
Bayesian Analysis (2014) 9, Number 3, pp. 659–684

The Performance of Covariance Selection
Methods That Consider Decomposable Models

Only

A. Marie Fitch ∗ and M. Beatrix Jones † Hélène Massam ‡

Abstract. We consider the behavior of Bayesian procedures that perform model
selection for decomposable Gaussian graphical models when the true model is in
fact non-decomposable. We examine the asymptotic behavior of the posterior
when models are misspecified in this way, and find that the posterior will con-
verge to graphical structures that are minimal triangulations of the true structure.
The marginal log likelihood ratio comparing different minimal triangulations is
stochastically bounded, and appears to remain data dependent regardless of the
sample size. The covariance matrices corresponding to the different minimal tri-
angulations are essentially equivalent, so model averaging is of minimal benefit.
Using simulated data sets and a particular high performing Bayesian method for
fitting decomposable models, feature inclusion stochastic search, we illustrate that
these predictions are borne out in practice. Finally, a comparison is made to pe-
nalized likelihood methods for graphical models, which make no decomposability
restriction. Despite its inability to fit the true model, feature inclusion stochastic
search produces models that are competitive or superior to the penalized likelihood
methods, especially at higher dimensions.

Keywords: undirected Gaussian graphical models, covariance selection, fea-
ture inclusion stochastic search, decomposable, non-decomposable, graphical lasso,
asymptotic behavior

1 Introduction

Gaussian graphical models (Dempster 1972; Lauritzen 1996; Whittaker 2008) are a
powerful tool for both exploring the partial independence structure of multivariate data
and for regularization of the covariance matrix. Let G = (V,E) be an undirected
graph where V = {1, . . . , v} denotes the set of vertices and E the set of edges. A
v-dimensional model for X = (Xj , j ∈ V ) is said to be Markov with respect to G if
Xi is independent of Xj given XV \{i,j} whenever the edge (i, j) does not belong to
E. A graphical Gaussian model is a v-dimensional centered Gaussian model that is
Markov with respect to G. This implies the inverse covariance matrix Ω will have zero
entries corresponding to i, j pairs where the graph has no edge. In high dimensional
problems, especially when the sample size n is similar to, or less than, the number
of variables v, regularization of the covariance matrix leads to improved estimation.
This regularization can be achieved via covariance selection to achieve a sparse inverse
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covariance matrix. Whether we are seeking to understand the dependence structure
of the data, or to provide a better covariance estimate by reducing the number of
parameters, we require models that distinguish relevant edges from irrelevant ones.
This introduces computational challenges, particularly in high-dimensions.

The motivation for this article arises from consideration of the implications of re-
stricting model selection to decomposable models in cases where the true model is
non-decomposable. Bayesian models frequently restrict consideration to decomposable
models for computational convenience (Scott and Carvalho 2008; Armstrong et al. 2009;
Jones et al. 2005). Relatively few authors have studied Bayesian methods without re-
stricting the class of models (Dellaportas et al. 2003; Wong et al. 2003; Moghaddam
et al. 2009; Dobra et al. 2011), and only Moghaddam et al. (2009) present a method
that appears to be scalable to high dimensions.

We begin by examining the asymptotic behaviour of marginal likelihood ratios for
graph structures differing by one edge. We demonstrate that models that include all
true edges will be favored over those that don’t, and that among graphs that contain
all the true edges, those that contain fewer superfluous edges will be favored. Among
graphs with all true edges and equal numbers of unnecessary edges, the log of the
marginal likelihood ratio comparing the models is stochastically bounded. Simulations
suggest the preferred minimal triangulation is data dependent, even at very large sam-
ple size. Because decomposable approximations that contain all the true edges of a
non-decomposable model will necessarily have superfluous edges as well, this final at-
tribute means the behavior of edge inclusion probabilities for the superfluous edges is
unpredictable, and they may not be readily identified as superfluous.

Because of this idiosyncratic behavior, we were also interested in how the perfor-
mance of decomposable Bayesian methods compares to other computationally tractable
methods for inverse covariance estimation that do not impose a decomposability restric-
tion. We selected feature-inclusion stochastic search (FINCS, Scott and Carvalho 2008)
as a representative decomposable restricted method. We make a comparison with lasso
methods recently developed explicitly for the covariance selection problem: graphical
lasso (Friedman et al. 2008b) and adaptive graphical lasso (Fan et al. 2009). Our results
bear out the conclusion in Fan et al. (2009) that adaptive lasso is an improvement over
graphical lasso by most measures. In our comparisons between FINCS and adaptive
graphical lasso, the FINCS top model was always sparser and typically had smaller
Kullback-Leibler divergence from the true model and better predictive performance.

The rest of this article is organized as follows. In Section 2 we review the properties
of decomposable graphs and prove the asymptotic marginal likelihood ratio results. In
Section 3, we detail the algorithms used for the two approaches to model selection and
their comparison. Section 4 presents simulation studies and a real data example, with
the discussion in Section 5.
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2 Asymptotic behavior of marginal likelihood ratios

2.1 Preliminaries

Without loss of generality we assume that our data follows a centered multivariate v-
dimensional Gaussian distribution denoted Nv(0,Σ) where Σ is the covariance matrix.
Let G = (V,E) be an undirected graph with vertex set V and edge set E. Let PG be
the set of positive definite matrices Ω with entries Ωij = 0 whenever (i, j) 6∈ E. The
graphical Gaussian model that is Markov with respect to G is the set

{Nv(0,Σ) : Ω = Σ−1 ∈ PG}.

