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Let V be the space of (r, r) Hermitian matrices and let � be the cone
of the positive definite ones. We say that the random variable S, taking its
values in �, has the complex Wishart distribution γp,σ if E(exp trace(θS)) =
(det(Ir − σθ))−p, where σ and σ−1 − θ are in �, and where p =
1,2, . . . , r − 1 or p > r − 1. In this paper, we compute all moments of S and
S−1. The techniques involve in particular the use of the irreducible characters
of the symmetric group.

1. The moments of complex Wishart distributions. Let V be the set of
(r, r) Hermitian matrices, that is, of the (r, r) matrices s with complex entries
such that s = s∗, where * indicates the transposed conjugate of the matrix. Note
that V is a real linear space, not a complex one. Its dimension is r2. Let � be the
open convex cone of the elements s of V which are positive definite, that is, such
that z∗sz > 0 for any z in Cr \ {0}. Its closure � is the closed convex cone of the
elements s of V which are positive, that is, such that z∗sz ≥ 0 for any z in Cr . Let
σ be in � and let p be a positive integer. The complex Wishart distribution γp,σ on
� has been considered in the literature [e.g., Goodman (1963)] as the distribution
of

S = 1
2 (Z1Z

∗
1 + · · · + ZpZ∗

p),(1.1)

where Z1, . . . ,Zp are i.i.d. Gaussian centered random variables taking their values
in Cr , with covariance such that, if we write Zj = Xj + iYj and σjk = ajk + ibjk ,
where Xj , Yj , ajk, bjk are real, then we have[

E(XjXk) E(XjYk)

E(YjXk) E(YjYk)

]
=

[
ajk bjk

−bjk ajk

]
.

From (1.1) it is easy to verify that the Laplace transform of S is

E
(
exp trace(θS)

) = (
det(Ir − σθ)

)−p

for all θ in V such that σ−1 − θ is in �. In order to compute this expected value,
we use Gaussian integrals and the spectral theorem for Hermitian matrices. From
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its definition in (1.1) and for p = 1,2, . . . , r − 1, it is clear that S is concentrated
on the boundary � \ �, that is, on the set of singular positive Hermitian matrices.
To give a description of the distribution of S for the other values of p, write s

in V as s = (xjk + iyjk)1≤j,k≤r , where xjk and yjk are real and where yjk = −ykj ,

and introduce the Lebesgue measure on V defined by

λ(ds) =
r∏

j=1

dxjj

∏
1≤j<k≤r

dxjk dyjk.

Suppose now that p > r − 1, but is not necessarily an integer any more. Then we
have ∫

�
(det s)p−r exp(− trace s)λ(ds) = πr�(p)�(p − 1) · · ·�(p − r + 1).(1.2)

A proof of (1.2) is essentially in Goodman (1963). The proof given there, for
integers p ≥ r , is easily extended to the interval (r − 1,∞). Another proof can
be found in Graczyk, Letac and Massam (2000), which is a more detailed version
of the present paper. Denoting by C(p, r) the inverse of the right-hand side of (1.2)
we get that

C(p, r)det(σ )−p(det s)p−r exp(− traceσ−1s)1�(s)λ(ds)(1.3)

is a probability. Replacing σ by (σ−1 − θ)−1 in (1.3), we obtain that for σ−1 − θ

in �,

C(p, r)

∫
�

exp(trace θs)det(σ )−p(det s)p−r exp(− traceσ−1s)1�(s)λ(ds)

= (
det(Ir − σθ)

)−p
.

This shows that for p = r, r + 1, . . . the probability density function of the γp,σ

random variable S defined in (1.1) is given explicitly in (1.3). Summarizing the
results given above, we say that for p ∈ � = {1,2, . . . , r − 1} ∪ (r − 1,∞) and
σ ∈ �, the complex Wishart distribution γp,σ with shape parameter p and scale
parameter σ is defined by its Laplace transform (det(Ir − σθ))−p. For p > r − 1
its density is (1.3). For p in the singular part {1,2, . . . , r − 1} of �, it has the
distribution of S as defined in (1.1). The fact that the set of values of p such that
(det(Ir − σθ))−p is the Laplace transform of a positive measure is equal to �,

is known as Gyndikin’s theorem [see Casalis and Letac (1994) for an accessible
proof]. Our definition of γp,σ as the complex Wishart distribution differs slightly
from the traditional definition given in Goodman (1963) because of the factor 1/2
in (1.1). The correspondence between the two definitions is Wr(2p, σ

2 ) = γp,σ .

This paper has been written partly to give a complete answer to the question
considered by Maiwald and Kraus (2000) who provide some exact and some
approximate formulas for lower moments of the complex Wishart distribution. Our
paper extends their results by providing exact formulas for moments of any order,
and by trying to give insight into the mechanisms that give us the desired moments.
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The practical statistical problem that motivated Maiwald and Kraus (2000)
is a common problem in signal processing which can be described as follows.
We assume that the data, that is, the signals measured by remote sensors,
can be modeled by sequences (X(t))t∈Z of random variables valued in Cr

and indexed by the set Z of relative integers, which are stationary centered
complex Gaussian processes. Stationarity means that the r × r complex matrix
C(t, s) = E(X(t)X(s)∗) depends only on t − s [the row vector X(s)∗ is the
conjugate transpose of X(s)]. We are therefore given a sample X1, . . . ,XK of
the initial stationary process X. A complex function (w(t))t∈Z on Z such that∑

t∈Z |w(t)|2 = 1 is called a window. Consider a sequence (wT )∞0 of windows
and assume that for all s ∈ Z \ {0}, limT →∞

∑
t∈Z wT (t)wT (t − s) = 0. It can be

shown that the limit of the Fourier transform,

X̃(ω) = lim
T →∞

∑
t∈Z

wT (t)X(t)e−iωt

exists and is such that for ω �= ω′, X̃(ω) and X̃(ω′) are independent complex
centered random variables [see Brillinger and Krishnaiah (1983), pages 21–28].
The knowledge of the covariance of X̃(ω) gives important information on C,
the covariance function of X. Indeed under sufficient smoothness conditions the
covariance of X̃(ω) is the density f (ω) of the spectral measure of the initial
stationary Gaussian process X; that is,

C(t, s) =
∫ π

−π
eiω(t−s)f (ω)dω.

An estimate of f (ω) is given by

f̂K(ω) = 1

K

K∑
k=1

X̃k(ω)X̃k(ω)∗.

