]

)
> 1− 10.4 exp{−1

6
p2}.

Proof. Let

R2(||∆i
n||, c) =

∫
||ui||2>cM(p)

||ui||πi(θi0 + n−
1
2 (J i)−1ui)Zin(u

i)dui∫
πi(θi0)Z̃

i
n(u

i)dui

=

∫
||ui||2>cM(p)

||ui||π
i(θi0+n

− 1
2 (Ji)−1ui)

πi(θi0)
Zin(u

i)dui∫
Z̃in(u

i)dui

=

∫
||ui||2>cM(p)

||ui||π
i(θi0+n

− 1
2 (Ji)−1ui)

πi(θi0)
Zin(u

i)dui

(2π)Si/2 exp[
||∆i

n||2
2 ]

According to Lemma 2.2 in Ghosal [2000], we have that Zin(u
i) ≤ exp[− 1

4cp
2 log p] with

a probability greater than 1− 10.4 exp{−1
6p

2}. Therefore, we obtain that

R2(||∆i
n||, c) ≤

exp[− 1
4cp

2 log p]

(2π)Si/2 exp[
||∆i

n||2
2 ]

∫
||ui||2>cM(p)

||ui||π
i(θi0 + n−

1
2 (J i)−1ui)

πi(θi0)
dui

=
exp[−1

4cp
2 log p]

(2π)Si/2 exp[
||∆i

n||2
2 ]

∫
||ui||2>cM(p)

||ui||π
i
0(θ

i
0 + n−

1
2 (J i)−1ui)

πi0(θ
i
0)

dui

=
exp[−1

4cp
2 log p]

(2π)Si/2 exp[
||∆i

n||2
2 ]

×
∫
||
√
nJi(θi−θi0)||2>cM(p)

||
√
nJ i(θi − θi0)||

πi0(θ
i)

πi0(θ
i
0)
nSi/2det(J i)dθi

≤
nSi/2det(J i) exp[−1

4cp
2 log p]

πi0(θ
i
0)(2π)

Si/2 exp[
||∆i

n||2
2 ]

∫
||
√
nJi(θi−θi0)||2>cM(p)

||
√
nJ i(θi − θi0)||πi0(θi)dθi

≤ exp[
Si
2

log n+
1

2
log(det(F i))− 1

4
cp2 log p

+ log

∫
||
√
nJi(θi−θi0)||2>cM(p)

||
√
nJ i(θi − θi0)||πi0(θi)dθi − log πi0(θ

i
0)−

Si
2

log 2π − ||∆i
n||2

2
]

≤ exp[
Si
2

log n+
1

2
log(det(F i))− 1

4
cp2 log p− log πi0(θ

i
0)

+ log

∫
||
√
nJi(θi−θi0)||2>cM(p)

||
√
nJ i(θi − θi0)||πi0(θi)dθi]
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with a probability greater than 1− 10.4 exp{− 1
6p

2}. By Proposition 4.4 and Lemma 6.4

in the Appendix, we have that

R2(||∆i
n||, c) ≤ exp[

Si
2

log n+
1

2
log(det(F i))− 1

4
cp2 log p+

1

2
piκ2 −

δ − 2

2
pi log κ1

+M7p
2 log p]

with a probability greater than 1 − 10.4 exp{− 1
6p

2}. By Condition (1), log n and log p

are of the same order. Furthermore, Proposition 4.3 implies log(det(F i)) = O(p2).

Therefore, there exists a constant c6 such that log(det(F i)) ≤ c6p
2. It follows the RHS in

(23) is bounded by the following term with a probability greater than 1−10.4 exp{−1
6p

2}.

exp[
p(p+ 1)

4
log p+

1

2
c6p

2 − 1

4
cp2 log p+

1

2
piκ2 −

δ − 2

2
pi log κ1 +M7p

2 log p]

Furthermore, there exists a constant c8 such that

R2(||∆i
n||, c) ≤ exp[p(p+1)

4 log p− 1
4cp

2 log p+M7p
2 log p+ c8p

2 log p]

with a probability greater than 1 − 10.4 exp{− 1
6p

2}. We can choose a constant c big

enough such that c9(c) =
1
4 − 1

4c+ c8 +M7 < 0. It immediately implies R2(||∆i
n||, c) ≤

exp[−c9(c)p2 log p] with a probability greater than 1− 10.4 exp{− 1
6p

2}.