If the graph G is complete, then there is no zero restriction on the entries of Ω. Given
n sample points from a Nv(0,Σ) distribution, the data matrix is the n× v matrix with
i-th row equal to the i-th data point. The matrix XTX/n is the sample covariance
matrix. Of course, the inverse (XTX/n)−1 does not have to have entry (i, j) equal to
zero whenever (i, j) 6∈ E. Furthermore if v > n , the matrix XTX is not invertible.
The problem of setting some entries of the inverse covariance matrix Ω to zero was first
considered by Dempster (1972) as the covariance selection problem.

The reader is referred to Lauritzen (1996) for the basic theory and definitions sur-
rounding undirected Gaussian graphical models. Here we summarize the basic prop-
erties necessary for our arguments. If A,B and C are disjoint subsets of V and
A ∪B ∪ C = V then C separates A and B if all paths from A to B must pass through
C. The undirected Gaussian graphical models we consider here have the global Markov
property, that is, (Xi, i ∈ A) are independent of (Xj , j ∈ B) conditional on (Xk, k ∈ C),
whenever C separates A and B. We commonly say that A is independent of B given
C. If furthermore C is complete then (A,B,C) is called a decomposition of G. If we
iteratively decompose the graph until no further decompositions can be found, then the
subgraphs so found are the set of prime components. If the prime components are all
complete they are called cliques and the graph is a (fully) decomposable graph. The
existence of a decomposition does not imply that a graph is decomposable: if any of
the prime components found by iterative decomposition are not complete and cannot
be further decomposed then that component is non-decomposable and therefore so is
the whole graph.

Given a graph G = (V,E), we define a superset graph to be one which includes all the
edges of G plus at least one other edge which is not in E. A minimal superset graph of a
non-decomposable graph G includes only the minimal number of extra edges needed to
achieve decomposability (a minimal triangulation). In a similar vein we define a subset
graph to be one which includes no extra edges, and also fails to include at least one of
the edges in E.

Given n sample points from the Nv(0,Ω
−1) distribution, gathered in an n×v sample

matrix X, the joint density of the rows of X is

|Ω|n/2

(2π)nv/2
exp− 1

2n
〈Ω, XTX/n〉
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where 〈a, b〉 denotes the trace of aT b. The Diaconis-Ylvisaker conjugate prior is then of
the form

f(Ω| G, δ,Φ) = h(G, δ,Φ)−1|Ω|(δ−2)/2 exp− 1

2n
〈Ω,Φ〉

where, following the notation in Roverato (2002), h(G, δ,Φ) denotes the normalizing
constant. The distribution with this density is called the hyper-inverse Wishart prior
denoted HIW (G, δ,Φ)

Using the conjugate HIW (G, δ,Φ) prior, the marginal likelihood of a graph G is

p(X|G) = (2π)−nv/2
h(G, δ,Φ)

h(G, δ∗,Φ∗)
(1)

where δ∗ and Φ∗ are the parameters of the posterior and incorporate, respectively, n
and XTX, the sum of squares matrix for the data matrix X. The normalizing constant
h(.) can be obtained in closed form for decomposable graphs only; this fact leads to
their computational advantages.

There are two main prior specification approaches. Jones et al. (2005) use δ = 3
and Φ = τI leading to δ∗ = δ + n, Φ∗ = Φ + XTX; for our practical examples we use
the fractional-Bayes (G-prior) approach of Carvalho and Scott (2009) which specifies
the hyper-inverse Wishart scale parameter of the prior in terms of the sums of squares
matrix:

δ = gn, Φ = gXTX; δ∗ = n, Φ∗ = XTX, (2)

with g taken to be 1/n so that δ = 1.

2.2 Graphs differing by one edge

For the HIW prior, the ratio of prior normalizing constants remains constant as n
changes; for the G-prior it converges to

h(G′, 1,Σ)

h(G, 1,Σ)

thus the asymptotic behavior of the marginal likelihood ratio of G′ to G can be under-
stood by considering:

B =
h(G, δ∗,Φ∗)
h(G′, δ∗,Φ∗)

. (3)

(Note the marginal likelihood ratio is also the Bayes Factor when graph structures are
assumed to be equally likely apriori.)

Suppose that removing the edge (a, b) from decomposable graph G gives decompos-
able graph G′. Armstrong et al. (2009) showed that if removing edge (a, b) maintains
decomposability, it affects a single clique C. Let C1 = C/a and C2 = C/b, S=C/a, b,
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and p ≤ v be the number of vertices in C. Using results from Lauritzen (1996), they
found the following expression for (3):

h(G, δ∗,Φ∗)
h(G′, δ∗,Φ∗)

=

∣∣∣Φ∗
C

2

∣∣∣ δ∗+p−1
2

Γp(
δ∗+p−1

2 )−1
∣∣S

2

∣∣ δ∗+p−3
2 Γp−2( δ

∗+p−3
2 )−1(∣∣∣Φ∗

C1

2

∣∣∣ ∣∣∣Φ∗
C2

2

∣∣∣) δ∗+p−2
2

Γp−1( δ
∗+p−2

2 )−2

. (4)

This simplification is most obvious when C1 and C2 are cliques in G′ with separator S,
but Armstrong et al. (2009) bring together results from Lauritzen (1996) that show the
equality in general, including the case where S = ∅.