This estimate follows, of course, a complex Wishart distribution. We note that
X̃(ω) is complex even when the initial process X and the windows wT are real.
Thus the complex Wishart distribution, rather than the real one, is the distribution
that one has to work with in this type of problem. Some parameters of interest
to engineers are complicated functions of the entries of f (ω) and therefore their
corresponding estimates are obtained as functions of the entries of f̂K(ω). It is then
necessary to obtain an approximation to the distributions of the estimates using the
moments of f̂K(ω).

In the work that follows we obtain striking formulas that must be used in the
type of problem described above. Some of these formulas [Theorem 2, formulas
(2.11) and (2.12)] are also helpful in free probability [see Capitaine and Casalis
(2002)]. Let us also recall that the moments of the complex Wishart distribution
and its inverse can be used in Bayesian inference for problems involving the
complex Gaussian distribution.
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2. The results. We introduce some notation for the symmetric group Sk of
permutations π of {1,2, . . . , k}.

We recall that a permutation π of a set {a1, . . . , al} of l objects is called a cycle
if there exists a ϕ in Sl such that for all j one has π(aϕ(j)) = aϕ(j+1), with the
convention ϕ(l + 1) = ϕ(1). The permutation π can also be denoted by πϕ. Note
that ϕ is not unique. More specifically, we say that the two bijections ϕ and ϕ′ are
equivalent if there exists an integer q such that ϕ′(j) = ϕ(j + q) for all j , where
j + q is taken modulo l. Clearly πϕ = πϕ′ if and only if ϕ and ϕ′ are equivalent.
Note also that if the objects {a1, . . . , al} are (r, r) complex matrices, we use the
well-known property of commutativity for traces to see that

trace(aϕ(1)aϕ(2) · · ·aϕ(l)) = trace(aϕ′(1)aϕ′(2) · · ·aϕ′(l))(2.1)

when ϕ and ϕ′ are equivalent. When π = πϕ is a cycle, we denote the common
value of (2.1) in a symbolic way by

trace

( ∏
j∈π

aj

)
.(2.2)

Now, it is a classical result of group theory that any element π of Sk can
be written in a unique way as the product of cycles built on a set partition of
{1,2, . . . , k}. Denote by C(π) the set of these cycles, and denote by m(π) the size
of C(π), that is, the number of cycles. For π ∈ Sk, for σ ∈ � and for a sequence
(h1, . . . , hk) of (r, r) complex matrices, we now define the quantity

rπ(σ )(h1, . . . , hk) = ∏
c∈C(π)

trace

( ∏
j∈c

σhj

)
.(2.3)

Let us illustrate this with an example. Suppose that k = 6 and that π is given
by π(1) = 6, π(2) = 5, π(3) = 1, π(4) = 4, π(5) = 2 and π(6) = 3. Then
m(π) = 3 and with obvious notation, we write these three cycles as (1,6,3),

(2,5) and (4). More commonly, we write π = (1,6,3)(2,5)(4). The order on
the set C(π) and the circular order inside the cycles are irrelevant and we can
also write π = (4)(2,5)(6,3,1) for instance. For the particular example above,
rπ(σ )(h1, . . . , h6) = trace(σh4) trace(σh2σh5) trace(σh1σh6σh3).

The two main results of this paper are given in Theorem 2 and Theorem 4
below, which link arbitrary moments and inverse moments of the complex Wishart
distribution, respectively, with the symmetric group Sk. Theorem 1 is a particular
case of Theorem 2, but is actually a crucial ingredient in its proof and deserves a
separate treatment.

THEOREM 1. Let V be the space of (r, r) Hermitian matrices, let σ be in
the cone � of positive definite elements of V and let p be in the Gyndikin set
� = {1,2, . . . , r − 1} ∪ (r − 1,∞). Consider a random variable S in V with the
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complex Wishart distribution γp,σ and let (h1, . . . , hk) be arbitrary (r, r) complex
matrices. Then

E
(

trace(Sh1) trace(Sh2) · · · trace(Shk)
) = ∑

π∈Sk

pm(π)rπ(σ )(h1, . . . , hk).(2.4)

Theorem 1 is of interest in its own right because it yields immediately the
simplest moments of γp,σ . Let S = (Sjl)1≤j,l≤r = (Xjl + iYj l)1≤j,l≤r be an
element of � and suppose that we want to calculate the real number

E

( ∏
1≤j,l≤r

X
ajl

j l Y
bjl

j l

)
(2.5)

for some integers ajl and bjl. One can verify that if Ek,N is the complex
space of homogeneous polynomials of degree N with respect to the 2k variables
x1, . . . , xk, y1, . . . , yk, and if Ik,N is the set of sequences of 2k nonnegative integers
a1, . . . , ak, b1, . . . , bk such that a1 + · · · + ak + b1 + · · · + bk = N, then the two
sets of polynomials,{

x
a1
1 · · ·xak

k y
b1
1 · · ·ybk

k ; (a1, . . . , ak, b1, . . . , bk) ∈ Ik,N

}
and {

(x1 + iy1)
a1 · · · (xk + iyk)

ak (x1 − iy1)
b1 · · · (xk − iyk)

bk ;
(a1, . . . , ak, b1, . . . , bk) ∈ Ik,N

}
,

both form a basis of Ek,N . Thus, the elements of the first basis can be expressed as
linear combinations of the elements of the second one. As a consequence, in order
to calculate (2.5), it is enough to compute complex moments of the form

E

( ∏
1≤j,l≤r

S
ajl

j l S
bjl

j l

)
.(2.6)

This can be done by applying Theorem 1 to suitable matrices h1, . . . , hk [see (4.2)].
The statement of Theorem 2 includes in particular all the formulas of Section 4

of Maiwald and Kraus (2000). Indeed, for k = 1 and k = 2, (2.7) gives the
same results as their formulas (15)–(17). For k = 3, their formula (18) gives the
coefficient of p3 and p2 in (2.7) for π = (1,2)(3). For k = 4, their formula (19)
gives the coefficient of p4 and p3 in (2.7) for π = (1,2)(3,4).

THEOREM 2. With the notation of Theorem 1, for all π ∈ Sk we have

E
(
rπ(S)(h1, . . . , hk)

) = ∑
π ′∈Sk

pm(π ′−1◦π)rπ ′(σ )(h1, . . . , hk).(2.7)



292 P. GRACZYK, G. LETAC AND H. MASSAM

Our next result, Theorem 3, links E(rπ(S−1)) and rπ(σ−1) and is a first step
towards the proof of Theorem 4, which is the main result for the moments of the
inverse complex Wishart distribution.

