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Abstract: This paper derives a saddlepoint based approximation for the cumulative distribution function of
the Bartlett–BoxM-statistic that tests the equality of covariance matrices for several samples from graphical
Gaussian models Markov with respect to a decomposable graph G. The proposed saddlepoint-based method
has third-order accuracy (O(n3/2)). Simulation results show that the proposed method has extremely good
coverage properties even when the sample size is small. We apply our method to the well-known Call
Centre data set and show that the covariance matrix is not constant through time. The Canadian Journal of
Statistics 42: 61–77; 2014 © 2014 Statistical Society of Canada
Résumé: Dans cet article, les auteurs obtiennent une approximation en point de selle de la fonction de
répartition de la M-statistique de Bartlett-Box. Cette statistique sert à tester l’égalité des matrices de covari-
ance de plusieurs échantillons issus de modèles graphiques gaussiens markoviens par rapport à un graphe
décomposable G. La méthode en point de selle proposée a une précision du troisième ordre (O(n3/2)). Les
résultats de simulations montrent que la méthode proposée offre de bons taux de couverture, même pour des
échantillons de petite taille. Les auteurs appliquent leur méthode à un jeu de données bien connu à propos
d’un centre d’appels et montrent que la matrice de covariance n’est pas constante dans le temps. La revue
canadienne de statistique 42: 61–77; 2014 © 2014 Société statistique du Canada

1. INTRODUCTION
In this paper, we consider a classical multivariate analysis testing problem in the more general
frameworkof graphicalGaussianmodels, that is, in the casewhere theGaussianmodels considered
are known to include certain given conditional independences represented by a graph. We will
first outline the classical problem and its solutions and then describe the problem when dealing
with graphical Gaussian models.

The classical problem is that of testing the equality of the covariance matrices6i in q samples
from multivariate normal Np(µi,6i) distributions. This test typically arises when performing
a multivariate analysis of variance (abbreviated MANOVA) to determine whether the means
µi, i = 1, . . . , q from theqmultivariate normal samples are equal or not. If the covariancematrices
6i are assumed to be the same, then the standard MANOVA technique can be applied for testing
for the equality of the µi. However if the 6i are not equal, the MANOVA problem becomes
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a Behrens–Fisher-type problem and solutions are approximate and complicated. It is therefore
essential to test the equality of the 6i, i = 1, . . . , q before performing a MANOVA analysis.

Given q samples (Xi1, . . . , Xini ) from the normal N(µi,6i), i = 1, . . . , q distribution, it is
well-known (see Muirhead, 1982, Theorem 8.2.1) that the likelihood ratio test statistic is

3
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3 is based on the maximum likelihood estimates obtained from the normal distributions of the
Xil’s. It was shown by Das Gupta (1969) that the test based on3 is biased while Perlman (1980)
showed that the modified likelihood ratio statistic 3 is unbiased where
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with pi = ni  1, i = 1, . . . , q, p =

Pq
i=1 pi = p  q. The statistic3 is the modified likelihood

ratio statistic suggested by Bartlett (1937) and M = 2 log3 is what, following Booth et al.
(1995), we call the Bartlett–Box M-statistic. The distribution of the likelihood ratio test statistic
cannot be given explicitly and various asymptotic approximations to this distribution have been
proposed. The traditional2 approximation to the distribution of3 is very poor. Booth et al. (1995)
have given accurate approximations to the cumulative distribution function of the Bartlett–Box
M-statistic using the Lugannani & Rice (1980) and Skovgaard (1987) approximations. The reader
is referred to Chapter 11 of Butler (2007) for a review of MANOVA testing using the saddlepoint
approximation.

Our aim is to give a Lugannani–Rice-type approximation to the distribution of M when the
Gaussian models N(0,6i), i = 1, . . . , q are known to include certain given fixed conditional in-
dependences. Such models are indeed very important: nowadays, in many fields such as finance,
marketing or genomics, data are high-dimensional, and often, the number of data points is rel-
atively low compared to the dimension of the data. The sample covariance matrix is no longer
a good estimate of the population covariance matrix and it is essential to reduce the number of
parameters in the model. For Gaussian models, one way to do so is to detect the conditional
independences between variables: the conditional independence of Xi and Xj given the other
variables in the random vectorX 2 Rp is, of course, equivalent to a zero (i, j) entry in the inverse
covariance matrix. Under these conditional independences, the dimension of the parameter space
is then reduced significantly. We can use a graph to represent such conditional independences in
the following way. Let G = (V, E) be an undirected graph where V = {1, . . . , p} is the set of ver-
tices and E is the set of undirected edges. Then we will have that Xi is conditionally independent
of Xj given all the other components of X if the edge (i, j) does not belong to E. Multivari-
ate normal models with conditional independences represented by a graph are called graphical
Gaussian models and the models are said to be Markov with respect to the graph G. Graphical
Gaussian models now belong to the main toolkit of any applied statisticians. They actually date
back more than a century but in their more modern form graphical models were first introduced
by Dempster (1972) under the name of covariance selection models. They are nowadays widely
used in machine learning and statistics. For a classical treatment of graphical Gaussian models,
the reader is referred to Lauritzen (1996). There are numerous other more recent books on the
topic, both in statistics and in machine learning (see, e.g., Koller & Friedman, 2009).