Let

Ψ =
Φ∗

n
=
XtX

n
+

Φ

n
.

The asymptotic behavior of Ψ is essentially the behavior of XTX/n. Substituting nΨ
for Φ∗ into (4) and simplifying, B, as defined in (3), becomes

B =
Γ
(
δ∗+p−2

2

)
Γ
(
δ∗+p−1

2

) × 1√
π

(n
2

)a
× |ΨC |

δ∗+p−1
2 |ΨS |

δ∗+p−3
2

|ΨC1
|
δ∗+p−2

2 |ΨC2
|
δ∗+p−2

2

where

a = (p)
δ∗ + p− 1

2
+ (p− 2)

δ∗ + p− 3

2
− 2(p− 1)

δ∗ + p− 2

2
= 1.

Now arrange Ψ so that the entries pertaining to S are listed first and those pertaining
to D = {a, b} are last. The Cholesky decomposition of Ψ = LLT (see Armstrong et al.
2009) is such that

L =

(
LS 0
LDS LD

)
=

(
Ψ

1/2
S 0

ΨDSΨ
−1/2
D|S Ψ

1/2
D|S

)
, LD =

(
laa 0
lba lbb

)
.

The following identities are applied:

|ΨC | =
∣∣ΨD|S

∣∣ |ΨS | where ΨD|S = ΨD −ΨDS(ΨS)−1ΨDS (5)

|ΨC1| =
∣∣Ψa|S

∣∣ |ΨS | where Ψa|S = Ψa −ΨaS(ΨS)−1ΨaS (6)

|ΨC2| =
∣∣Ψb|S

∣∣ |ΨS | where Ψb|S = Ψb −ΨbS(ΨS)−1ΨbS (7)

|ΨD|S | = |LDLD| = l2aal
2
bb

|Ψa|S | = (laa)2

|Ψb|Sq | = (lba)2 + (lbb)
2.
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The Bayes factor can then be written:

B =
n

2
√
π
×

Γ
(
δ∗+p+2

2

)
Γ
(
δ∗+p−1

2

) × laalbb ×
 1

1 +
(
lba
lbb

)2


δ∗+p−2

2

.

We know that

Γ
(
δ∗+p+2

2

)
√

2Γ
(
δ∗+p−1

2

) ≈ 1√
δ∗ + p− 2

.

In addition, XTX/n = (
∑n
i=1X

T
i Xi)/n where Xi is the i-th sample point, and is

therefore governed by the strong law of large numbers; the Cholesky factorization is a
differentiable function so the mean value therorem implies LD will be consistent for the

analogous function Σ
1/2
D|S of Σ. So laa and lbb converge to positive limits and need not

be considered further. We then have

B ≈ n√
n+ δ + p− 2

×

 1

1 +
(
lba
lbb

)2


δ∗+p−2

2

×W

≈
√
n

 1

1 +
(
lba
lbb

)2


δ∗+p−2

2

×W

where W = laalbb
√

2π.

The quantities lba and lbb are key to understanding the asymptotic behavior of B.
We make two observations: first, that the central limit theorem and delta method imply
that these will be asymptotically normal. Second, that ΨD|S is a consistent estimate of
ΣD|S , which has a statistical as well as an algebraic interpretation: it is the covariance
matrix of a, b conditional on the variables in S. Using the global Markov property, we

see that the off-diagonal elements of ΣD|S (and its Cholesky decomposition, Σ
1/2
D|S) will

be zero exactly when S separates a and b in the true graph.

In other words, lba will converge to something non-zero when edge (a, b) is present
in the true graph. When edge (a, b) is absent

Xn =
√
nlab (8)

will converge in distribution (to a central Gaussian). In either case, the diagonal ele-

ments of Σ
1/2
D|S are positive; let µ be the diagonal entry of Σ

1/2
D|S corresponding to lbb.

Then
Yn =

√
n(lbb − µ) (9)
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will also converge in distribution (again to a central Gaussian).

Theorem 1: When Ωab 6= 0, that is, when (a, b) is an edge of G, the marginal
likelihood ratio B comparing G′, the graph without this edge, to G, will converge to
zero.

Proof If Σab|S 6= 0 then
(
lba
lbb

)2

tends to a finite positive limit and 1 +
(
lba
lbb

)2

> 1.

The quantity  1

1 +
(
lba
lbb

)2


δ∗+p−2

2

tends to 0 exponentially. This is much faster than the rate at which
√
n goes to +∞,

so B → 0. �

Lemma 1: Suppose Σab|S = 0 and let Xn, Yn and µ, be as defined in (8) and (9)
above. Then

A(n) =
√
n
lba
lbb

=

√
nXn

Yn + µ
√
n

is bounded in probability.

Proof: see appendix.

Theorem 2: When Ωab = 0, that is, when (a, b) is not an edge of G, the marginal
likelihood ratio B will diverge in favor of G′.

Proof: Ωab = 0 implies that Σab|S = 0. It follows from Lemma 1 that

A(n) =
√
n
lba
lbb

is stochastically bounded, and therefore so is A2(n). Therefore, ∀ε > 0 there exists
A1(ε) and A2(ε) such that, for all n,

A1 ≤ A2(n) ≤ A2

or equivalently
A1

n
≤ A2(n)

n
≤ A2

n

with probability > 1− ε. As n→ +∞ this implies

e−A2 ≤

 1

1 +
(
lba
lbb

)2


δ∗+p−2

2

≤ e−A1 .