⟨thirdtermnorm⟩
Lemma 4.7 For any given i ∈ V and any constant C with C > 9a2, a2 > 1, we have

P (

∫
||ui||2>CM(p)

||ui||ϕ(ui;∆i
n, ISi)du

i ≤ 2√
2π
p−3a2+2 +

√
3a2

2√
2π
p−3a2+1)

> 1− 10.4 exp{−1

6
p2}

Proof. First we observe that∫
||ui||2>CM(p)

||ui||ϕ(ui;∆i
n, ISi)du

i

≤
∫
||ui||2>CM(p)

(||ui −∆i
n||+ ||∆i

n||)ϕ(ui;∆i
n, ISi)du

i

≤
∫
||ui||2>CM(p)

(||ui −∆i
n||)ϕ(ui;∆i

n, ISi)du
i +

∫
||ui||2>CM(p)

||∆i
n||ϕ(ui;∆i

n, ISi)du
i.

26



Let vi = ui−∆i
n, since ||vi||2+||∆i

n||2 ≥ ||vi+∆i
n||2 = ||ui||2 > CM(p), then immediately

||vi||2 > CM(p) − ||∆i
n||2. By Lemma 4.4, we can see that ||∆i

n||2 ≤ 3a2p2 with a

probability greater than 1−10.4 exp{− 1
6p

2} with a2 > 1. Therefore, we can get ||vi||2 >
CM(p)−||∆i

n||2 > CM(p)−3a2p2 > (9a2−3a2)p2 log p = 6a2p2 log p with a probability

greater than 1− 10.4 exp{− 1
6p

2}. Thus the following inequality holds with a probability

greater than 1− 10.4 exp{−1
6p

2}.∫
||ui||2>CM(p)

(||ui −∆i
n||)ϕ(ui;∆i

n, ISi)du
i

=

∫
||vi+∆i

n||2>CM(p)

||vi||ϕ(vi; 0, ISi)dv
i ≤

∫
||vi||2>6a2M(p)

||vi||ϕ(vi; 0, ISi)dv
i

≤
∫
||vi||2>6a2M(p)

Si∑
j=1

|vij |ϕ(vi; 0, ISi)dv
i =

Si∑
j=1

∫
||vi||2>6a2M(p)

|vij |ϕ(vi; 0, ISi)dv
i
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Since ||vi||2 > 6a2M(p), there exists a k ∈ {1, 2, · · · , Si} such that (vij)
2 > 6a2M(p)

Si
.

Therefore,

Si∑
j=1

∫
||vi||2>6a2M(p)

|vij |ϕ(vi; 0, ISi)dv
i

≤
Si∑
j=1

∏
j ̸=k

∫ +∞

−∞

∫
(vik)

2>6a2
M(p)
Si

|vij |ϕ(vi; 0, ISi)dv
i

=
∏
j ̸=k

∫ +∞

−∞

∫
(vik)

2>6a2
M(p)
Si

|vik|ϕ(vi; 0, ISi)dv
i +

∑
j ̸=k

∏
j ̸=k

∫ +∞

−∞

∫
(vik)

2>6a2
M(p)
Si

|vij |ϕ(vi; 0, ISi)dv
i

=

∫
(vik)

2>6a2
M(p)
Si

|vik|
1√
2π
e−

(vi
k)2

2 dvik

+
∑
j ̸=k

∫
(vik)

2>6a2
M(p)
Si

1√
2π
e−

(vi
k)2

2 dvik

∫ ∞

−∞
|vij |

1√
2π
e−

(vi
j)

2

2 dvij

= 2

∫
vik>

√
6a2

M(p)
Si

vik
1√
2π
e−

(vi
k)2

2 dvik

+
∑
j ̸=k

2

∫
vik>

√
6a2

M(p)
Si

1√
2π
e−

(vi
k)2

2 dvik[2

∫ ∞

0

vij
1√
2π
e−

(vi
j)

2

2 dvij ]

< 2

∫
vik>

√
6a2

M(p)
Si

vik
1√
2π
e−

(vi
k)2

2 dvik

+
∑
j ̸=k

2

∫
vik>

√
6a2

M(p)
Si

vik
1√
2π
e−

(vi
k)2

2 dvik[2

∫ ∞

0

vij
1√
2π
e−

(vi
j)