Let K = 61 denote the inverse covariance or precision matrix. As mentioned above,
in Gaussian models, the conditional independence of Xi and Xj given the other variables is
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equivalent to Kij = 0. The parameter space of a graphical Gaussian model, let us say with mean
0, is therefore equal to the cone of positive definite matrices with certain entries fixed and equal
to 0. In Section 2 below, we will study this cone and call it PG .

In recent years, a considerable amount of work has been devoted to the detection, estimation
and testing of such precision matrices (e.g., Dawid & Lauritzen, 1993; Letac & Massam, 2007;
Bickel & Levina, 2008; Rajaratnam,Massam,&Carvalho, 2009, andmany other references given
within these papers). Both Bickel & Levina (2008) and Rajaratnam, Massam, & Carvalho (2009)
study the example of the Call Centre data set, which consists of the number of calls received in a
call centre, every day over the course of several months. This data set is subjected to a standard
transformation to make it normal. Through different methods, both papers strive first to identify
the conditional independences in the variables, that is, the correct graph underlying the model and
to estimate it, assuming the the covariance matrix of the normalized data is constant throughout
the months. It is important to make sure this assumption is correct since any subsequent inference
depends on it. Using the new theoretical results in this paper, we will test the hypothesis that for
this data set, the covariance matrix remains constant throughout the months.Wewill see that there
is strong evidence that this is not so. The class of undirected graphs considered in both papers
is the class of decomposable graphs. Decomposable graphs are undirected graphs such that any
cycle of length greater than or equal to 4 has a chord: their properties will be recalled in Section
2 below. Decomposable graphs have many nice properties and can be used as an approximation
to general undirected graphs in certain algorithms. We will therefore work here with this class of
graphs.

In this paper, we therefore consider the problem of equality of the covariance matrices in q

samples from graphical GaussianmodelsMarkovwith respect to a decomposable graph G. We are
given q independent samples from multivariate Gaussian N(0,6i) distributions that are known
to be Markov with respect to a given decomposable graph G. Without loss of generality, we can
also assume that the Gaussian models are centered. We want to test whether the q covariance
matrices 6i, i = 1, . . . , q of these distributions are equal, that is, we want to test

H0 : 61 = · · · = 6q = 6, (2)

where the 6i are such that the corresponding distributions are Markov with respect to G or
equivalently such that K = 61 belongs to the cone PG of positive definite matrices with fixed
zeros, defined below in Equation (3).

In the particular case where there are no conditional independencies between the variables the
model is said to be saturated. We can still represent it by a graph G where all vertices are linked
to all other vertices. The graph G is then said to be complete and testing problem (Eq. 2) becomes
the classical problem of testing the equality of covariance matrices described above. This paper
is therefore a generalization of Booth et al. (1995) to the case where the Gaussian distributions
N(0,6i), i = 1, . . . , q areMarkovwith respect to the decomposable graph G. Our aim is to derive
first the expression of3 in this case and then an accurate Lugannani–Rice-type approximation to
the distribution of M.

In the saturated case considered by Booth et al. (1995), the likelihood ratio statistic is a
function of themaximum likelihood estimates (abbreviatedmle) of6under the null and alternative
hypothesis. Under the null, this mle is proportional to the sample covariance matrix which follows
the well-knownWishart distribution. Using the properties of theWishart, it is then relatively easy
to compute the moments of the likelihood ratio statistic and from there, an approximation to its
distribution under the null hypothesis.

In the decomposable graphical Gaussian model case, as we shall see in the sequel, the co-
variance parameter of the normal distribution Markov with respect to G is no longer the full
matrix 6 but its projection on the subspace of incomplete matrices with only entries the 6ij such
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Figur e 1: Decomposable graph with 4 cliques C1 = {1, 2, 3}, C2 = {1, 3, 4}, C3 = {1, 4, 5}, and
C4 = {1, 5, 6}.

that (i, j) 2 E. The distribution of the mle of the covariance parameter is no longer the Wishart
distribution but rather the hyper Wishart distribution first identified by Dawid & Lauritzen (1993)
and analysed further by Letac & Massam (2007). We will show that, as in the saturated case, we
can compute the hth moment of the likelihood ratio statistic and subsequently derive an accurate
asymptotic approximation to the distribution of the Bartlett–Box M-statistic using the Lugannani
and Rice (henceforth abbreviated LR) formula.

We will see in Section 3 that in the decomposable case, the determinant |Ui| is replaced by
the product of determinants |(Ui)C1 |

Qk
j=2 |(Ui)Rj ·| following a perfect ordering C1, . . . , Ck of

the cliques of G (see Eq. 4 below for the definition of (Ui)Rj ·), and similarly for |U
·q|. What

will allow us to compute the hth moment of M and the LR approximation are the facts that the
hyper Wishart distribution also belongs to a natural exponential family and that the components
(Ui)C1 , (Ui)Rj ·, j = 2, . . . , k are statistically independent, following Wishart distributions of
smaller dimensions. In the next section, we will recall some notions of graphical models needed
in the sequel of the paper. In Section 3, we will derive the Bartlett–BoxM-statisticM = 2 log3
and the LR approximation to its distribution. In Section 4, we will illustrate through several
examples the accuracy of this approximation and compare its performance with the standard
asymptotic 2 approximation of order O(n1), the Box (1949) approximation (see Muirhead,
1982, Section 8.2.4) of order O(n2) as well as with Monte Carlo simulation. We will see that
the LR approximation is very fast and very accurate even for small sample sizes . It always
does better than the two standard methods for accuracy and is much faster than Monte Carlo
simulation.

2. PRELIMINARIES
Let us first recall some basic notions on decomposable graphs and graphical Gaussian models.
Let G = {V, E} be an undirected graph with vertex set V = {1, . . . , d} and edge set E. Vertices i

and j are said to be neighbours in G if (i, j) 2 E. A clique C is a subset of V such that in G, every
vertex of C is linked to any other vertex of C by an edge. A maximal clique is a clique which
is maximal with respect to inclusion. In the sequel, we will use the term clique for a maximal
clique. In this paper, we assume that G is decomposable. This implies in particular that we can
always find a perfect orderingC1, . . . , Ck of the cliques of G such that, for any j = 2, . . . , k there
exists j0 < j such that Cj \ ([j1

l=1 )Cl  Cj0 . To illustrate the notion of a perfect ordering of the
cliques, let us consider Figure 1. The cliques are Ci, i = 1, 2, 3, 4 as indicated in the caption.
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As one can readily verify, the order C1, C2, C3, C4 is perfect while the order C1, C2, C4, C3
is not: indeed C2 \ C1 = {1, 3}  C1, C4 \ (C1 [ C2) = {1}  C2 but C3 \ (C1 [ C2 [ C4) =

{1, 4, 5}, which cannot be included entirely in anyone of either C1, C2, or C4.
Let X be a random vector in Rd and let us represent the components of X by the vertices of

G. The random vector X is said to follow a normal distribution Markov with respect to G if for
any edge (i, j) not in E, the ith and the jth variables, Xi and Xj respectively, are conditionally
independent given all the other variablesXV\{i,j}. Let6be the covariancematrix of the distribution
of X. It is a classical result (see Lauritzen, 1996, Proposition 5.2) that Xi is independent of Xj

given XV\{i,j} if and only if Kij , the (i, j) entry of K = 61 is equal to 0. A Gaussian model is
therefore Markov with respect to G if and only if K = 61 belongs to the cone PG , defined in
Equation (3) below. Let M be the linear space of symmetric matrices of order d, Md the space
of symmetric matrices of order d and M+

d  M the cone of positive definite (abbreviated > 0)
matrices. We define the cone

PG = {y 2 M+

d |yij = 0, (i, j) /2 E}. (3)

Without loss of generality, we consider centered Gaussian distributions and we define the family
of distributions

NG = {N(0,6), 61
2 PG},

to be theGaussianmodelMarkovwith respect toG. Clearly the number of parameters in thismodel
is equal to d(d + 1)/2  z where z is the number of missing edges in G. Therefore, the number of
free entries in6 is also equal to d(d + 1)/2  z. One can verify that the entries6ij, (i, j) /2 E are
functions of (6ij, (i, j) 2 E) and are therefore not free parameters of theGaussian graphicalmodel.
Let IG be the linear space of symmetric incomplete matrices x with missing entries xij, (i, j) /2 E,
and  : Md 7! IG be the projection of M into IG so that if y 2 Md , then (y) can be thought of
as y with the yij entries discarded whenever (i, j) 62 E. The parameter space of the modelNG can
be described as

QG = {(x)| x 2 M+

d and x1
2 PG}.

Equivalently, we can say that the parameter of a normal distribution in NG is

(6Ci, i = 1, . . . , k),

where 6Ci 2 M+

ci
and we write ci = |Ci| for the cardinality of Ci, 6A for the A  A submatrix

of6 and6A,B for the rectangular A  B submatrix of6. Given a perfect ordering of the cliques
of the decomposable graph G, we define

Hj = [ijCi, Sj = Cj \ Hj1, Rj = Cj \ Hj1, j = 2, . . . , k .

For example in Figure 1, with the order C1, C2, C3, C4 of the cliques, H2 = {1, 2, 3, 4},
while S2 = {1, 3}, R2 = {4}. Similarly, H3 = {1, 2, 3, 4, 5}, S3 = {1, 4}, R3 = {5} and H4 =

{1, 2, 3, 4, 5, 6}, S4 = {1, 5}, R4 = {6}.
The non-free entries of 6 are the 6Rj,Hj1\Sj which are equal to

6Rj,Hj1\Sj = 6Rj,Sj6
1
Sj

6Sj,Hj1\Sj .

In the hypothesis testing problem (Eq. 2), it is therefore understood that even though the hypothesis
is expressed in terms of the full 6i, the likelihood ratio statistic will be expressed in terms of the
parameter (6) or equivalently (6Ci, i = 1, . . . .k).
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In the sequel we shall use the notation

6Rj · = 6Rj  6Rj,Sj6
1
Sj

6Sj,Rj (4)

for the conditional covariance of the jth residual and the notation ni, i = 1, . . . , q for the size
of the sample from the decomposable graphical Gaussian model Nd(0,6i),61

i 2 PG . We also
write

6.q =

qX

i=1

6i, n.q =

qX

i=1

ni, U
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qX

i=1

Ui

and

6.qCj =

qX
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(6i)Cj , 6.qRj =

qX

i=1

(6i)Rj , 6.qSj =

qX

i=1
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6.qRj. = (6.q)(Rj.Sj) = (6.q)Rj  (6.q)(Rj,Sj)(6.q)1
Sj

(6.q)(Sj,Rj),

and use similar notation for the Ui’s. Moreover, we denote the inner product tr(ab0) of a and b in
the space of d  d matrices by ha, bi. This implies that, for a and b symmetric, ha, bi = tr(ab).