THEOREM 3. With the notation of Theorem 1, writing q = p−r and assuming
that q > k, we have, for all π ∈ Sk ,

rπ(σ−1)(h1, . . . , hk)

= (−1)k
∑

π ′∈Sk

(−q)m(π ′−1◦π)
E

(
rπ ′(S−1)(h1, . . . , hk)

)
.(2.8)

In the statement of the last theorem, Theorem 4, we use the characters of
the symmetric group Sk. For the convenience of the reader, this concept will be
recalled in Section 6. [Our reference is Simon (1996).] To state this theorem, let us
introduce some notation.

We denote by Ik the set of sequences i = (i1, . . . , ik) of k nonnegative integers
such that i1 + 2i2 + · · · + kik = k. To each π in Sk we associate the element
i = i(π) = (i1, . . . , ik) of Ik where ij is the number of cycles of length j in π.

Such an element i of Ik is called the portrait of π. For instance (k,0, . . . ,0) is the
portrait of the identity and is abbreviated as (k). It is easy to see [Simon (1996),
Theorem VI 1.2] that the size �i of the set of π ’s with portrait i is

�i = k!∏k
j=1 ij !j ij

.(2.9)

If a function on Sk, say, π �→ a(π), depends only on the portrait i of π, we write
a(i) = a(π), that is a is considered as a function on Ik.

We introduce also the set Mk of sequences m = (m1, . . . ,mk) of integers such
that m1 ≥ m2 ≥ · · · ≥ mk ≥ 0 and such that m1 + · · · + mk = k.

Finally, we consider the matrix

Ck = (
χm(i)

)
m∈Mk, i∈Ik

of characters χm(i) of Sk, and we denote by dm the dimension of the irreducible
representation associated with m in Mk ; that is [Simon (1996), Theorem VI.2.3,
page 98],

dm = k!∏k
i=1(mi − i + k)

∏
1≤i<j≤k

(mi − mj − i + j).(2.10)

THEOREM 4. We keep the same assumptions and notation as in Theorem 3.

(i) For m ∈ Mk we denote

fm = dm

k!
k∏

j=1

mj∏
i=1

(q + j − i).(2.11)
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Then for all π in Sk we have

(−1)k(−q)m(π) = ∑
m∈Mk

fmχm(i).(2.12)

(ii) For π in Sk we denote

f (−1)(π) = ∑
m∈Mk

d2
m

k!2fm
χm(π).(2.13)

Then the inverse formula of (2.8) is

E
(
rπ(S−1)(h1, . . . , hk)

) = ∑
π ′∈Sk

f (−1)(π ′−1 ◦ π)rπ ′(σ−1)(h1, . . . , hk).(2.14)

In particular for π = identity we obtain

E
(

trace(S−1h1) trace(S−1h2) · · · trace(S−1hk)
)

= ∑
π ′∈Sk

f (−1)(π ′)rπ ′(σ−1)(h1, . . . , hk).
(2.15)

Note that we can use (2.15) in Theorem 4 to compute moments of S−1 of the

form E(
∏

1≤j,l≤r S
−ajl

j l S
−bjl

j l ), just as we used Theorem 1 to compute similar mo-
ments of S. For k ≤ 4, Theorem 4 gives as a particular case formulas 50–54 of
Maiwald and Kraus (2000).

To conclude this list of results, we observe that, for k = 1 and k = 2, the previous
theorems give results which have already appeared in the literature in the more
general context of Wishart distributions on Jordan algebras. Indeed the present
space V of (r, r) Hermitian matrices can be considered as a Jordan algebra with
Peirce constant d = 2. In particular, the following formulas,

E(S) = pσ,

E(S−1) = σ−1/q

and

E
(
trace(Sh1) trace(Sh2)

) = p2 trace(σh1) trace(σh2) + p trace(σh1σh2),

E
(
trace(Sh1Sh2)

) = p2 trace(σh1σh2) + p trace(σh1) trace(σh2),

E
(
trace(S−1h1) trace(S−1h2)

) = 1

q3 − q

(
q trace(σ−1h1) trace(σ−1h2)

+ trace(σ−1h1σ
−1h2)

)
,

E
(
trace(S−1h1S

−1h2)
) = 1

q3 − q

(
trace(σ−1h1σ

−1h2)

+ q trace(σ−1h1) trace(σ−1h2)
)
,
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have already appeared in Letac and Massam (1998), formula (6.1), and in Letac
and Massam (2000), formulas (5.1), (6.1) and (6.2). Graczyk, Letac and Massam
(2000) put the results of the present paper in the proper perspective of Jordan
algebras.

We also note that for the real case, moments of Wishart and inverse Wishart
random variables have been investigated by different authors. Let us mention here
von Rosen (1988) and several subsequent papers, as well as Wong and Liu (1995).
Their methods could possibly be imitated and provide results for the complex
Wishart. The intricacy of the real case makes even more surprising the simplicity
of the results given by Maiwald and Kraus (2000) and their extension as given in
Theorems 2 and 3 of this paper.

3. Proof of Theorem 1. We observe first that for p ∈ �, there exists an
unbounded measure µp on � such that for all θ in −� the Laplace transform
of µp is

Lµp(θ) =
∫
�

etrace(θs)µp(ds) = (det(−θ))−p = (
det(−θ)−1)p

.(3.1)

The definition of γp,σ through its Laplace transform as we have given it in
Section 1 shows that γp,σ (ds) = (detσ)−p exp(− trace(σ−1s))µp(ds). In other
words, for a fixed p, {γp,σ ; σ ∈ �} is the natural exponential family generated by
µp. For this reason, it is useful to use the natural parametrization of this family
given by θ ∈ −�. The more traditional parameter σ ∈ � is such that

σ = σ(θ) = (−θ)−1.(3.2)

Let κ be the function defined on −� by κ(θ) = log det(−θ)−1 = log detσ, so that
Lµp = exp(pκ). We will use in the sequel the following two rules of differentiation
of κ and σ with respect to θ in the direction h ∈ V :

σ ′(θ)(h) = σhσ, κ ′(θ)(h) = trace(σh).(3.3)

These formulas follow immediately from the rules of differentiation of a
determinant and of the inverse of a matrix. Formula (3.3) provides a remarkable
way to differentiate the function θ �→ trace(σh1σh2 · · ·σhk) in the direction hk+1.
The differential of that function in the direction hk+1 is equal to

trace(σhk+1σh1 · · ·σhk) + trace(σh1σhk+1σh2 · · ·σhk)

+ · · · + trace(σh1σh2 · · ·σhk+1σhk).

It has been obtained by substituting σhk+1σ for σ , k times in θ �→
trace(σh1σh2 · · ·σhk).

More generally, consider some cycle c of π ∈ Sk, say, c = (ϕ1, . . . , ϕl). If
ν = ϕi, we write cν for the cycle (ϕ1, . . . , ϕi−1, k + 1, ϕi, . . . , ϕl) of Sk+1. Then
the differential of θ �→ trace

∏
j∈c(σhj ) taken in the direction hk+1 is∑
ν∈c

trace
∏
j∈cν

(σhj ).(3.4)
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The heart of the proof is the following algebraic lemma.