The
√
n term dominates and B → +∞. �
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Theorem 3: Suppose G′1 and G′2 are different minimal triangulations of the true
graph, i.e. they each contain the same number of edges, including all edges correspond-
ing to the non zero elements of Ω. The log of the marginal likelihood ratio of G′1 and
G′2 is bounded in probability and therefore the Bayes factor will neither converge to
zero, nor diverge.

Proof: The space of decomposable graphs can be traversed by a series of one-
edge moves. Moving between G′1 and G′2 can be accomplished with some number k
of edge additions and an equal number of edge subtractions; the marginal likelihood
ratio between G′1 and G′2 will be the product of the marginal likelihood ratios for these
moves. There are k factors of

√
n in both numerator and denominator, which cancel

each other. Let R1(n) . . . R2k(n) be the remaining ratio terms. The proof of Theorem
2 implies that the log(Ri(n)) are each stochastically bounded as n → ∞. Therefore,

by Lemma 2 in the appendix,
∑2k
i=1 log(Rk) is stochastically bounded and ∀ε > 0 there

exists B1(ε), B2(ε) such that for n sufficiently large

P

(
B1 ≤

2k∑
i=1

log(Ri(n)) ≤ B2

)
> 1− ε.

Since

exp

(
2k∑
i=1

log(Ri)

)
=

2k∏
i=1

Ri

this implies

P

(
eB1 ≤

2k∏
i=1

Ri ≤ eB2

)
> 1− ε

for finite k. �

Computation of the log-likelihood ratio between the two different triangulations of
the four cycle for large simulated data sets (Figure 1) suggests that the convergence re-
sult in Theorem 3 is actually the strongest possible: the likelihood ratio is stochastically
bounded but is not decreasing in variance, i.e. it is not converging to a constant. We
conjecture that lab/lbb is asymptotically normal, since it is a maximum likelihood esti-

mate (MLE) of Σ
1/2
ab|S/Σ

1/2
bb|S . If this conjecture is true we would expect − log(Ri) to have

a scaled chi-squared distribution with one degree of freedom. Evaluations of − log(R1)
for the simulated data show the scaled chi-squared distribution indeed provides a good
fit.

3 Methods

3.1 Feature-inclusion stochastic search

There are many possible algorithms to explore the posterior of graph space. We use
feature-inclusion stochastic search (FINCS, Scott and Carvalho 2008) as a represen-
tative example. It uses the fractional Bayes formulation in equation (2), and places
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Figure 1: a. Log likelihood ratios between the two possible minimal supersets for the
four cycle. Data were simulated from a multivariate normal with Ω corresponding to a
four cycle, with diagonal values of 20, and non zero off diagonals set to 9. Each box-and-
whisker shows 1000 simulated data sets for each sample size. b. Q-Qplot comparing the
χ2

1 distribution with the observed values of − log(R1), The line is fitted to the data with
n=10,000; it is constrained to have zero intercept. The fitted slope is 0.5023, which
provides an estimate of the scaling factor for the χ2

1 distribution.

(unnormalized) prior weight of

k!(m− k)!

(m+ 1)(m!)

on graphs with k edges out of a possible m = v(v − 1)/2. This is referred to as a
multiplicity correction prior because the more possible graphs there are with k edges,
the more strongly graphs of that size are penalized.

FINCS retains a list of the models with highest posterior probability at any given
time. We have retained the top 1000 models. This truncated list of models is used to
summarize the importance of a particular edge by recording for each model whether
the edge is included (1) or not (0). A weighted average of these ones and zeros is then
produced, where the weights correspond to the posterior probability of each model,
normalized to sum to one over the list of retained models. We refer to these weighted
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averages as the estimated edge inclusion probabilities, although these are obviously
(potentially seriously) biased estimates of the true edge inclusion probabilities. We
show these estimate can, nevertheless, be helpful if the goal is recovery of the true
graph structure.

The FINCS search combines three types of moves through the space of all possible
graphs. Most moves are local moves which exploit the computational advantages of
adding or deleting only one edge at a time. Global moves are generated by starting
with an empty graph and adding edges in proportion to their current estimated inclu-
sion probability. The graph so formed is usually not decomposable so a randomized
median triangulation pair, consisting of a minimal decomposable supergraph (G+) and
a maximal decomposable subgraph (G−), is found. Posterior probabilities are then cal-
culated for both G+ and G− and the one with the highest posterior probability chosen.
Finally, resampling moves revisit graphs in proportion to their posterior probability and
thereby ensure that the global moves do not irretrievably direct the search away from
‘good’ graphs.

We use the C++ implementation of FINCS described in Scott and Carvalho (2008),
with the recommended settings (global moves every 20 iterations, and resampling moves
every 10 iterations). For the v = 4 cases, where there are only 61 possible decomposable
graphs, 100 iterations were used. In all other cases we ran FINCS for 3 million iterations.