In the following section , we first derive the Bartlett–Box M-statistic and obtain its cumulant
generating function. Then a saddlepoint-based approximation to its cumulative distribution is
obtained.

3. THE BARTLETT–BOX M-STATISTIC
We will now derive the Bartlett–Box M-statistic for testing the hypothesis stated in Equation (2).
As in the saturated case, it is distributed like the product of multivariate Beta distributions and
therefore we cannot obtain its density directly. However, we can compute its moments and its
cumulant generating function. This will allow us to compute the Box (1949) approximation and
the LR approximation to its cumulative distribution function.

3.1. The Modified Likelihood Ratio Statistic 3

We consider q samples Xi1 . . . , Xini , i = 1, . . . , q coming respectively from the d-dimensional
Gaussian Nd(0,6i), i = 1, . . . , q distribution with 61

i 2 PG . We want to test Equation (2)
against the alternative Ha which is “not H0.” As mentioned above, in the saturated case, that is
when G is complete, we know from Theorem 8.2.5 of Muirhead (1982) that the test using the
modified likelihood ratio statistic (Eq. 1) is unbiased.

We have a parallel test statistic in the decomposable case. A sketch of its derivation is given
here. Further details can be found in the Supplementary Material. In the decomposable case, as
we recall from Section 2, the covariance parameter is (6) or equivalently (6Cj , j = 1, . . . , k).
From Proposition 5.9 of Lauritzen (1996), the mle of (6i), i = 1, . . . , q, obtained from the
distribution of Xil, under Ha, has a completion ˆ6a

i such that ˆ6a
i and its inverse ˆKi

a
= ( ˆ6a

i )
1

satisfy

ˆ6a
Cj

= (Ui)Cj/ni, j = 1, . . . , k, (5)

ˆKa
i = ni

2

4
kX

j=1

(Ui)1
Cj



kX

j=2

(Ui)1
Sj

3

5 , (6)
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The mle of (6i), i = 1, . . . , q and of (6) follow hyper Wishart distributions on QG with
densities of the general form

WQG (p,6; x) dx =

Qk
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where p = pi, i = 1, . . . , q, p = p
·q respectively, 0ci (p) =

Qci
j=1 0(p  (j  1)/2) and simi-

larly for 0si (p). From these distributions, we can derive the modified likelihood ratio statistic

3 =
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which is going to be the basis of our inference. We are confident that, following an argument
parallel to that given in the saturated case, one can prove that the test using3 in Equation (12) is
unbiased. It is not the purpose of this paper to prove unbiasedness. We next turn our attention to
the various approximations to the distribution of M = 2 log3.

3.2. The Cumulant Generating Function of M = 2 log3
In order to compute the LR approximation to the distribution of M under H0, we first need to
compute the cumulant generating function of M, that is,

KM(t) = logE(eMt),

under H0. Let c = p
dp

·q/2
·q /

Qq
i=1 p

dpi/2
i . We have the following result.
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Theorem 1. LetXil, l = 1, . . . , ni for i = 1, . . . , q be q independent random samples from the
Nd(µi,6i),61

i 2 PG distributions.With the notations given above and under the null hypothesis
H0 : 61

1 = 61
2 = · · · = 61

q 2 PG , the cumulant generating function of M is

K(t) = logE(eMt) = t log c + logE

Qq
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pit Qk
j=2

UiRj.

pit

U.qC1

p.qt Qk
j=2

U.qRj.

p.qt

!
(13)

= t log c + log

0

B@
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0c1 ((pi2pit)/2)
0c1 (pi/2)
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0c1 ((p.q2p.qt)/2)
0c1 (p.q/2)

Qk
j=2

0cjsj ((p.qsj2p.qt)/2)
0cjsj ((p.qsj)/2)

1

CA . (14)

The proof is given in the Appendix.

3.3. Three Approximations to the Cumulative Distribution Function of M

In Section 4, we will compare the accuracy of the LR (1980) approximation ˆFM(m) to the cumu-
lative distribution function F (m) = P(M  m) of M with that of the two most common classical
methods, namely, the standard 2 and Box (1949) approximations. The LR approximation is of
order O(n3/2) and is now a classical result which can be found for example in Section 1.2.1 of
Butler (2007) or Section 9.6 of Young & Smith (2005). For our particular problem, its expression
can be readily derived from Equation (14) using the first and second derivatives of the Gamma
function.