2

2 dvij ]

= 2

∫
vik>

√
6a2

M(p)
Si

vik
1√
2π
e−

(vi
k)2

2 dvik
[
1 +

∑
j ̸=k

2

∫ ∞

0

vij
1√
2π
e−

(vi
j)

2

2 dvij
]

= 2
1√
2π
e
− 6a2M(p)

2Si [1 + (Si − 1)2
1√
2π

] ≤ 2Si
1√
2π
e
− 6a2M(p)

2Si ≤ 2p2
1√
2π
e
− 6a2M(p)

2p2

≤ 2p2
1√
2π
p−3a2

with a probability greater than 1 − 10.4 exp{−1
6p

2}. Similarly, there exists a l ∈
{1, 2, · · · , Si} such that∫

||ui||2>CM(p)

||∆i
n||ϕ(ui;∆i

n, ISi)du
i ≤ ||∆i

n||2
∫
vil>

√
6a2

M(p)
Si

1√
2π
e−

(vi
l )

2

2 dvil

= ||∆i
n||

2√
2π
p−3a2

≤
√
3a2p

2√
2π
p−3a2

with a probability greater than 1 − 10.4 exp{− 1
6p

2}. Hence, the desired result follows.
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⟨allnorm⟩
Lemma 4.8 For a given i ∈ V , we have

√
nJ i(θ̃i − θi0) = ∆i

n +

∫
ui[πi∗(u

i)− ϕ(ui;∆i
n, ISi)]du

i

where πi∗(u
i) is the posterior distribution of ui.

Proof. Let πi∗(θ
i) be the posterior distribution of θi. Therefore, πi∗(u

i) = πi∗(θ
i
0 +

n−
1
2 (J i)−1ui)|n− 1

2 (J i)−1|. Thus

θ̃i =

∫
θi · πi∗(θi)dθi

=

∫
(θi0 + n−

1
2 (J i)−1ui)πi∗(θ

i
0 + n−

1
2 (J i)−1ui)|n−1/2(J i)−1|dθi

=

∫
(θi0 + n−

1
2 (J i)−1ui)πi∗(u

i)dui

= θi0 + n−
1
2 (J i)−1

∫
uiπi∗(u

i)dui.

It follows
√
nJ i(θ̃i − θi0) =

∫
uiπi∗(u

i)dui.

On the other hand, the following equations hold∫
uiϕ(ui;∆i

n, ISi)du =

∫
(ui −∆i

n +∆i
n)ϕ(u

i;∆i
n, ISi)du

i

=

∫
(ui −∆i

n)ϕ(u
i;∆i

n, ISi)du
i +∆i

n

∫
ϕ(ui;∆i

n, ISi)du
i

= ∆i
n.

We thus have

√
nJ i(θ̃i − θi0)−∆i

n =

∫
uiπi∗(u

i)dui −
∫
uiϕ(ui;∆i

n, ISi)du
i

=

∫
ui[πi∗(u

i)− ϕ(ui;∆i
n, ISi)]du

i.

5 Simulations

In order to investigate the performance of our proposed composite Bayesian estima-

tors under different scenarios, we conducted a number of numerical experiments. First,
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(a)
?⟨fig:vertex and edge⟩??⟨sub@fig:vertex and edge⟩?

(b)
?⟨fig:vertex⟩??⟨sub@fig:vertex⟩?

(c)
?⟨fig:edge⟩??⟨sub@fig:edge⟩?

(d)
?⟨fig:vertex⟩??⟨sub@fig:vertex⟩?

Figure 1: Cycles of length 6 with the three different patterns of colouring that we use for

the cycles of length p = 20 and p = 30. Black vertices or edges indicate different arbitrary

colours.
⟨fig:1⟩

we evaluate the composite 1-hop Bayesian (MBE−1hop) estimator, the composite 2-hop

Bayesian (MBE−2hop) estimator and the global Bayesian estimators (GBE) for three

colored cycles. Moreover, We also compare them with the global maximum likelihood

estimators (GMLE) for the three colored cycles when the sample size are different. For a

lattice colored graph, we compare the 1-hop composite maximum likelihood estimators

(MMLE-1hop), the 1-hop composite Bayesian estimator with the global maximum likeli-

hood estimators. The normalized mean squared errors (NMSE) are defined as ||K̂−K||2
||K||2 .