LEMMA 5. Let σ(θ) = (−θ)−1, with detθ �= 0. Then the kth differential form
of θ �→ (detσ)p is the multilinear form

(h1, . . . , hk) �→ (detσ)p

( ∑
π∈Sk

pm(π)rπ(σ )(h1, . . . , hk)

)
.(3.5)

PROOF. Using (3.3), the result is clear for k = 1. Let us now assume that it
is true for k. Let us take the differential of (3.5) with respect to θ in the direction
hk+1. Using (3.3) and (3.4), we obtain

p(detσ)p trace(σhk+1)

( ∑
π∈Sk

pm(π)rπ (σ )(h1, . . . , hk)

)

+ (detσ)p

( ∑
π∈Sk

pm(π)
∑

c∈C(π)

(∑
ν∈c

trace
∏
j∈cν

(σhj )

))

×
( ∏

c1∈C(π)\{c}
trace

∏
l∈c1

hl

)
.

We now split Sk+1 into two parts, the first part containing the π ’s in Sk+1 such
that π(k + 1) = k + 1, and the second part containing the remaining permutations.
Clearly, the two preceding lines correspond to each one of the two parts and it
follows that the (k + 1)th differential of θ �→ (detσ)p is

(h1, . . . , hk+1) �→ (detσ)p

( ∑
π∈Sk+1

pm(π)rπ(σ )(h1, . . . , hk+1)

)
.

The induction argument is therefore completed and the lemma is proved. �

Let us now prove Theorem 1. We will do so first for (h1, . . . , hk) Hermitian. If S

is γp,σ distributed, taking the kth differential of (3.1) in the directions (h1, . . . , hk)

yields immediately

E
(

trace(Sh1) trace(Sh2) · · · trace(Shk)
) = 1

Lµp(θ)
L(k)

µp
(θ)(h1, . . . , hk),

which can be rewritten

L(k)
µp

(θ)(h1, . . . , hk) = (detσ)pE
(

trace(Sh1) trace(Sh2) · · · trace(Shk)
)
.(3.6)

Putting together (3.1), Lemma 5 and (3.6) gives the proof of (2.4) for Hermitian
matrices hj .
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Let us now prove (2.4) for matrices which are not necessarily Hermitian.
Consider the Hermitian matrices aj (0) = 1

2 (hj + h∗
j ) and aj (1) = 1

2i
(hj − h∗

j ), so

that hj = aj (0) + iaj (1). Consider also all sequences ε = (ε1, . . . , εk) ∈ {0,1}k.
We write |ε| = ε1 + · · · + εk.

Using (2.4) for Hermitian matrices and the linearity of traces we have

E

(
k∏

j=1

trace
(
S
(
aj (0) + iaj (1)

)))

= ∑
ε∈{0,1}k

i|ε|E
(

k∏
j=1

trace
(
Saj (εj )

))

= ∑
ε∈{0,1}k

i|ε|
( ∑

π∈Sk

pm(π)rπ (σ )
(
a1(ε1), . . . , ak(εk)

))

= ∑
ε∈{0,1}k

( ∑
π∈Sk

pm(π)rπ (σ )
(
iε1a1(ε1), . . . , i

εk ak(εk)
))

= ∑
π∈Sk

pm(π)rπ (σ )
(
a1(0) + ia1(1), . . . , ak(0) + iak(1)

)
,

which proves (2.4) for arbitrary complex matrices.

4. Proof of Theorem 2. We begin with a corollary to Theorem 1. We first
need to introduce some notation. The set {1,2, . . . , r}2k of double sequences
B = (a1, b1, a2, b2, . . . , ak, bk) of integers in {1,2, . . . , r} is denoted by Dk. For π

in the symmetric group Sk, we define the transformation lπ on Dk by

lπ (B) = (a1, bπ(1), a2, bπ(2), . . . , ak, bπ(k)).

Thus (π,B) �→ lπ (B) is a group action of Sk on Dk , and π �→ lπ is an injective
antihomomorphism (that is to say, lπ ′◦π = lπ ◦ lπ ′ ) between Sk and the group of
permutations of Dk.

Let us also adopt the following notation: if F = (Fab)1≤a,b≤r is an (r, r) matrix
and if B = (a1, b1, a2, b2, . . . , ak, bk) is in Dk , we write

F(B) = Fa1b1Fa2b2 · · ·Fakbk
.

Since lπ (B) is in Dk , F(lπ (B)) is also well defined. Suppose for instance that
k = 6 and that π = (1,6,3)(2,5)(4). Then

F(lπ(B)) = Fa1b6Fa6b3Fa3b1Fa2b5Fa5b2Fa4b4 .

We are now in position to state the corollary of Theorem 1. It extends the formulas
given between the formulas (14) and (15) in Maiwald and Kraus (2000) for
k = 2,3,4.
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COROLLARY 6. For all B ∈ Dk we have

E(S(B)) = ∑
π∈Sk

pm(π)σ (lπ (B)).(4.1)

PROOF. We introduce here the following notation which will also be useful
later: for (a, b) ∈ {1,2, . . . , r}2, let

hab = (hab
ts )1≤t,s≤r(4.2)

be the (r, r) matrix with hab
ba = 1 and hab

ts = 0 if (t, s) �= (b, a). The matrix hab is
designed so that traceShab = Sab.

We now apply Theorem 1 to hj = hajbj , where B = (a1, b1, a2, b2, . . . , ak, bk).

Since traceShab = Sab, it is clear that the first member of (2.4) is equal to E(S(B)).

To compute the second member of (2.4), we observe that if (A(1), . . . ,A(n)) is a
sequence of (r, r) matrices, then it can easily be proved by induction on n that

trace(A(1)A(2) · · ·A(n)) = ∑
1≤j1,...,jn≤r

A
(1)
j1j2

A
(2)
j2j3

· · ·A(n−1)
jn−1jn

A
(n)
jnj1

.