The standard 2 approximation to F (m) is of order O(n1) and is equal to F

M(m) = P(2
f 

m) where f is the drop in number of parameters between the models under H0 and Ha, which in
our case is

f = (q  1)
 kX

j=1

cj(cj + 1)/2 

kX

j=2

sj(sj + 1)/2


. (15)

As for the Box (1949) approximation, it applies to random variables that have moments that can
be expressed as particular ratios of Gamma functions ( see p.304 of Muirhead, 1982). This is the
case for M and the Box (1949) approximation is ˜FM(m) = P(2

f  m) where

f = q

0

@c1(c1  1)
2

+
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j=2
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2
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1
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2
f
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1
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1
p
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·
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"
l  1
2

2
+

l  1
2

+

1
6

#
+

kX

i=2

riX

l=1

"
si + l  1

2

2
+

si + l  1
2

+

1
6

#!
.

Details of the derivation of the parameters for the standard chi-square and Box (1949) approxi-
mations are given in the Supplementary File (17).
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4. NUMERICAL RESULTS FOR THE NULL DISTRIBUTION OF M

In this section, we will illustrate the accuracy of the LR approximation to the cumulative distribu-
tion of M through several examples. In each case, we will compare the three methods discussed
in this paper: the standard 2 approximation, the Box (1949) approximation and the LR approxi-
mation. We will see that, in all cases, the LR approximation is extremely accurate even for small
sample sizes while the other two approximations are completely unsatisfactory unless the sample
sizes are very large.

As discussed in the introduction, our motivating example is the test of equality of covariance
matrices in different months for the Call Centre data set. However, for illustrative purposes, we
will start with a low-dimensional simulation example where the graph has a small number of
cliques. The accuracy of the three approximations is evaluated by simulating data from Normal
distributions with covariances 6i, i = 1, . . . , q under H0 in Equation (2), that is when the 6i’s
are equal, and then computing, for each approximation, the proportion of P values that are less
than a specific significance level . The closer the proportion of P values to , the more accurate
the method is.

The second example concerns the Call Centre data, which have already been analysed in
numerous papers such as Huang et al. (2006), Bickel & Levina (2008), and Rajaratnam, Massam,
& Carvalho (2009). We will use the decomposable graphical model identified by Rajaratnam,
Massam, & Carvalho (2009). The problem is high-dimensional and the corresponding graph has
99 cliques. We divide the data set into twelve months and we test for equality of covariance
matrices in successive months. We will see that the results given by the three methods give very
different P-value which can lead to contradictory conclusions. This, of course, only illustrates
that the three methods yield different results. In order to show accuracy of the LR approximation,
we do a simulation study as described below. The criteria for comparison are the same as in the
first example. Again, the simulation results show that the LR approximation is the most accurate
and the other two do not give satisfactory results.

The programs (available upon request from the authors) for the calculations below are written
in R 2.10.1 and are run on a PC model Dell Optiplex 960 with processor Inter Quad CPU Q9650
3Ghz and a memory of 8GB. Examples of speed will be given below.

4.1. A Simulation Study for a Low-Dimensional Example
Consider the decomposable graph G as given in Figure 1. We consider the graphical Gaussian
model Markov with respect to G and with precision matrix in PG equal to

K = 61
=

0

BBBBBBBB@

2 1 1 1 1 1
1 2 1 0 0 0
1 1 2 1 0 0
1 0 1 2 1 0
1 0 0 1 2 1
1 0 0 0 1 2

1

CCCCCCCCA

We randomly selected q  2 samples of size ni, i = 1, . . . q from this distribution. We per-
form 10,000 iterations. We test H0 : 61 = · · · = 6q. The proportions of P values less than
the significance levels  = 0.025, 0.05, and 0.1, obtained by the standard 2 approximation,
P(2

f  m) = 1  F

M(m), (here f = 15(q  1) in Eq. 15), the Box (1949) approximation,
P(2

f  m) = 1 
˜FM(m), and the LR approximation PLR = 1 

ˆF (m), are recorded in Tables
1 and 2 , for equal sample sizes (ni = n, i = 1, . . . , q) and unequal sample sizes respectively.
The closer the proportion of P values to , the more accurate the method. It is obvious from the
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Tabl e 1: Simulation results: proportion of P values less than  for the test in Section 4.1 with equal
sample size ni = n, i = 1, . . . , q given by the three methods.

q n P(2
f  m) P(2

f  m) PLR

 0.025 0.05 0.10 0.025 0.05 0.10 0.025 0.05 0.10

2 4 0.865 0.910 0.948 0.436 0.539 0.640 0.025 0.052 0.101
5 0.541 0.642 0.744 0.177 0.260 0.375 0.022 0.049 0.098
8 0.185 0.268 0.383 0.067 0.118 0.199 0.025 0.050 0.101
10 0.117 0.192 0.302 0.049 0.088 0.169 0.024 0.047 0.095
15 0.071 0.121 0.202 0.040 0.073 0.136 0.026 0.050 0.100
20 0.053 0.096 0.170 0.032 0.064 0.123 0.023 0.048 0.098
30 0.044 0.081 0.149 0.031 0.062 0.119 0.023 0.051 0.104
50 0.033 0.064 0.125 0.027 0.053 0.111 0.024 0.047 0.100

5 4 0.995 0.998 0.999 0.386 0.492 0.617 0.025 0.049 0.097
5 0.862 0.911 0.950 0.129 0.204 0.315 0.024 0.048 0.098
8 0.345 0.459 0.588 0.048 0.087 0.161 0.023 0.049 0.098
10 0.206 0.302 0.428 0.040 0.071 0.133 0.025 0.049 0.095
15 0.106 0.170 0.277 0.033 0.062 0.115 0.026 0.050 0.098
20 0.074 0.124 0.214 0.031 0.058 0.109 0.026 0.050 0.097
30 0.054 0.100 0.174 0.028 0.057 0.114 0.025 0.051 0.107
50 0.036 0.073 0.135 0.026 0.052 0.102 0.024 0.048 0.097