Figure 1 (a)-(c) show three different patterns of colouring of an cycle of order 6.

In particular, we show the simulation results for p = 20 and p = 30. The param-

eters for these figures are listed in Table 1. Furthermore, a square lattice colored

graph with p = 10 × 10 = 100 vertices is illustrated in Figure 1 (d). For this fig-

ure, the parameters are chosen as Ki+10(j−1),i+1+10(j−1) = 1 for i = 1, 2, . . . , 9 and

j = 1, 2, . . . , 10, Ki+10(j−1),i+10j = 1+0.01i+0.1j for i = 1, 2, . . . , 10 and j = 1, 2, . . . , 9
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and Ki,i = 10 + 0.01i for i = 1, 2, . . . , 100. The posterior mean estimates are based on

5000 iterations after the first 1000 burn-in iterations.

Table 1: The parameters chosen for the matrix K for producing figure 1.

parameters Figure 1 (a) Figure 1 (b) Figure 1 (c)

Kii (i = 1, 3, . . . , 2p− 1) 0.1 0.1 0.1+0.1i

Kii (i = 2, 4, . . . , p) 0.03 0.3 0.03+0.01i

Ki,i+1 = Ki+1,i (i = 1, 3, . . . , 2p− 1) 0.01 0.01+0.001i 0.01

Ki,i+1 = Ki+1,i (i = 2, 4, . . . , p− 2) 0.02 0.01+0.002i 0.02

K1p = Kp1 0.02 0.01 0.02
⟨table:parameters⟩

Table 2 shows NMSE(K, K̂) for the comparison between the three colored models on

the simulated examples when p = 20 and p = 30, averaged over 100 simulations. For each

graph, we generated 100 datasets from the N(0,K−1) distribution. The NMSE and

the standard derivations are shown in the 3th 4th and 5th columns of Table 2. Standard

errors are indicated in parentheses. From the results shown on Table 2, our proposed

composite 1-hop and 2-hop Bayesian estimators perform very well comparing the global

Bayesian estimators. Computation was performed on a 2 core 4 threads with i5-4200U,

2.3 GHZ chips and 8GB of RAM, running on Windows 8. The average computing time

shows in the 3th, 4th and 5th columns in minutes on Table 3. As shown in the simulation

result on Table 3, the total computing time of composite Bayesian estimation is much

smaller than the global Bayesian estimation.

Figure 2 shows the NMSE curves for the colored graphs in Figure 1 when the sample

sizes are from 50-100. The averaged NMSE is illustrated over 100 simulations. In

summary, our proposed estimators can perform better as the sample size increase and

the NMSE for the composite 1-hop Bayesian estimator always smaller than the NMSE

for the composite 2-hop Bayesian estimator.

6 Appendix

The following Isserlis’Theorem give us the general formula for the moments of the

multivariate normal distribution in terms of its covariance matrix and also shows that

all the moments of the multivariate normal distribution are finite.

⟨Isserlis⟩
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Figure 2: NMSE in K for different colored graphical models. (a) NMSE for the colored

graph in Figure 1 (a) when p = 20. (b) NMSE for the colored graph in Figure 1 (b) when

p = 20. (c) NMSE for the colored graph in Figure 1 (c) when p = 20. (d) NMSE for the

colored lattice graph in Figure 1 (d) when p = 100.
⟨fig:2⟩
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Table 2: NMSE(K, K̂) for the three colored models when p = 20 and p = 30.

NMSE

p G MBE 1hop MBE 2hop GBE

(a) 0.0162 (0.0155) 0.0032 (0.0027) 0.0110 (0.0102)

20 (b) 0.0256 (0.0153) 0.0148 (0.0058) 0.0237 (0.0189)

(c) 0.0375 (0.0283) 0.0305 (0.0142) 0.0308 (0.0241)

(a) 0.0098 (0.0070) 0.0017(0.0014) 0.0317 (0.0571)

30 (b) 0.0234 (0.0088) 0.0151(0.0054) 0.0482 (0.0533)

(c) 0.0379 (0.0127) 0.0308 (0.0086) 0.0823 (0.0257)
⟨table:2⟩

Table 3: Timing for the three colored models when p = 20 and p = 30.