Applying this formula to A(1) = F , A(2) = ha1b1 , A(3) = F , etc., we get that for
any (r, r) matrix F ,

trace
(
Fha1b1Fha2b2 · · ·Fhakbk

) = Fa1b2 · · ·Fak−1bk
Fakb1 .(4.3)

We notice that the second member of (4.3) is F(lπ(B)) when π is the cycle
(1,2, . . . , k). Applying this to each cycle of π ∈ Sk and using the definition of rπ
given in (2.3) we obtain

rπ(F )
(
ha1b1, . . . , hakbk

) = F(lπ(B)).(4.4)

Letting F = σ and summing both sides of (4.4) over all π ∈ Sk yields (4.1) and
the corollary is proved. �

We are now in position to prove Theorem 2. For B = (a1, b1, a2, b2, . . . , ak, bk)

in Dk given, we will prove Theorem 2 first for hj = hajbj . For these hj , it
follows immediately from (4.4) applied to F = S that the left-hand side of (2.7) is
E(S(lπ (B))) while the right-hand side of (2.7) is∑

π ′∈Sk

pm(π−1◦π ′)σ (lπ ′(B)).

[Recall that m(π) = m(π−1).] Making the change of variable π ′′ = π−1 ◦ π ′ in
this last sum we obtain ∑

π ′′∈Sk

pm(π ′′)σ (lπ◦π ′′(B)).

Now, we use the fact that π �→ lπ is an antihomomorphism. Applying (4.1) to
B ′ = lπ (B) yields (2.7) for hj = hajbj .

In order to obtain (2.7) for any sequence (h1, . . . , hk) of (r, r) complex matrices,
we use linearity in a standard way and the proof of Theorem 2 is complete.



298 P. GRACZYK, G. LETAC AND H. MASSAM

5. Proof of Theorem 3. Similarly to what we did for Theorem 2, we first
prove Theorem 3 for π = identity and for Hermitian matrices hj . The idea of the
proof is to use the Stokes formula, roughly in the following way: If a function f

defined on � is zero on the boundary ∂� = � \ � and is smooth enough, then∫
� f ′(s)(h)λ(ds) = 0. Actually, we use this principle for the kth differential of f ,

obtaining ∫
�

f (k)(s)(h1, . . . , hk)λ(ds) = 0.(5.1)

The formula is applied to s �→ f (s) = C(p, r)(det s)q exp(trace(θs)), where
C(p, r) is the constant in (1.3) and θ = −σ−1 is in −�. Since f is the product
of the two functions u(s) = (det s)q and v(s) = C(p, r) exp(trace(θs)), we first
apply Leibnitz’s formula,

(uv)(k)(s)(h1, . . . , hk) = ∑
T ⊂{1,...,k}

u(T )(s)(hT )v(T ′)(s)(hT ′),(5.2)

with the following notation: T ′ = {1, . . . , k} \ T is the complementary set of T,

hT is the set of variables (hj )j∈T and u(T )(s) means the differential whose order
is the size of T . For the particular choices that we have made for u and v, these
differentials are easy to compute. Indeed, the differentials of v are such that

v(k)(s)(h1, . . . , hk) = v(s) × trace(θh1) · · · trace(θhk)

= v(s) × (−1)k trace(σ−1h1) · · · trace(σ−1hk).

To compute the differentials of u we use Lemma 5 in Section 3, with θ replaced
by −s so that (det s)q = (det(−θ)−1)−q , and with p replaced by −q. We obtain

u(k)(s)(h1, . . . , hk) = u(s) × (−1)k
∑

π∈Sk

(−q)m(π)rπ(s−1)(h1, . . . , hk).(5.3)

For simplicity, denote vj = trace(σ−1hj ) and for T ⊂ {1, . . . , k},

u(T ) =
∫
�

u(T )(s)(hT )v(s)λ(ds).

Formula (5.3) implies in particular that

u({1, . . . , k}) = (−1)k
∑
π∈Sk

(−q)m(π)
E

(
rπ(S−1)(h1, . . . , hk)

)
.(5.4)

Note that this implies that u(∅) = 1. Using (5.1), (5.2) and the computations of
the differentials of u and v we have∑

T ⊂{1,...,k}
u(T )

∏
j∈T ′

(−vj ) = 0.
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More generally, from the last formula, we get that, for all nonempty T1 ⊂
{1, . . . , k}, ∑

T ⊂T1

u(T )
∏

j∈T1\T
(−vj ) = 0.

It is easily seen by induction on the size of T1 that the solution of this linear system
is exactly u(T1) = ∏

j∈T1
vj , since u(∅) = 1. In particular,

u({1,2, . . . , k}) =
k∏

j=1

trace(σ−1hj)

and therefore (5.4) yields the desired formula (2.8) of Theorem 3 for π = identity
and Hermitian matrices hj .

The remainder of the proof of Theorem 3 follows the same lines as the proofs of
the two previous theorems; that is, as in Theorem 1, in a first step, we prove (2.8)
for π = identity and for arbitrary hj , by a linearity argument. In a second step,
keeping π = identity and choosing hj to be hj = hajbj , as defined in (4.2), (2.8)
from the first step becomes

σ−1(B) = (−1)k
∑

π∈Sk

(−q)m(π)
E

(
S−1(lπ (B))

)
,

where B = (a1, b1, . . . , ak, bk). In the third step, we apply the formula above to
B ′ = lπ (B) in order to obtain (2.8) for the particular hj = hajbj but for arbitrary π .
Finally a linearity argument leads us to the proof of (2.8) in Theorem 3.

6. The case k = 3 and the irreducible representations of Sk . The remainder
of the paper is devoted to the computation of the E(rπ (S−1)(h1, . . . , hk)), that is,
to the inversion of the (k!, k!) matrix M(q) = ((−1)k(−q)m(π ′−1◦π)) appearing
in (2.8) and to the proof of Theorem 4. In this section, we use the case k = 3 to
show that methods from group theory arise naturally in this problem.

Let us denote the elements of S3 by

π1 = (1)(2)(3), π2 = (1,2,3), π3 = (1,3,2),

π4 = (1)(2,3), π5 = (2)(1,3), π6 = (3)(1,2).

Following the order given by the πi , and denoting by i3 and j3 the identity (3, 3)
matrix and the matrix containing only ones, respectively, we can write the matrix
M(q) by blocks as

M(q) =
[

(q3 − q)i3 + qj3 −q2j3

−q2j3 (q3 − q)i3 + qj3

]
,
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and therefore the matrix (M(q))−1 is easily calculated:

(M(q))−1 = 1

q(q2 − 1)(q2 − 4)

[
(q2 − 4)i3 + 2j3 qj3

qj3 (q2 − 4)i3 + 2j3

]
.(6.1)

Denoting P (q) = q(q2 −1)(q2 −4), this leads to the following explicit solution
of the moment problem for S−1 and for k = 3:



E(rπ1(S
−1))

E(rπ2(S
−1))

E(rπ3(S
−1))

E(rπ4(S
−1))

E(rπ5(S
−1))

E(rπ6(S
−1))




= 1

P (q)




q2 − 2 2 2 q q q

2 q2 − 2 2 q q q

2 2 q2 − 2 q q q

q q q q2 − 2 2 2
q q q 2 q2 − 2 2
q q q 2 2 q2 − 2







rπ1(σ
−1)

rπ2(σ
−1)

rπ3(σ
−1)

rπ4(σ
−1)

rπ5(σ
−1)

rπ6(σ
−1)




.