10 4 1.000 1.000 1.000 0.522 0.625 0.739 0.026 0.048 0.094
5 0.982 0.991 0.996 0.147 0.224 0.339 0.024 0.051 0.103
8 0.550 0.658 0.772 0.047 0.086 0.155 0.024 0.050 0.100
10 0.340 0.448 0.584 0.037 0.069 0.133 0.025 0.049 0.097
15 0.158 0.244 0.370 0.030 0.059 0.116 0.024 0.050 0.099
20 0.110 0.176 0.277 0.031 0.060 0.117 0.027 0.054 0.108
30 0.066 0.111 0.198 0.027 0.056 0.102 0.025 0.053 0.097
50 0.040 0.081 0.151 0.023 0.048 0.101 0.022 0.045 0.098

two tables that the LR approximation gives results very close to , whereas the P values obtained
using the other two approximations are not satisfactory at all unless the sample sizes are large.

Calculations are fast. For n = 50 and q = 10 in Table 1, we have the following times in
seconds

P(2
f  m) P(2

f  m) PLR

74.2 76.1 78.6

4.2. The Call Centre Data
The data set in this example records the number of incoming phone calls during 10-minute intervals
from 7:00 am until midnight to a call Centre of a major financial institution in 2002. Weekends,
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Tabl e 2: Simulation results: proportion of P values less than  for the test in Section 4.1 with unequal
sample sizes ni i = 1, . . . , q given by the three methods.

q ni P(2
f  m) P(2

f  m) PLR

 0.025 0.05 0.10 0.025 0.05 0.10 0.025 0.05 0.10

2 4,5 0.746 0.814 0.879 0.314 0.408 0.531 0.026 0.049 0.100
5,7 0.400 0.501 0.616 0.136 0.210 0.309 0.024 0.051 0.104
8,11 0.131 0.202 0.306 0.057 0.097 0.172 0.026 0.050 0.098
10,14 0.094 0.154 0.247 0.047 0.085 0.154 0.026 0.051 0.101
15,20 0.062 0.106 0.182 0.038 0.071 0.130 0.027 0.052 0.104
20,26 0.049 0.093 0.162 0.034 0.068 0.127 0.026 0.053 0.108
30,37 0.036 0.069 0.131 0.028 0.055 0.110 0.024 0.047 0.096
50,58 0.032 0.061 0.117 0.028 0.053 0.104 0.026 0.048 0.096

5 4,5,6,7,8 0.808 0.871 0.921 0.163 0.245 0.358 0.025 0.050 0.099
5,7,9,11,13 0.410 0.519 0.645 0.070 0.117 0.208 0.026 0.052 0.100
8,11,14,17,20 0.122 0.190 0.298 0.037 0.070 0.130 0.025 0.052 0.101
10,14,18,22,26 0.083 0.143 0.238 0.033 0.062 0.119 0.026 0.048 0.100
15,20,25,30,35 0.048 0.094 0.169 0.026 0.051 0.107 0.022 0.045 0.097
20,26,32,38,44, 0.043 0.079 0.146 0.027 0.054 0.104 0.024 0.051 0.096
30,37,44,51,58 0.037 0.069 0.133 0.027 0.051 0.103 0.025 0.049 0.098
50,58,66,74,82 0.034 0.064 0.123 0.028 0.054 0.106 0.027 0.052 0.103

public holidays, and days with equipment malfunction are excluded, resulting in data for 239
days. The number of calls in each of these intervals is denoted as Nij, i = 1, 2, . . . , 239 and
j = 1, 2, . . . , 102. A standard transformation xij = (Nij + 1/4)1/2 is applied to the raw data
to make it closer to the Normal distribution. We adopt the model chosen by cross-validation in
Rajaratnam, Massam, & Carvalho (2009) which is the banded model with cliques of cardinality
k = 4. This means that if the vertices are labelled 1, 2, 3, . . . , 102. Then the cliques are
C1 = {1, 2, 3, 4}, C2 = {2, 3, 4, 5}, . . . , C99 = {99, 100, 101, 102}. Thus this decomposable
graph has 402 free parameters. We split the data set into 12 approximate months (20 days per
month for the first 11 months and 19 days for the last month) and denote by6i the covariance ma-
trix for the ith month. The P values for testing the null hypotheses6i = 6i+1, i = 1, . . . , 11 and
61 = · · · = 612, obtained from the three methods are recorded in Table 3. Here in Equation (15),
f = 402.

Clearly the three methods yield different P values and for some months can lead to con-
tradictory conclusions. For example, when testing H0 : 64 = 65, the P-value obtained by the
2 approximation gives strong evidence against the null hypothesis, and so is the P-value ob-
tained by the Box (1949) approximation; however, the P-value obtained by the LR approximation
gives no evidence against the null hypothesis. Similar conclusion can be reached when testing
H0 : 65 = 66, and also H0 : 68 = 69. Furthermore, for testing H0 : 69 = 610, the P-value ob-
tained by the 2 approximation gives strong evidence against the null hypothesis, the P-value
obtained by the Box approximation gives weak evidence against the null hypothesis, and the
P-value obtained by the LR approximation gives no evidence against the null hypothesis. We will
therefore next run a Monte Carlo simulation to compare the accuracy of the three methods for
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Tabl e 3: P values for the tests of Section 4.2 given by the three methods.