Timing

p G MBE 1hop MBE 2hop GBE

(a) 0.365 3.410 21.875

20 (b) 1.047 3.353 16.249

(c) 0.944 3.054 15.513

(a) 1.442 4.952 83.965

30 (b) 1.538 4.557 80.255

(c) 1.504 4.509 79.918
⟨table:3⟩

Lemma 6.1 (Isserlis’Theorem) Let X = (X1, X2, · · · , Xn) be the random variables

following the multivariate normal distribution Np(0,Σ), then

E[Xa1Xa2 · · ·Xa2n ] =
∑
σ

A(σ)

and

E[Xa1Xa2 · · ·Xa2n−1 ] = 0

where the sum is over every partition σ of {1, 2, . . . , 2n} into n disjoint pairs (σ(2k −
1), σ(2k)) such that σ(2k − 1) < σ(2k), for k = 1, 2, . . . , n, and σ(2k − 1) < σ(2k + 1)

for k = 1, 2, . . . , n− 1. For each partition σ, A(σ) =
n∏
k=1

Σσ(2k−1)σ(2k).

⟨aa⟩
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Lemma 6.2 Let Y ij be defined in (12) and denote Y ij = (Yj1, Yj2, · · · , YjSi)
t, under

Condition (2), we have E
[
|Y ijk1 | · · · |Y

i
jkh

|
]
is bounded for h = 1, 2, 3, 4.

Proof. Since Y ijk = − 1
2 tr(δ

i
kX

i
j(X

i
j)
t), by Isserlis’ Theorem (see Lemma 6.1 in Ap-

pendix), the moments of every entry of Xi
j(X

i
j)
t is finite. By Condition (3), E(Y ijk) is

bounded and E(Y ijk)
2 is also bounded. By Hölder’s inequality (E[|XY |] ≤ (E[|X|p])

1
p (E[|Y |q])

1
q

on wiki), when h = 1, E(|Y ijk1 |) ≤ (E(Y ijk1)
2)

1
2 is bounded. When h = 2, we have

E(|Y ijk1 ||Y
i
jk2 |) ≤ (E(Y ijk1)

2)
1
2 (E(Y ijk2)

2)
1
2 .

It follows E(|Y ijk1 ||Y
i
jk2

|) is bounded. When h = 3, we have

E(|Y ijk1 ||Y
i
jk2 ||Y

i
jk3 |) ≤ (E(|Y ijk1 ||Y

i
jk2 |)

2)
1
2 (E(Y ijk3)

2)
1
2 .

Since E(|Y ijk1 ||Y
i
jk2

|) is bounded, then E(|Y ijk1 ||Y
i
jk2

|)2 is also bounded. Therefore,

E(|Y ijk1 ||Y
i
jk2

||Y ijk3 |) is bounded. Consequently, E
[
|Y ijk1 | · · · |Y

i
jkh

|
]
is bounded for h =

1, 2, 3, 4.

⟨eigen⟩
Proposition 6.1 Let E be a Euclidean space and let F ⊂ E be a linear subspace. Let

pF denote the orthogonal projection of E onto F . Let g be a linear symmetric operator

g : E → E and consider the linear application f of F into itself defined by

f : x ∈ F → f(x) = pF ◦ g(x)

Then, we have that if λ1 < λ2 < · · · < λm are the eigenvalues of g and µ1 < µ2 <

· · · < µn are the eigenvalues of f , n < m, then for any j = 1, 2, · · · ,m, the following

inequality holds

min{µk|k = 1, 2, · · · , n} ≤ λj ≤ max{µk|k = 1, 2, · · · , n}.

Proof. We prove is first for m = dim(F ) = dim(F ) − 1. Let e = (e1, e2, · · · , em) be

an orthonormal basis of F such that basis the matrix representative of f is a diagonal

[f ]ee = diag(λ1, λ2, · · · , λm) and let e0 ∈ E be such that e′ = (e0, e1, e2, · · · , em) is an

orthonormal basis of E. Then in that basis, the matrix representative of g is

[g]e
′

e′ =


a b1 · · · bSi

b1 λ1 0 0

· · · · · ·
. . . 0

bSi · · · 0 λm

 . (23) ?diag2?
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We see here that the matrix representative of g is a submatrix of the matrix representative

of f . By the interlacing property of the eigenvalues, we have

µ0 ≤ λ1 ≤ µ1 ≤ · · · ≤ µ1 ≤ λ1 ≤ µm.