It is also interesting to compute the eigenspaces and eigenvalues of M(q).

We obtain the eigenvalue q3 − 3q2 + 2q , associated with the eigenvector
[1,1,1,1,1,1], the eigenvalue q3 + 3q2 + 2q associated with the eigenvector
[1,1,1,−1,−1,−1] and finally q3 − q, with multiplicity 4, associated with the
four-dimensional space orthogonal to the two preceding eigenvectors. Note that
these eigenspaces do not depend on q.

To compute E(rπ(S−1)(h1, . . . , hk)) for higher values of k, we will have to
use methods which are less elementary than before, and we will have to rely on
classical results for finite groups, which we will apply later to the group G = Sk.

For the reader who is not interested in mathematical details, it is sufficient to
say that for k ≥ 3, the matrix equivalent to M(q) is the matrix representative of
a linear application from CSk to itself. To find the expression of the E(rπ(σ−1))

we need to compute the inverse of this linear application. This will be done using
some characteristics of the group Sk , in particular, its characters.

For the reader who prefers a deeper comprehension of the proof of Theorem 4,
we now give the general mathematical ideas used in our proof. Given a finite
group G, its algebra A(G) is the complex linear space of functions from G to C.
This space is endowed with a product operation called convolution and defined by

f ∗ g(x) = ∑
y∈G

f (y−1x)g(y).
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One can easily verify that this product on A(G) is associative. Its unit is the
indicator δe of the neutral element e of G. We give A(G) a Hermitian structure by
defining the scalar product

〈f,g〉 = 1

o(G)

∑
x∈G

f (x)g(x).

On G, we say that x is equivalent to x′ if and only if there exists y in G such
that x′ = yxy−1. The equivalence classes of this relation are simply called classes.
The subspace Z(G) of A(G) of the functions f such that f is constant on each
class is called the center of A(G), and an element of Z(G) is called a central
function. The reason for this name is that f ∗ g = g ∗ f for all g in A(G) if and
only if f is central [see Simon (1996), page 39].

For a given central function f , we now want to analyse the endomorphism
L(f ) of A(G) defined by g �→ f ∗ g = L(f )(g), by finding in particular its
eigenspaces and eigenvalues. To do so, we introduce the set Ĝ of all irreducible
linear representations of G (up to equivalence). Consider also the regular linear
representation defined as the family of unitary transformations (R(y))y∈G of the
Hermitian space A(G) acting as follows: for all g in A(G), then R(y)g(x) =
g(xy). From the theory of finite groups, we know that R is the direct sum of all
irreducible representations D(α), that is, each α ∈ Ĝ is present in the canonical
decomposition of R with multiplicity dα, where dα denotes the dimension of the
representation D(α) [see Simon (1996), Section III.1, or more explicitly Fulton
and Harris (1991), Corollary 2.18]. Without loss of generality, let us choose a
representative unitary matrix D(α)(x) = (D

(α)
ij (x))1≤i,j≤dα .

Then A(G) is the orthogonal direct sum of subspaces Vα of respective
dimensions d2

α which are generated by the set of functions on G which are the
coefficients of the representation, namely {D(α)

ij (x); 1 ≤ i, j ≤ dα}. Furthermore

the D
(α)
ij are orthogonal, with 〈D(α)

ij ,D
(α)
ij 〉 = 1/dα [see Simon (1996), page 36].

Each Vα shares exactly a one-dimensional linear space with Z(G), and this space
is generated by the character,

χ(α)(x) = traceD(α)(x) =
dα∑
i=1

D
(α)
ii (x),

of the corresponding irreducible representation. These characters satisfy 〈χ(α),

χ(α)〉 = 1. Since the (Vα)
α∈Ĝ

form an orthogonal direct sum, the characters are
orthonormal. In fact, the characters form a basis of Z(G) [see Simon (1996), page
40]. This shows in particular that the number of classes is equal to the number
o(Ĝ) of irreducible representations. Observe however that, for an arbitrary finite
group, there is no natural correspondence between the set of equivalence classes
of G and the set Ĝ of irreducible representations.
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Denote by χα(c) the common value of the character χα on the class c. Another
consequence of the orthonormality of characters is that if CG = (χα(c)) is the
square matrix of characters, then

1

o(G)
Diag(�c)Ct

G = C−1
G ,(6.2)

where �c is the number of elements of the class c.

To analyse the product f ∗g, recall that f ∗g = 0 if f ∈ Vα, g ∈ Vβ and α �= β,

that D
(α)
ij ∗ D

(α)
kl = 0 if j �= k and that for all i, j, l in 1,2, . . . , dα ,

D
(α)
ij ∗ D

(α)
j l = o(G)

dα

D
(α)
il .

This implies in particular that χ(α) ∗ D
(α)
ij = o(G)

dα
D

(α)
ij and that χ(α) ∗ χ(α) =

o(G)
dα

χ(α).

Now, suppose that f is in Z(G). We write f = ∑
α∈Ĝ

fαχ(α), with

fα = 〈f,χ(α)〉 = 1

o(G)

∑
c

f (c)χ(α)(c)�c,(6.3)

where the sum is taken on the set of classes and where f (c) is the common value
of f on the class c.

Similarly, for g in A(G) we write g = ∑
α∈Ĝ

∑dα

i,j=1 gα,i,jD
(α)
ij , with

gα,i,j = dα〈g,D
(α)
ij 〉.

Thus we get

f ∗ g = ∑
α∈Ĝ

fα

o(G)

dα

dα∑
i,j=1

gα,i,jD
(α)
ij .

This equation clearly shows that the eigenspaces of the endomorphism g �→
f ∗ g = L(f )(g) of A(G) are the Vα and the eigenvalues are

fα

o(G)

dα

(6.4)

with multiplicity d2
α. Note that Z(G) is a stable subspace of L(f ) and that L(f )

can be considered as an endomorphism of Z(G) as well. Indeed, suppose that g is
in Z(G), and write g = ∑

α∈Ĝ
gαχ(α). Then

f ∗ g = ∑
α∈Ĝ

fα

o(G)

dα

gαχ(α).

Thus for L(g) restricted to Z(G), the eigenvectors are the χ(α) and the eigenvalues
obviously are again given by (6.4). Finally, we note that L(f ) is invertible if
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and only if for any α in Ĝ we have fα �= 0. Under these conditions, we have
(L(f ))−1 = L(f (−1)) with

f (−1) = ∑
α∈Ĝ

d2
α

o(G)2fα

χ(α),(6.5)

which satisfies f ∗ f (−1) = δe.

We now specialize these notions to the group Sk, of size o(Sk) = k!.
For k = 3, there are three classes, {π1}, {π2, π3} and {π4, π5, π6}, whose

portraits are given by i(π1) = (3,0,0), i(π2) = (0,0,1) and i(π4) = (1,1,0),

abbreviated as (3), (0,0,1) and (1,1), respectively.
The functions from Sk to C given by π �→ rπ (σ )(h1, h2, . . . , hk) are examples

of elements of A(Sk). Note here an important fact: when h1 = · · · = hk = h the
function π �→ rπ(σ )(h, . . . , h) becomes a central function, that is an element
of Z(Sk). Other important examples of central functions are given by π �→
m(π), pm and (−1)k(−q)m. Since m is a class function, it can also be written
m(π) = m(i) = i1 + · · · + ik where i is the portrait of π. In terms of convolution,
one can observe that Theorem 2 and Theorem 3 can be rewritten

E(r(S)) = pm ∗ r(σ ), r(σ−1) = (−1)k(−q)m ∗ E
(
r(S−1)

)
.

We consider now the set Ĝ of irreducible representations. It is certainly not
possible to describe them all here [see Simon (1996), Chapter VI], but it is
important to say that they are naturally indexed by the set Mk of sequences
m = (m1, . . . ,mk) of integers such that m1 ≥ m2 ≥ · · · ≥ mk ≥ 0 and such that
m1 + · · · + mk = k. For this reason, we choose to denote by χm the character
χ(α) of the corresponding irreducible representation. Since χm is constant on the
classes, we denote its value on π by χm(i) when i is the portrait of π. Theoretical
knowledge of the matrix (6.2) for the group Sk, that is, of

Ck = (
χm(i)

)
m∈Mk,i∈Ik

,(6.6)

is obtained by the introduction of the Schur polynomials with k variables defined
for m in Mk by

sm(z1, . . . , zk) = det(z
mj+k−j

i )1≤i,j≤k

det(zk−j
i )1≤i,j≤k

.(6.7)

The characters are now given by the Frobenius formula [see Simon (1996),
Theorem VI 5.1]: For all i in Ik one has

k∏
j=1

(z
j
1 + · · · + z

j
k )

ij = ∑
m∈Mk

χm(i)sm(z1, . . . , zk).(6.8)

The expression for the dimension dm of the corresponding irreducible representa-
tion has been given in (2.10).
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Let us illustrate these notions for k = 3. We have

M3 = {(3,0,0), (2,1,0), (1,1,1)} = {(3), (2,1), (1,1,1)}.
The Schur functions are

s(3)(z1, z2, z3) = z3
1 + z3

2 + z3
3 + (z1z

2
2 + 5 terms) + z1z2z3,

s(2,1)(z1, z2, z3) = (z1z
2
2 + 5 terms) + 2z1z2z3,

s(1,1,1)(z1, z2, z3) = z1z2z3.

Ways to compute these functions for lower values of k are given in Fulton (1997).
The table of characters of S3, together with the dimensions of the representations,
is

m (3) (1,1,1) (2,1)

dm 1 1 2
χm((3)) 1 1 2
χm((1,1)) 1 −1 0
χm((0,0,1)) 1 1 −1

(6.9)

We can now explain the form of (M(q))−1, as given in (6.1) at the beginning of
this section, by applying the above theory to G = S3 and to the element f of Z(S3)

defined by f ((3)) = q3, f ((1,1)) = −q2 and f ((0,0,1)) = q. Recall that (6.1) is
the representative matrix of L(f )−1. Following (6.3), we write f = ∑

m∈M3
fmχm

with

fm = 1
6

∑
i∈I3

(−1)3(−q)m(i)χm(i)�i

and using the table of characters (6.9), we obtain

(f(3), f(1,1,1), f(2,1)) = (1
6 (q3 − 3q2 + 2q), 1

6 (q3 + 3q2 + 2q), 1
3(q3 − q)

)
.

According to (6.4) the eigenvalues of M(q) are therefore the ones given at the
beginning of this section. We next want to compute f (−1). To do so, we use (6.5).
The vector (f (−1)(i))i∈I3 is obtained with the help of (6.9):

 f (−1)((3))

f (−1)((1,1))

f (−1)((0,0,1))


 =


1 1 2

1 −1 0
1 1 −1





1/36 0 0

0 1/36 0
0 0 4/36







6/(q3 − 3q2 + 2q)

6/(q3 + 3q2 + 2q)

3/(q3 − q)




=



(q2 − 2)/P (q)

q/P (q)

2/P (q)


 ,

with P (q) = q(q2 − 1)(q2 − 4).
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7. Proof of Theorem 4. For r ≤ k, denote by Mk,r the set of sequences
of integers m = (m1, . . . ,mr) such that m1 ≥ m2 ≥ · · · ≥ mr ≥ 0 and such that
m1 + · · · + mr = k.

We now extend the definition of Schur polynomials sm, as given in (6.7) to the
case of r variables and m ∈ Mk,r as follows:

sm(z1, . . . , zr) = sm(z1, . . . , zr,0, . . . ,0)(7.1)

[see Fulton (1997), Section 6.2]. Note that for m ∈ Mk \ Mk,r we have

sm(z1, . . . , zr ,0, . . . ,0) = 0.(7.2)

We are now going to prove part (i) of Theorem 4 by showing the following,
which is an identity between two polynomials with respect to the variable t . For
all i ∈ Ik, we have

t i1+···+ik = ∑
m∈Mk

χm(i)
dm

k!
k∏

j=1

mj∏
i=1

(t + i − j).(7.3)

It is immediate to verify that, for t = −q , (7.3) is equivalent to (2.12). To prove
(7.3), it suffices to fix r ≤ k and let z1 = · · · = zr = 1 and zr+1 = · · · = zk = 0 in
the Frobenius formula (6.8). We are very grateful to William Fulton for giving us
this idea. We thus obtain

ri1+···+ik (1)= ∑
m∈Mk

χm(i)sm(1, . . . ,1,0, . . . ,0)

(2)= ∑
m∈Mk,r

χm(i)sm(1, . . . ,1)

(3)= ∑
m∈Mk,r

χm(i)
∏

1≤i<j≤r

mi − mj + j − i

j − i

(4)= ∑
m∈Mk,r

χm(i)
k∏

j=1

dm

k!
mj∏
i=1

(r + i − j)

(5)= ∑
m∈Mk

χm(i)
dm

k!
k∏

j=1

mj∏
i=1

(r + i − j).