H0 : P(2
f  m) P(2

f  m) PLR

61 = 62 0.24229 0.72793 0.94989
62 = 63 0.11145 0.54079 0.87536
63 = 64 0.00001 0.00144 0.03199
64 = 65 0.00057 0.03071 0.22028
65 = 66 0.00094 0.04193 0.26332
66 = 67 0.00000 0.00000 0.00005
67 = 68 0.00000 0.00000 0.00039
68 = 69 0.00207 0.06742 0.34252
69 = 610 0.00610 0.12603 0.47427
610 = 611 0.00005 0.00638 0.08451
611 = 612 0 0 0
61 = · · · = 612 0 0 0

this high-dimensional example. The computation times for all rows together in Table 3 are

P(2
f  m) P(2

f  m) PLR

0.46 0.49 0.52

4.3. A High-Dimensional Simulation Study
We consider two covariances matrices 61 and 62 which we take equal to 60, the sample co-
variance matrix calculated from the Call Centre Data. We simulate a sample of size n from a
multivariate normal distribution N102(0,61), and another sample of the same size from an in-
dependent multivariate normal distribution N102(0,62). We perform 10,000 iterations. We first
take the sample size to be n = 20 in order to have a small sample case and then we take n = 239
in order to mimic the Call Centre Data. We test H0 : 61 = 62. Table 4 records the proportion of
P values that are less than  = 0.025, 0.05, and 0.1, obtained using the three methods. The LR
approximation gives results extremely close to  even when the sample size is small. Although
the Box approximation gives results closer to  than the 2 approximation, the results are still
far from  even for the large sample size n = 239. The proportions of P values less than the
significance level  are plotted versus  in Figure 2. The graph shows that the PLR (red) line
almost overlaps the black diagonal line, , which implies that the LR approximation is uniformly
more accurate than the other two methods even when the sample size is small.

Here again, calculations are fast. For n1 = n2 = 20 in Table 4, the times in seconds are

P(2
f  m) P(2

f  m) PLR

n1 = n2 = 20 348.6 349.1 371.8
n1 = n2 = 239 531.1 550.9 575.8
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Tabl e 4: Simulation results: proportion of P values less than  for the test in Section 4.1.

 P(2
f  m) P(2

f  m) PLR

0.025 0.6602 0.2031 0.0292
n = 20 0.05 0.7565 0.2971 0.0575

0.1 0.8459 0.4204 0.1105
0.025 0.0444 0.0365 0.0305

n = 239 0.05 0.0786 0.0664 0.0584
0.1 0.1418 0.1218 0.1068

4.4. Comparison With Monte Carlo Simulation
At this point, the speed and accuracy of our method to compute P values for our testing problem
have been demonstrated. One might think, though, that a similar or better result might be achieved
via Monte Carlo simulation, thus avoiding the analytical work needed to compute the saddlepoint
approximation. We therefore computed the P values of Sections 4.1 and 4.3 through Monte Carlo
simulations as follows. First, we generated one sample from q normalNp(0,6) distributions with
6 as given in Sections 4.1 and 4.3. We treated this sample as our data. From this we calculated

Theoretical P�values 

P�
va

lu
es

0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8

Sample size n= 20

0.2 0.4 0.6 0.8

Sample size n=239

P(cf
2 �m)

P(cf
2 �m�)

PLR

Figur e 2: Plot of P values given by the three methods versus theoretical P values, Section 4.3. [Color
figure can be seen in the online version of this article, available at http://wileyonli nelibrary.com/journal/cjs]
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Tabl e 5: Comparison of accuracy and computational times between our method and Monte Carlo
simulation for the problem in Section 4.1: q = 10, n1 = · · · = n10 = 50.

Method Time in seconds P-value

P(2
f  m0) 0.008 0.007799

P(2
f  m0) 0.009 0.0150384

PLR 0.009 0.0157693
Empirical P-value for N = 104 79 0.0173
Empirical P-value for N = 105 782 0.0159
Empirical P-value for N = 106 7812 0.015995
Empirical P-value for N = 5  106 78343 0.0157714

the observed M-statistic and called it m0. We reported the values P(2
f  m0), P(2

f  m0)
and PLR as well as the time required for each calculation. Second in each case, we generated
N data sets with N = 104, 105, 106, 5  106. Third, for each of the N data sets, we calculated
the observed M-statistic m and computed the empirical P-value, that is, the proportion of the
N observed M-statistics that are larger than or equal to m0. We reported the P values and time
required for each calculation. The results as summarized in the following table for Section 4.1.We
see that to obtain the same 4th decimal place accuracy as in PLR, the computation times are about
108 times longer. For the computations of Section 4.3, the results are even more striking since for
N = 5  106, we still do not have the same second decimal place accuracy as for PLR with much
longer computational times. The detailed results are not reported for the sake of brevity.

5. CONCLUSION
In this paper, we derived the Bartlett–Box M-statistic M = 2 log3 for the equality of covari-
ances of q samples from normal distributions Markov with respect to a decomposable graph G.
Using some recent powerful independence results derived from the hyper Markov properties of
the hyper-Wishart distribution, we subsequently derived the cumulant generating function of M.
This allowed us to give the Lugannani and Rice approximation to its cumulative distribution
function and thus obtain extremely accurate approximation. Our proposed method can be viewed
as an extension of that proposed by Booth et al. (1995) in the sense that when G is complete, the
model is saturated and the LR approximation we obtain yields their approximation with the same
numerical accuracy. Various numerical examples illustrate the extreme accuracy of our method
compared to the two existing methods, in the general decomposable case. The computation times
for the three methods are not significantly different from each other. However, simulation results
show that our proposed method has extremely good coverage properties even when the sample
size is small. Moreover, as demonstrated in Table 5, for the same level of accuracy, our method
is immensely faster than Monte-Carlo simulation.

APPENDIX

Proof of Theorem 1. Since eMt
= 32t , the equality in Equation (13) follows immediately from

the definition of M and Equation (12). We now need to compute the (2t)th moment of 3. For
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convenience, we will use the notation Ai = (Ui) = pi( ˜6a
i ). We know, from Section 2, that

under H0, Ai 2 QG follows the WQG (ai; pi,6) distribution. Let

cpi =

Qk
j=2 0sj (pi/2)|6Sj |

pi/2

Qk
j=1 0cj (pi/2)|6Cj |

pi/2
.

From Equations (7), (10), and (11), it follows that, under H0

E

"
3

c


2t

#
=

qY

i=1

cpi

Z

QG
· · ·

Z

QG

U.qC1

p.qt
kY

j=2

U.qRj.

p.qt
·

Qk
j=1 |(ai)Cj |

pi(12t)/2(cj+1)/2

Qk
j=2 |(ai)Sj |

pi(12t)/2(cj+1)/2

· exp

8
<

:

1
2

8
<

:

kX

j=1

h61
Cj

, (ai)Cj i 

kX

j=2

h61
Sj

, (ai)Sj i

9
=

;

9
=

; 1QG (ai) dai

=

qY

i=1

cpi

cpi(12t)
· E

0

@U.qC1

p.qt
kY

j=2

U.qRj.

p.qt

1

A

where the expectation is with respect to Ai  WQG (pi(1  2t)), i = 1, . . . , q. Since the samples
Xi1, . . . , Xini , i = 1, . . . , q are independent, the Ai, i = 1, . . . , q are also independent. Then,
from Section 4.3 of Letac & Massam (2007), we know that A

·q =

Pq
i=1 Ai  WQG (p·q(1 

2t),6). We also have that U.qC1 = (A
·q)C1 , U.qRj. = (A

·q)Rj · . It follows, from Theorem 4.5 of
Letac & Massam (2007), that

(U.qC1 , U.qRj., j = 2, . . . , k) are mutually independent,

U.qC1  wc1 (pq(1  2t),6),

U.qRj.  wcjsj (p·q(1  2t)  sj,6Rj ·).

This property is crucial to our argument and follows from the so-called weak hyper Markov
property of the hyper Wishart, first identified by Dawid & Lauritzen (1993) and further anal-
ysed in Theorem 4.5 of Letac & Massam (2007). So, since p

·q(1  2t)/2 + 2p
·qt/2 = p

·q/2,
we have

E

"
3

c


2t

#
=

qY

i=1

cpi

cpi(12t)
· E(

U.qC1

p.qt) ·

kY

j=2

E(
U.qRj.

p.qt)

where the expectation is taken with respect to A
·q  WQG (p·q(1  2t),6). It follows that

E

"
3

c


2t

#
=

qY

i=1

Qk
j=2 0sj (pi/2)|6Sj |

pi/2

Qk
j=1 0cj (pi/2)|6Cj |

pi/2
(1)

·

qY

i=1

Qk
j=1 0cj (pi(1  2t)/2)|6Cj |

pi(12t)/2

Qk
j=2 0sj (pi(1  2t)/2)|6Sj |

pi(12t)/2
(2)
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·

qY

i=1

|6C1 |
p

·q/20c1 (p·q/2)
|6C1 |

p
·q(12t)/20c1 (p·q(1  2t)/2)

(3)

·

kY

j=2

|6Rj· |
(p

·qsj)/20cjsj ((p·q  sj)/2)
|6Rj· |

(p
·q(12t)sj)/20cjsj ((p·q(1  2t)  sj)/2)

. (4)

Now, for any integers s, c, p such that s < c < p, we have0c(p)/0s(p) = 0cs(p  s). Applying
this to the various ratios in Equations (1)-(4) above and noticing that the terms in 6 cancel out,
we obtain

E

"
3

c


2t

#
=

Qq
i=1

0c1 ((pi2pit)/2)
0c1 (pi/2)

Qk
j=2

0cjsj ((pisj2pit)/2)
0cjsj ((pisj)/2)

0c1 ((p.q2p.qt)/2)
0c1 (p.q/2)

Qk
j=2

0cjsj ((p.qsj2p.qt)/2)
0cjsj ((p.qsj)/2)

,

which immediately yields Equation (14). j
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