If dim(E)− dim(F ) > 1, we iterate the process by induction on dim(E)− dim(F ) and

complete the proof.

⟨positive⟩
Lemma 6.3 For any i ∈ V , let T i(γi) be a symmetric matrix with dimension pi. Then

there exists a constant η such that with ||T i(γi)||F ≤ η, the matrix Ipi +T iΣi0 is positive

definite.

Proof. If we want to show Ipi + T i(γi)Σi0 is positive definite, it is equivalent to show

for any non zero vector z with dimension pi, z
t(Ipi + T iΣi0)z is positive. By Cauchy

Schwarz inequality, we have

| < T i(γi)z,Σi0z > | ≤ ||T i(γi)z|| × ||Σi0z|| ≤ ||T i(γi)|| × ||z|| × ||Σi0|| × ||z||

≤ ||z||2||T i(γi)||F × 1

κ1
≤ η||z||2 1

κ1

Therefore,

zt(Ipi + T i(γi)Σi0)z = ztIpiz + ztT i(γi)Σi0z = ||z||2+ < T i(γi)z,Σi0z >

≥ ||z||2 − ||z||2η 1

κ1
= [1− η

1

κ1
]||z||2.

We can thus choose a constant η, such that η < κ1. It follows z
t(Ipi+T

iΣi0)z ≥ ||z||2 > 0

when ||T i(γi)||F ≤ η.

⟨He⟩
Lemma 6.4 For any i ∈ V , log

∫
||
√
nJ i(θi − θi0)||πi0(θi)dθi ≤ exp[M7p

2 log p] with M7

is a constant.

Proof. ∫
||
√
nJ i(θi − θi0)||πi0(θi)dθi

≤ n
1
2
1

κ1

2S−s+p

ppΓ(S)
[
s∏
r=1

(
2

τr
)

kr
2 +1Γ(

kr
2

+ 1)](M0pΓ(αp+ S) + 2Γ(αp+ 1 + S))

≤ n
1
2
1

κ1

2S−s+p

ppΓ(S)
[

s∏
r=1

(
2

τr
)

kr
2 +1Γ(

kr
2

+ 1)]M2pΓ(αp+ 1 + S)
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Therefore,

log
{∫

||
√
nJ i(θi − θi0)||πi0(θi)dθi

}
≤ 1

2
log n− log κ1 + (S − s+ p) log 2− p log p− log Γ(S) + logM2 + log p+ log Γ(αp+ 1 + S)

+
s∑
r=1

[(
kr
2

+ 1) log
2

τr
+ log Γ(

kr
2

+ 1)]

Since log n and log p is the same order and kr ≤ p, we have that

exp[log
{∫

||
√
nJ i(θi − θi0)||πi0(θi)dθi

}
]

≤ exp[
1

2
log p+ (S − s+ p) log 2 + log p+ log Γ(αp+ 1 + S) + p(

p

2
+ 1) log 2 + p log Γ(

p

2
+ 1) +M3]

≤ exp[
3

2
log p+ (S − s+ p) log 2 + log Γ(αp+ 1 + S) + p(

p

2
+ 1) log 2 + p log Γ(

p

2
+ 1) +M3]

By Sterling’s approximation, we have log n! = n log n+O(log n). Therefore, there exist

two constant M5 and M6 such that

log Γ(αp+ 1 + S) ≤ log Γ(αp+ 1 +
p(p+ 1)

2
) ≤ log(αp+ p2)! ≤M5p

2 log p

and

log Γ(
kr
2

+ 1) ≤ log Γ(
p

2
+ 1) ≤ log p! ≤M6p log p.

Combining all results above, we obtain that

exp[log
{∫

||
√
nJ i(θi − θi0)||πi0(θi)dθi

}
]

≤ exp[
3

2
log p+ [

p(p+ 1)

2
+ p] log 2 +M5p

2 log p+ p(
p

2
+ 1) log 2 +M6p

2 log p+M3]

≤ exp[M7p
2 log p],

where M7 is a constant.
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