In the above sequence of equalities, (1) comes from (6.8), (2) from (7.1) and (7.2),
(3) from Fulton [(1997), Exercise 6, page 76] completed with formula (7), page 75
and Fulton’s definition of Schur polynomials, page 3. Now, (4) comes from Stanley
(1971), as indicated by Fulton (1997), formula (9), page 55. Finally, (5) comes
from the easily verified fact that

∏mj

i=1(r + i − j) = 0 if m is in Mk \ Mk,r .
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Thus (7.3) is true for t = r = 1,2, . . . , k. Furthermore, it is trivially true for
t = 0. Since both members of (7.3) are polynomials of degree ≤ k, (7.3) is proved,
as well as (2.12).

The proof of part (ii) of Theorem 4 is now immediate. Since q > k, then for
all m in Mk, we have fm �= 0. Thus f (−1) as defined in (2.13) exists. From (6.5),
and with the notation of Section 6 we have f (−1) ∗ (−1)k(−q)m = δe. This proves
(2.14) and Theorem 4.

COMMENT. For a given m in Mk, the polynomial in q equal to

k∏
j=1

mj∏
i=1

(q + j − i)

is called the content polynomial. Many of its properties [but not (7.3)] appear in
Macdonald (1995), in particular on pages 15 and 16.

8. Examples for k = 4 and 5. While in Section 5 we simply rediscovered
results which had been previously obtained by brute force in the case k = 3, in this
section we illustrate the usage of group theory to compute E(rπ(S−1)(h1, . . . , hk))

for k = 4 and 5 [the calculations for k = 6,7,8 and 9 are detailed in Graczyk, Letac
and Massam (2000)]. It involves square matrices of sizes 5 and 7, instead of 24 and
120, respectively. We will use tables of characters which can easily be found in the
literature. [For k = 4 and 5, see, e.g., Simon (1996), pages 83 and 86, James and
Kerber (1981), page 349, or Fulton and Harris (1991), pages 19 and 28. In this
last reference, on page 28, lines W and W ′ should be exchanged.] Let f denote
the element of Z(Sk) defined by f (π) = (−1)k(−q)m(π). For k = 4 the table of
characters is

m (4) (1,1,1,1) (3,1) (2,1,1) (2,2)

χm((4)) 1 1 3 3 2
χm((2,1)) 1 −1 1 −1 0
χm((1,0,1)) 1 1 0 0 −1
χm((0,0,0,1)) 1 −1 −1 1 0
χm((0,2)) 1 1 −1 −1 2

(8.1)

Let C4 be this (5,5) matrix. Recall that the dm are nothing but χm((k)), that is,
the first row of the above matrix. The size �i of classes is given by (2.9). For k = 4
we have

�(4) = 1, �(2,1) = 6, �(1,0,1) = 8, �(0,0,0,1) = 6, �(0,2) = 3
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and the components of f in the basis of characters are given by

(f(4), f(1,1,1,1), f(3,1), f(2,1,1), f(2,2))

= (q4,−q3, q2,−q, q2) 1
24 Diag(1,6,8,6,3)C4

= ( 1
24q(q − 1)(q − 2)(q − 3), 1

24q(q + 1)(q + 2)(q + 3),

1
8q(q2 − 1)(q − 2), 1

8q(q2 − 1)(q + 2), 1
12q2(q2 − 1)

)
.

From this we can compute f (−1), which gives the solution to our inversion
problem by E(rπ(S−1)) = (f (−1) ∗ r(σ−1))π . It is enough to compute the
column vector of the (f −1(i))i∈I4 . By formula (6.5) we get (we use t to indicate
transposition)

(
f (−1)(i)

)
i∈I4

= C4
1

242 Diag(1,1,9,9,4)

×
(

24

q(q − 1)(q − 2)(q − 3)
,

24

q(q + 1)(q + 2)(q + 3)
,

8

q(q2 − 1)(q − 2)
,

8

q(q2 − 1)(q + 2)
,

12

q2(q2 − 1)

)t

= (q4 − 8q2 + 6, q3 − 4q,2q2 − 3,5q, q2 + 6)t

q2(q2 − 1)(q2 − 4)(q2 − 9)
.

For k = 5 the character table is

m (5) (1,1,1,1,1) (4,1) (2,1,1,1) (3,1,1) (3,2) (2,2,1)

χm((5)) 1 1 4 4 6 5 5
χm((3,1)) 1 −1 2 −2 0 1 −1
χm((2,0,1)) 1 1 1 1 0 −1 −1
χm((1,0,0,1)) 1 −1 0 0 0 −1 1
χm((0,0,0,0,1)) 1 1 −1 −1 1 0 0
χm((1,2)) 1 1 0 0 −2 1 1
χm((0,1,1)) 1 −1 −1 1 0 1 −1

(8.2)

Let C5 be this (7,7) matrix of characters. For k = 5, using (2.9) yields the
following sizes for the classes:

�(5) = 1, �(3,1) = 10, �(2,0,1) = 20, �(1,0,0,1) = 30,

�(0,0,0,0,1) = 24, �(1,2) = 15, �(0,1,1) = 20.
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The components of f in the basis of characters are given by

(f(m))m∈M5

= (q5,−q4, q3,−q2, q, q3,−q2) 1
120 Diag(1,10,20,30,24,15,20)C5

= ( 1
120q(q − 1)(q − 2)(q − 3)(q − 4), 1

120q(q + 1)(q + 2)(q + 3)(q + 4),

1
30q(q2 − 1)(q − 2)(q − 3), 1

30q(q2 − 1)(q + 2)(q + 3),

1
20q(q2 − 1)(q2 − 4), 1

24q2(q2 − 1)(q − 2), 1
24q2(q2 − 1)(q + 2)

)
.

The components of f (−1) are(
f (−1)(i)

)
i∈I5

= C5
1

1202 Diag(1,1,16,16,36,25,25)

×
(

120

q(q − 1)(q − 2)(q − 3)(q − 4)
,

120

q(q + 1)(q + 2)(q + 3)(q + 4)
,

30

q(q2 − 1)(q − 2)(q − 3)
,

30

q(q2 − 1)(q + 2)(q + 3)
,

20

q(q2 − 1)(q2 − 4)
,

24

q2(q2 − 1)(q − 2)
,

24

q2(q2 − 1)(q + 2)

)t

= 1

q2(q2 − 1)(q2 − 4)(q2 − 9)(q2 − 16)

× (q5 − 20q3 + 78q, q4 − 14q2 + 24,2q3 − 18q,

5q2 − 24,14q, q3 − 2q,2q2 + 24)t .
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