There are various ways of extracting estimates and predictions from the list of top
models produced by FINCS. The simplest is to use the best model found and to take
our estimate of Ω to be Ω; the posterior mean conditional on that graph. Note that this
is computable only because we are dealing with a decomposable graph. We also con-
sider the ability of inclusion probabilities to point towards the true (non-decomposable)
graph by identifying the graph obtained by specifying as edges, those with an inclusion
probability of at least 0.8. In this case Ω̂ is the maximum likelihood estimate conditional
on the graph. The R package “glasso” provides a convenient way to compute this by
specifying shrinkage penalty rho = 0, and zero elements fixed to be those associated
with edges with an inclusion probability less than 0.8. Finally, when our main concern

is prediction, Σ̂ = Ω
−1

is used to provide a prediction from a particular graph. A
model averaged prediction was then obtained by calculating a weighted mean of predic-
tions using each of the top 1000 models (where the weight is the posterior probability
normalized over the list of top graphs).

3.2 Graphical lasso and adaptive graphical lasso

In their paper Scott and Carvalho (2008) compare the prediction performance of covari-
ance structures discovered by FINCS to those obtained using lasso regression of each
variable on the remaining variables to obtain a sparse graph in the manner of Mein-
hausen and Bühlmann (2006). The more recent graphical lasso (Friedman et al. 2008b)
applies an L1 penalty directly to the inverse covariance matrix elements with superior
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performance. Thus the objective function is

log det Ω− tr(ΩS)− λ
p∑
i=1

p∑
j=1

|ωij | (10)

where Ω is a positive definite matrix, S is the sample covariance matrix and λ > 0 is
the penalty.

We use the R-package glasso, (R Development Core Team 2009; Friedman et al.
2008a), with the penalty selected by 5-fold cross validation and the sample covariance
estimated with an n divisor to obtain our graphical lasso estimate. The graphical lasso
algorithm as implemented in glasso yields an estimated inverse covariance matrix that
is not perfectly symmetric (at 3-4 significant figures). We used an inverse covariance
matrix made exactly symmetric by using the average of the i, jth and j, ith elements.

Fan et al. (2009) recommend adaptive graphical lasso, a method that typically ob-
tains sparser graphs than the graphical lasso and ameliorates the lasso’s bias towards
zero for non-zero elements. The adaptive graphical lasso is implemented using a penalty
matrix (ζ) rather than the scalar penalty term of graphical lasso. The elements of ζ
are ζi,j = 1/|ω̃i,j |γ , where Ω̃ = (ω̃i,j)1≤i,j≤p is any consistent estimate of Ω and γ > 0.
Thus for adaptive graphical lasso the objective function becomes

log det Ω− tr(ΩS)− λ
p∑
i=1

p∑
j=1

ζi,j |ωij |. (11)

We implemented adaptive graphical lasso using the symmetrized graphical lasso
estimated inverse covariance matrix as Ω̃, γ = 0.5 and selecting the penalty by 5-fold
cross-validation. We again used the R-package glasso, making the estimate exactly
symmetric in the same manner as for the graphical lasso estimate.

3.3 Model comparisons

When comparing models, we consider three criteria: the Kullback-Leibler divergence
from the true model, the precision and recall of edge selection, and the accuracy of
predictions based on the model fit.

The Kullback-Leibler divergence between two density functions f and g is

E[log(f(X)/g(X))]

where the expectation is with respect to f ; see Whittaker (2008, p168) for the formula.
We set f as the true model and g the estimate so that the Kullback-Leibler divergence
(KL) is calculated as

KL =
1

2
tr(ΣΩ̂− Ik)− 1

2
log det(ΣΩ̂) (12)

where Ik is the k by k identity matrix, Σ = Ω−1 is the true covariance matrix and Ω̂
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is the estimated Ω matrix . The Kullback-Leibler divergence is used as a measure that
will treat Ω matrices as similar if their elements (rather than the pattern of strictly
non-zero elements) are similar. Superfluous edges corresponding to very small entries
in Ω will have little influence on KL.

For each fitted model we define precision and recall as:
precision = TE

TE+FE
and recall = TE

TE+F0

where TE is the number of true edges found, FE is the number of edges found that are
not true edges and F0 is the number of true edges that were not found. Thus precision
is the proportion of edges in the model that are true edges and recall is the proportion
of true edges found by the current model. A superset graph as defined in Section 2.1 is
thus a model with a recall of one and precision of less than one. A subset graph has a
precision of one and a recall of less than one.

Prediction accuracy was considered after estimating Σ̂ = Ω
−1

from a training data
set. We then take each test data point and imagine we have observed all variables except
the ith, which we wish to predict. The prediction used is the expectation of variable
i conditional on the observed values of the other variables, which is a function of Σ̂.
This is repeated for all i and all test samples, and the sum of squared errors for these
predictions is our measure of quality.

4 Simulations

4.1 Large sample behavior of FINCS

To examine the sample size at which “large sample” behavior begins, we consider cycles
of size 4, 6, 20, 35, 50 and 70. In each case, the Ω matrix used to simulate the data has
all diagonals equal to 20, with all non-zero off diagonals equal to 9, making all partial
correlations 0.45. We will refer to this pattern as Ωsame. Data was simulated from a
multivariate normal distribution using the Cholesky decomposition of Ω−1

same and the R
function rnorm (R development team, 2009).

For each number of variables, a single simulation was performed at various sample
sizes. Table 1 shows whether or not a particular dimension and sample size combination
resulted in the top graph being a superset graph. This suggests that for moderate to
large partial correlations we see superset graphs selected roughly when n ≥ 12v. It
should be noted that, apart from the v = 4 case, not all superset graphs are visited
by the algorithm. For v ≥ 20 and n = 1000 the top 1000 graphs consist entirely of
minimal supersets. (However, when replicate situations were produced for the analyses
of section (4.3), some v = 70 replicates produced minimal supersets, and some replicates
produced subsets.) As n decreases and becomes close to 12v, in some cases the set of
top graphs becomes a mixture of superset and non-superset graphs.

The edge inclusion probabilities for the four and twenty variable cycles are given
in supplementary Table 2 for sample size 1000 and supplementary Table 3 for sample
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size 50. When the sample size is adequate for the top graph to be a superset graph
(n = 50 or 1000 for v = 4 and n = 1000 for v = 20) there are some large inclusion
probabilities for superfluous edges. When v = 4, edge (2,4) has posterior probability
0.724, while (3,1) has posterior probability 0.351. Either edge can be added to the true
graph to produce a triangulation, but as shown in Figure 1, one can be favored by
chance. (Note that for v = 4 all possible graphs are visited and thus the true posterior
edge probabilities are recaptured–the imbalance cannot be attributed to poor mixing.)

When the top graph is not a superset (n = 50, v = 20) the inclusion probability
for superfluous edges ranges from 0 to 0.3, and the inclusion probability for true edges
ranges from 0.5 to 1. This is one of the few examples we have seen where an appropriate
threshold (0.5) would recapture the true graph. More typically, thresholding the inclu-
sion probabilities suggests the true graph is non-decomposable, but does not recapture
it exactly.

Table 1: Relationship between sample size, number of variables and when the graph
with the highest posterior probability is a superset graph. In all cases the true graph
was a cycle and all true partial correlations were 0.45. Y indicates superset graph, n
indicates not a superset graph. *n = v + 1.

n
v 30 50 70 100 240 1000
4 n Y Y Y Y
6 n Y Y Y
20 n n Y Y
35 n n Y
50 n* n Y
70 n* Y

4.2 Effect of partial correlations

We also examined the impact of the size of the partial correlations on the set of top
models fitted by FINCS, when the sample size was large (n = 1000). For the cycles of
size 4 and 20, we changed the off diagonal elements of Ωsame so the partial correlations
took on the values 0.05, 0.10, 0.15, 0.20, 0.25 and 0.30. We then selected either 10 or
50 top models and observed whether each was a superset graph. Results are shown in
Figures 2 and 3.

The dimension and partial correlations clearly interact in the way they affect the
inferred graphs. With n = 1000, the top four-cycle graphs are superset graphs with
partial correlations as low as 0.15; this does not happen for 20 node graphs until the
partial correlation is 0.3.
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4.3 Comparison with penalized likelihood methods

To empirically compare the FINCS based methods (top graph, inclusion probability
graph) and the two graphical lasso based methods (graphical lasso and adaptive graph-
ical lasso), we used Ωsame with v = 35, 50, 70, simulating multivariate normal data as
above. Each matrix was used to simulate five different datasets of size n = max(50, v+1)
and five of size n = 1000. (The smaller sample size was chosen to allow computation of
the MLE for the complete graph, however the results were not instructive and are not
shown.) For prediction purposes a test dataset (of size n = 50) was also simulated. A
model averaged FINCS estimate was added to the comparison when considering predic-
tion accuracy.

The estimation methods were assessed as described in Section 3.3: the precision
and recall of edge selection (Figure 4), Kullback-Leibler divergence from the true model
(Figure 5) , and the accuracy of predictions based on the model fit (Figure 6).

At large sample size, the recall was usually 1 for all methods, the exception being
three replicates for FINCS and v = 70. The FINCS based methods had consistently
better precision. The precision for a minimal superset for a v node cycle is constrained
to be v/(2v−3) and this is where the best FINCS graph sits in most cases. The inclusion
probability graphs are able to do better, but the level of improvment decreases with
dimension; the top 1000 graphs used to produce these probabilities cover a smaller and
smaller proportion of the minimal supersets. The set of minimal supersets retained also
becomes less diverse with respect to edges included.

At small sample sizes, there is a precision/recall trade off, with the lasso based
techniques having perfect recall but poor precision, and FINCS techniques having very
good precision but imperfect recall. The FINCS top graphs have between 1 and 4 edges
missing and the recall is further reduced for the inclusion probability based graphs.

Figure 5 shows that in each case the best FINCS graph has divergence from the
true model similar to or better than adaptive lasso, while producing a sparser graph.
(Graphical lasso is consistently least sparse and most divergent.) The advantage of
FINCS appears to increase with dimension, especially at small sample size. For large
sample sizes the inclusion probability based FINCS estimates yield slightly lower diver-
gence.

The pattern is similar for prediction errors (Figure 6), although adaptive lasso and
lasso produce very good estimates for some cases at large sample size. Model averaged
predictions are also shown, but make a small improvement, if any, to the overall accuracy
of predictions. All the predictions contributing to the average are very similar, so the
estimate of uncertainty is not much increased by model averaging either (data not
shown). Again, one issue appears to be the similarity of the top 1000 graphs retained,
which are all minimal supersets, and in some cases minimal supersets that also share
the same extraneous edges.
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where the FINCS top graph had lower divergence than the adaptive lasso.
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4.4 Mutual fund data

We explored the behaviour of each prediction method with real data on the 59-node
mutual-funds dataset used in Scott and Carvalho (2008). We split the 86-month sample
into a 60 month training set (the first 60 months) and a 26 month prediction set (the
remaining 26 months) which enabled us to compare predictions using FINCS derived
estimates of the covariance matrix with predictions using lasso derived estimates of the
covariance matrix.

200 250 300 350

0.29

0.30

0.31

edges

S
S

E

graphical lasso

adaptive graphical lasso

top FINCS graph

FINCS model averaged predictions

inclusion probability FINCS graph

Figure 7: Sum of squared errors vs. number of edges for predictions using the mutual-
funds data.

For the mutual funds data, the three FINCS based methods selected similar edges
resulting in a similar sum of squared errors (see Figure 7). In contrast to the simulated
data, the adaptive graphical lasso estimate is similar in sparsity to the models discovered
by FINCS. This could be explained by the (unknown) true structure of the mutual funds
data, which is potentially quite different from a large cycle. However, FINCS has sum
of squared error 5-8% less than the lasso based models, similar to what was seen for
the v = 50, n = 51 simulations. We initially suspected the relatively poor SSE for
the adaptive lasso was due to shrinkage in the elements of Ω̂ relative to the FINCS
estimates. While this may be a partial explanantion a comparison of the actual edges
found by the two methods reveals that although the number of edges is similar, the
actual edges found vary considerably, with only 30% of the edges found being common
to both models.
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5 Discussion

Our examination of the asymptotic behavior of the likelihood ratios suggests that, with
sufficient data, Bayesian methods fitting decomposable graphical models should con-
verge to the set of minimal supersets of the true graph. The log likelihood ratio between
minimal supersets is bounded in probability; simulation suggests the relative posterior
will depend on both the true value of Σ and the data, regardless of the sample size. We
are not aware of other examples of this phenomenon, but it may be worth looking for
in other contexts where the choice of model space forces overparametrization.

The behavior of a particular posterior exploration algorithm, feature inclusion stochas-
tic search, largely reflected these theoretical results. When n = 1000, partial correlations
were large (0.45), and dimension was moderate (20 ≤ v ≤ 50), the top graph (and in
fact the top 1000 graphs) were always minimal superset graphs.

The size of the partial correlations and number of variables interacted when de-
termining what partial correlations were adequate to produce superset graphs; with
n = 1000 and v = 4, superset graphs were obtained with partial correlation 0.15; this
increased to 0.3 when v = 20. These rules of thumb are dependent on the particular
prior choices made: the use of the G-prior for the covariance matrix, and the multi-
plicity correction prior over graphs. They are also likely to be dependent on the fact
we have chosen to study large cycles. These are a worst case scenario in terms of the
number of edges that must be added to create a decomposable graph, but a best case
when considering removing edges to create such a model. Behavior of (e. g.) the lattice
models considered in Dobra et al. 2012 may be quite different.

One might hope that, even when restricting the search to decomposable models, the
edge inclusion probabilities (even the biased edge inclusion probabilities produced by
FINCS) would point to the true non-decomposable model. In our experiments, the graph
based on thresholding the edge-inclusion probabilites is typically non-decomposable,
but this approach rarely recaptures the true graph exactly. The theoretical potential
for some minimal supersets to be heavily favored over others in posterior probability
offers one possible explanation for why some of the ‘extra’ edges have high inclusion
probabilities. This is the only plausible explanation for the v = 4 results, where the small
dimension allows us to be confident we have the true posterior. At higher dimension,
other possible causes are the particulars of the FINCS algorithm: some superfluous
edges may have high inferred posterior probability because we have failed to explore the
alternative triangulations, or because there are so many minimal triangulations that
retaining only the top 1000 graphs will necessarily exclude some. The ‘global move’ in
FINCS is undoubtedly an aid to mixing, but because it generates proposals based on
inclusion probabilities it will not move away from a situation where a superfluous edge
has already attained a high inclusion probability.

The large number of possible triangulations and the limited number of graphs re-
tained also contribute to the limited benefit of model averaging. In cases where FINCS
circulates among superset models, top FINCS graphs all essentially represent the same
model. Requiring retained graphs, or graphs selected by the global move, to exceed a
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minimum Kullback-Leibler divergence from already-retained graphs, could ensure that
truly different models (graphs) are available for model averaging purposes. We leave
exploration and implementation of these ideas to future work.

Despite this, the results for FINCS compared to adaptive lasso were very good. Even
though the FINCS top graph was constrained to include ‘extra’ edges to make the model
decomposable, it had better precision in identifying edges than the adaptive graphical
lasso. Results for KL divergence and SSE were competitive with adaptive lasso at large
sample sizes, with no method universally preferred across the data sets considered;
at low sample sizes, the top FINCS graph did the best, and its advantage increased
with the dimension of the problem considered. Thus, despite the idiosyncracies caused
by restricting to decomposable models, this approach should not be discounted when
something faster than fitting an unrestricted Gaussian graphical model is needed.
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Appendix

Proof of lemma 1: Since |Yn + µ
√
n| ≥ ||Yn| − µ

√
n|,

√
n|Xn|

||Yn| − µ
√
n|
≥
√
n|Xn|

|Yn + µ
√
n|
.

Thus, for any given K > 0,

P

( √
n|Xn|

|Yn + µ
√
n|
> K

)
≤ P

( √
n|Xn|

||Yn| − µ
√
n|
> K

)
.

Yn and Xn converge in distribution and are therefore bounded in probability, i.e.,
∀ε > 0

∃C(ε) > 0 such that P (|Yn| ≥ C(ε)) ≤ ε and

∃B(ε) > 0 such that P (|Xn| ≥ B(ε)) ≤ ε.

So, for all n:

P

( √
n|Xn|

||Yn| − µ
√
n|
> K

)
= P

( √
n|Xn|

||Yn| − µ
√
n|
> K, |Yn| < C

)
+P

( √
n|Xn|

||Yn| − µ
√
n|
> K, |Yn| ≥ C

)
≤ P

( √
n|Xn|

||Yn| − µ
√
n|
> K, |Yn| < C

)
+ ε.

Note that |Yn| < C implies that ||Yn| − µ
√
n| ≤ |C + µ

√
n|. This allows us to address

the case where |Yn| < C. For all n we have:

P
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n|Xn|
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( √
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√
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( √
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√
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.

We note that if we take K = B(ε)/µ we get

P

( √
n|Xn|

|C + µ
√
n|
> K

)
= P

 |Xn|∣∣∣ C√n + µ
∣∣∣ > K


= P

(
|Xn| > B

(
C

µ
√
n

+ 1

))
≤ P (|Xn| > B) ≤ ε.

Combining all these results, we obtain that for all n we have

P

( √
n|Xn|

|Yn + µ
√
n|
> K

)
≤ P

( √
n|Xn|

||Yn| − µ
√
n|
> K

)
≤ 2ε.�
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Lemma 2 If Un, n = 1, . . . ,+∞ and Vn, n = 1, . . . ,+∞ are two sequences of
random variables that are stochastically bounded, then their sum is also stochastically
bounded.

Proof Since Un and Vn are stochastically bounded, for any ε there exists A(ε) such that
for all n, P (|Xn| ≥ A(ε)) ≤ ε and P (|Yn| ≥ A(ε)) ≤ ε. We have the following sequence
of event inclusions:

{2A(ε) ≤ |Un + Vn|} ⊂ {2A(ε) ≤ |Un|+ |Vn|} ⊂ {A(ε) ≤ |Un|} ∪ {A(ε) ≤ |Vn|}.

We therefore have

P (|Un + Vn| ≥ 2A(ε)) ≤ P (|Un| ≥ A(ε)) + P (|Vn| ≥ A(ε)) ≤ 2ε,

which proves the lemma.
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Supplementary tables

Table 2: Inclusion probability matrix for 4-node and 20-node cycle when n=1000 and
ρ̃ij=0.45. Inclusion probabilities associated with true edges are in bold; inclusion
probabilities that are 1.000 and are associated with other edges are in italics; inclusion
probabilities shown as 1 are 1.000, those shown as 0 are 0.000.

∗ 1.000 0.351 1.000
∗ ∗ 1.000 0.724
∗ ∗ ∗ 1.000

∗ 1 0.6 0.0 0.5 0 0 0 0.0 0 0.3 1.0 0.2 0.0 0.0 0 0 0 0.4 1
∗ ∗ 1 0 0.2 0 0 0 0 0 0.0 0.2 0 0 0 0 0 0 0 0
∗ ∗ ∗ 1 1 0 0 0 0 0 0.1 0.5 0 0 0 0 0 0 0 0.0
∗ ∗ ∗ ∗ 1 0 0 0 0 0 0 0.0 0 0 0 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ 1 0.5 0.0 0.4 0.0 1.0 0.6 0.0 0 0 0 0 0 0.0 0.0
∗ ∗ ∗ ∗ ∗ ∗ 1 0.0 0.3 0.0 0.3 0.0 0 0 0 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ 1 0.9 0.1 0.4 0.00 0 0 0 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 1 0.0 0.0 0 0 0 0 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 1 0.9 0.0 0 0 0 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 1 0 0 0 0 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 1 0.0 0.0 0.0 0 0 0 0.0 0.0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 1 0.2 0.0 0 0 0 0.6 0.5
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 1 0.0 0 0 0 0.7 0.3
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 1 0.0 0 0.0 1.0 0.1
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 1 0.3 0.4 1.0 0.0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 1 0.5 0.5 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 1 0.3 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 1 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 1
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
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Table 3: Inclusion probability matrix for 4-node and 20-node cycle when n=1000 and
ρ̃ij=0.45. Inclusion probabilities associated with true edges are in bold; inclusion
probabilities that are 1.000 and are associated with other edges are in italics; Inclusion
probabilities shown as 1 are 1.000, those shown as 0 are 0.000.

∗ 1.000 0.890 0.768
∗ ∗ 0.902 0.597
∗ ∗ ∗ 0.993
∗ ∗ ∗ ∗

∗ 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 0.0 0 0.0 0 0 0.0 0.0 1
∗ ∗ 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 0 0 0 0 0.0 0.0 0.0 0.0
∗ ∗ ∗ 0.8 0.3 0.0 0.0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
∗ ∗ ∗ ∗ 1.0 0.0 0.0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
∗ ∗ ∗ ∗ ∗ 0.9 0.2 0.0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
∗ ∗ ∗ ∗ ∗ ∗ 0.9 0.0 0.0 0.0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
∗ ∗ ∗ ∗ ∗ ∗ ∗ 1 0.0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 1.0 0.0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 1.0 0.0 0 0.0 0 0 0.0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 1.0 0.0 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 1.0 0.0 0.0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0.7 0.3 0.0 0.0 0.0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 1 0.0 0 0.0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 1 0.0 0.0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 1 0.0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0.9
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗


