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Summary

We introduce and exemplify an efficient method for direct sampling from

hyper-inverse Wishart distributions. The method relies very naturally on

the use of standard junction-tree representation of graphs, and couples these

with matrix results for inverse Wishart distributions. We describe the the-

ory and resulting computational algorithms for both decomposable and non-

decomposable graphical models. An example drawn from financial time se-

ries demonstrates application in a context where inferences on a structured

covariance model are required. We discuss and investigate questions of scal-

ability of the simulation methods to higher dimensional distributions. The

paper concludes with general comments about the approach, including its

use in connection with existing Markov chain Monte Carlo methods that

deal with uncertainty about the graphical model structure.

Some key words: Gaussian graphical models; Hyper-inverse Wishart; Junction

trees; Portfolio analysis; Posterior simulation.
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1 Introduction

Recent developments in Markov chain Monte Carlo and stochastic search in

graphical models have led to the methodology of Gaussian graphical models

now being effectively routinely applicable in multivariate analysis in prob-

lems of increasing dimension. In both decomposable and non-decomposable

models we now have access to increasingly efficient methods for model specifi-

cation and graphical model structure search, such as described in Dobra et al.

(2004), Giudici & Green (1999), Jones et al. (2005), Atay-Kayis & Massam

(2005) and Wong et al. (2003). Jones et al. (2005) present a detailed overview

and description of existing and novel methods of model determination, and

compare their implementation in a number of examples and simulation stud-

ies. A central element of all these methods is the family of conjugate priors

defined by Dawid & Lauritzen (1993), based on the class of the hyper-Markov

laws known as the hyper-inverse Wishart distributions.

Our interest here is in the efficient simulation of hyper-inverse Wishart

distributions. The recent literature has focussed on graphical model struc-

ture search, with little mention of the key and complementary problem of

efficient inference on the parameters of a structured covariance matrix on

a given graph. One likely reason for this is the difficulties faced in dealing
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with non-decomposable graphical models. This paper addresses this issue

directly, using recent theoretical innovations for non-decomposable graphical

models developed for a different reason by Atay-Kayis & Massam (2005), and

defines a comprehensive and effective method for direct simulation of both

decomposable and non-decomposable hyper-inverse Wishart distributions.

We explicitly do not address the complementary well researched questions of

posterior inference about graphical model structure, but note that our meth-

ods are naturally and easily embeddable within any existing Markov chain

Monte Carlo or stochastic search method.

As we mention above, direct sampling from this class of distributions has

not yet been explicitly addressed at any level of generality. Giudici & Green

(1999) use importance sampling, while Roverato (2000) suggests an alterna-

tive parameterisation, based on the Cholesky decomposition of the precision

matrix, that could provide a way to sample from hyper-inverse Wishart mod-

els on decomposable graphs and might on first glance be viewed as attractive.

However, in large-scale problems a method based on the Cholesky decompo-

sition rapidly becomes unattractive. Furthermore, the challenge of sampling

hyper-inverse Wishart models on non-decomposable graphs remains open. In

application of Gaussian graphical models we often also require inference for
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complicated functions of the parameters of a variance matrix and so an ap-

proach to direct simulation of posteriors under hyper-inverse Wishart models

is highly desirable.

Our strategy naturally uses the junction tree of a graph to decompose the

hyper-inverse Wishart distribution, and so allows us to work sequentially at

the level of prime components. In decomposable models this decomposition

provides access to standard distributional theory for the inverse Wishart dis-

tribution. In the non-decomposable case, standard distributional results no

longer hold and properties of the inverse of hyper-inverse Wishart distribu-

tions are used; see Atay-Kayis & Massam (2005) for theoretical contributions

relevant to our development later.

2 Background

2.1 Basic graph theory

Let G = (V,E) be an undirected graph with vertex set V of p elements

and edge-set E. Vertices a and b are said to be neighbours in G if there is

an edge (a, b) ∈ E. A graph, or subgraph, is complete if all of its vertices

are connected by edges in E. A clique is a complete subgraph that is not

contained within another complete subgraph. Subgraphs (A,B,C) form a
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decomposition of G if V = A∪B, C = A∩B is complete and C separates A

from B, i.e. any path from A to B goes through C. Such a C is said to be a

separator. A sequence of subgraphs that cannot be further decomposed are

the prime components of a graph. A graph is decomposable if every prime

component is complete.

The graph G can be represented by a perfect ordering of its prime com-

ponents and separators. An ordering of components Pi ∈ P and separators

Si ∈ S, (P1, S2, P2, S3, . . . , Pk), is said to be perfect if for every i = 2, 3, . . . , k

the running intersection property (Lauritzen, 1996, page 15) is fulfilled,

meaning that there exists a j < i such that

Si = Pi ∩Hi−1 ⊂ Pj,

where

Hi−1 =
i−1
⋃

j=1

Pj .

A junction tree for G is a tree representation of the prime components.

A tree with a set of vertices equal to the set of prime components of G

is said to be a junction tree if, for any two prime components Pi and Pj

and any P on the unique path between Pi and Pj , Pi ∩ Pj ⊂ P . A set

of vertices shared by two adjacent nodes of the junction tree is complete
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and defines the separator of the two subgraphs induced by the nodes. This

representation plays a critical role in our simulation method, as it does in

graphical modelling generally. Figure 1 shows an example of a graph and its

junction tree. Efficient ways of generating the junction tree for any graph

are discussed in Jones et al. (2005).

2.2 Gaussian graphical models

A Gaussian graphical model, or covariance selection model as named by

Dempster (1972), defines a set of pairwise conditional independence relation-

ships on a p-dimensional normally distributed random quantity X. With a

non singular, positive-definite covariance matrix Σ, giving precision matrix

Ω = Σ−1 with entries ωij , the univariate elements xi and xj of X are condi-

tionally independent if and only if ωij = 0. If G = (V,E) is an undirected

graph representing the joint distribution of X, ωij = 0 for all pairs (i, j) /∈ E.

The canonical parameter Ω belongs to M(G), the set of all positive-definite

symmetric matrices with elements equal to zero for all (i, j) /∈ E.

The density of X factorises as

p(X|Σ, G) =

∏

P∈P p(XP |ΣP )
∏

S∈S p(XS|ΣS)
, (1)

a ratio of products of densities where XP and XS indicate subsets of variables
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in prime components and separators respectively. Given G, this distribution

is defined completely by the component-marginal covariance matrices ΣP ,

subject to the consistency condition that submatrices in the intersecting, i.e.

separating, components are identical, as in Dawid & Lauritzen (1993); that

is, if S = P1 ∩ P2 the elements of ΣS are common in ΣP1
and ΣP2

.

2.3 The hyper-inverse Wishart distribution

In order to implement a conjugate Bayesian analysis of decomposable Gaus-

sian graphical models Dawid & Lauritzen (1993) defined a family of prob-

ability distributions called the hyper-inverse Wishart. If Ω ∈ M(G), the

hyper-inverse Wishart

Σ ∼ HIWG(b,D) (2)

has a degree-of-freedom parameter b and location matrix D. This distribu-

tion is the unique hyper-Markov distribution for Σ with consistent clique-

marginals that are inverse Wishart; to be specific, for each P ∈ P, ΣP ∼

IW(b,DC) with density

p(ΣP |b,DP ) ∝ |ΣP |−(b+2|P |)/2exp
{

−1

2
tr(Σ−1

P DP )
}

, (3)

where DP is the positive-definite symmetric diagonal block of D correspond-

ing to ΣP . The full hyper-inverse Wishart joint density factorises on the
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junction tree, as

p(Σ|b,D) =

∏

P∈P p(ΣP |b,DP )
∏

S∈S p(ΣS|b,DS)
(4)

The key practical extension of the above structure to unrestricted graphs,

including non-decomposable cases when some of the prime components are

incomplete, is the local hyper-inverse Wishart model in which the same basic

form and density decomposition hold, but with modification to the compo-

nent densities on incomplete components, as in Jones et al. (2005). On

a prime component P that is not complete, the component prior density

p(ΣP |b,DC) is obtained as follows: start with the usual inverse Wishart

ΣP ∼ IW(b,DP ) to deduce the Wishart distribution for ΩP = Σ−1
P ; condi-

tion the implied Wishart density by constraints that set off-diagonal elements

of ΩP to zero consistent with G; then deduce the implied density of ΣP by

change of variables. The core representation of equation (4) holds with this

modification.
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3 Simulation Method

3.1 General framework

The sampling strategy is based on the compositional form of the joint distri-

bution over the sequence of subgraphs defined by the junction tree.

Let G = (V,E) be a graph on p nodes and assume a Gaussian graphical

model with Ω = Σ−1 ∈ M(G). Suppose that Σ ∼ HIWG(b,D). By gener-

ating the junction tree of G, the prime components are perfectly ordered as

{P1, S2, P2, . . . , Pk} and the joint density (4) can be written as

p(Σ|b,D) = p(ΣP1
)

k
∏

i=2

p(ΣPi
|ΣSi

). (5)

Equation (5) indicates that, starting from ΣP1
, there is a clear sequence of

conditional distributions to be simulated in order to obtain a draw from

p(Σ|b,D) via composition. We simply need to identify the sequence of con-

ditional distributions and a method to sample them.

3.2 Decomposable models

In decomposable models in which all prime components are complete, i.e.

cliques, conditioning results for inverse-Wishart random variables enable

sampling from each of the elements in the composition directly.
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For a perfect ordering of cliques {C1, C2, . . . , Ck} we use the traditional

notation Ri = Ci\Hi−1 = Ci\Si and write ΣCi
and DCi

in their conformably

partitioned forms

ΣCi
=











ΣSi
ΣSi,Ri

ΣRi,Si
ΣRi











, DCi
=











DSi
DSi,Ri

DRi,Si
DRi











,

where ΣSi,Ri
= Σ′

Ri,Si
. Also, let

ΣRi.Si
= ΣRi

− ΣRi,Si
Σ−1

Si
ΣSi,Ri

,

DRi.Si
= DRi

−DRi,Si
D−1

Si
DSi,Ri

.

The sampling scheme is defined as follows:

(i) sample ΣC1
∼ IW(b,DC1

), which gives values to the submatrix ΣS2
;

(ii) for i = 2, . . . , k, sample

ΣRi.Si
∼ IW(b+ |Ri|, DRi.Si

),

Ui ∼ N(DRi,Si
D−1

Si
,ΣRi.Si

⊗D−1
Si

),

and then directly compute the implied values of ΣRi,Si
= UiΣSi

and

ΣRi
= ΣRi.Si

+ ΣRi,Si
Σ−1

Si
ΣSi,Ri

.

This sequence completes the sampling of all elements in the intersecting block

components of Σ on the junction tree. It remains to fill in the implied values
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of the elements of Σ in the positions where ωij = 0. This is done via the

standard completion operation described in a general context in Massam &

Neher (1998); that is, given the perfect ordering of cliques and separators,

and defining Ai−1 = Hi−1 \ Si for each i, we directly evaluate the required

elements as

ΣRi,Ai−1
= ΣRi,Si

Σ−1
Si

ΣSi,Ai−1
. (6)

3.3 Non-decomposable models

In non-decomposable models we use the same junction tree representation

for compositional sampling, thereby breaking the problem into a series of

conditional simulations. The steps are precisely as described above for prime

components that are complete. The key difference, and computational dif-

ficulties, arise when we visit a prime component of the junction tree that is

not complete; for such a component the standard conditioning results for the

inverse-Wishart, see step (ii) in §3.2, do not apply. The challenge is then to

identify a way of sampling from the appropriate conditional distribution of

the elements of Σ in that component conditional on the set of values of its

preceding separator.

Here we can use and extend the general theory of Atay-Kayis & Massam
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(2005) that expresses a global hyper-inverse Wishart distribution, and defines

a sampler for it, through the Cholesky decomposition of Ω. The key points

here are, first, to use this only in each incomplete prime component within

the overall compositional sampler, thereby allowing for efficient computation

and scaling to large graphical models by exploiting local computation, and,

secondly, to extend the theory to derive samples from the conditional distri-

butions of hyper-inverse Wishart matrices given separating parameters. The

details are as follows.

For any incomplete prime component P, first consider the Cholesky method

for sampling a defined distribution ΣP ∼ HIWP (b,DP ) on that component

alone, following Atay-Kayis & Massam (2005). This method generalises prop-

erties of the Bartlett decomposition to restricted Wishart matrices based on

the fact that for any matrix x = z′z ∈ M(G) the Cholesky decomposition

z is completely defined by its ‘free’ elements zij, (i, j) ∈ E; the remaining

elements zij , (i, j) /∈ E, are functions of the free elements and can be directly

determined by the completion operation defined in Lemma 2 of Atay-Kayis

& Massam (2005). With this generalisation, if x−1 ∼ HIWG(b, I) a sample

of x can be simply obtained by sampling the free elements of z from inde-

pendent normal and chi-squared random variates followed by the evaluation
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of the non-free elements. Now, for an incomplete prime component P with

ΣP ∼ HIWP (b,DP ), write D−1
P = T ′T for the Cholesky decomposition of

the hyper-inverse Wishart parameter matrix. Then, for ΩP = Σ−1
P , write the

Cholesky decomposition as ΩP = Φ′Φ, and define Ψ = ΦT−1. The struc-

ture of the subgraph P implies certain constraints on the elements of Ψ; see

Atay-Kayis & Massam (2005) and Jones et al. (2005). The free elements are

those ψij such that (i, j) is an edge in P, and these can be simulated directly

from independent chi-squared and normal random variates; see below. Then

Ψ will be completed by direct, deterministic evaluation of the remaining,

constrained elements. The details are as follows:

Step 1. Compute the Cholesky decomposition T of D−1
P .

Step 2. Define t〈ij] = tij/tjj.

Step 3. Create the p × p upper triangular matrix A with aii = 0 and, for

i 6= j, aij = 1 if (i, j) is an edge in P, aij = 0 otherwise.

Step 4. Compute νi as the number of 1’s in the ith row of A.

Step 5. Sample the free variables Ψij for edges (i, j) in P : for i = 1, . . . , p,

Ψii =
√
ui, where ui ∼ χ2

b+νi
; for i 6= j and aij = 1, Ψij ∼ N(0, 1).
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For edges (i, j) not in P, compute Ψij as follows:

Ψ1j = −
j−1
∑

k=1

Ψ1kt〈kj],

and, for i > 1,

Ψij =
j−1
∑

k=i

Ψikt〈kj] −
i−1
∑

r=1

(

Ψri +
∑i−1

l=r Ψrlt〈li]
Ψii

)



Ψrj +
j−1
∑

l=r

Ψrlt〈kj]



 .

Step 6. Finally, set Φ = ΨT and compute ΩP = Φ′Φ and then ΣP = Ω−1
P .

The modification we need is that we want to sample from p(ΣP |ΣS),

where S represents the nodes in P that lie in the preceding separator in the

junction tree, so that ΣS is an upper left block of ΣP as in §3.2. The changes

are in fact almost trivial: we simply note that conditioning is equivalent to

fixing the values of the elements in the initial rows of Φ, and therefore of

Ψ, corresponding to the separator S, and skipping the corresponding steps

in the sequence of computations above. Also, in fact, the elements of Φ

corresponding to S can be obtained from the Cholesky decomposition of the

Σ elements in the preceding prime component, so that the corresponding

elements of Ψ can be immediately computed and plugged in step 5 above.

After sampling ΣP , we continue moving down the junction tree, working

with both complete, i.e. cliques, or incomplete prime components until all
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the block components of the full Σ are completed. Then, again as described

in §3.2 for decomposable models, the completion operation comes into play

to fill in the remaining elements of Σ.

3.4 Additional features

A key feature and, for scaling to higher-dimensions, a critical advantage of

the presented method, is that no matrix calculation exceeds the cardinality of

the largest prime component, so that the largest inversion or decomposition

will be of a matrix of such dimension.

Also, it should be evident that inferences about precision matrices, as in

the example in the next section, are easily obtained by simple calculations

based on sampled values of the variance matrices; following Lauritzen (1996,

page 136),

Ω =
∑

P∈P

(

Σ−1
P

)0 −
∑

S∈S

(

Σ−1
S

)0
, (7)

where K0 denotes an extension of the matrix K with zeros so as to give it

the appropriate dimensions.
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4 Example

4.1 A financial portfolio example

The example concerns posterior inference about an 11-dimensional covari-

ance matrix based on the graph G in Fig. 1, linking international currency

exchange rates relative to the U.S. dollar. The graph is consistent with a

series of n = 100 consecutive daily returns from the mid-1990s. The graph

was generated by exploring the posterior distribution over graphical models

using the method of Jones et al. (2005); this particular graph represents a

posterior mode from that search, i.e. the most probable graph discovered in

the Markov chain Monte Carlo sampling over graphs. The graph is econom-

ically interpretable in terms of pre-2000 trading relationships, in the way in

which the structure links economic trading partners and groups. For exam-

ple, the graph groups together the tightly related mainland European Union

currencies into one large clique, C3 in Fig. 1; it ties the U.K. into that clique

as a key trading partner and E.U. member but one whose currency ties to the

U.S. dollar were more substantially influenced by idiosyncratic British-U.S.A.

factors than were by those of the central E.U. countries; and it links New

Zealand and Australia together as a tight clique linked to both the dominant
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E.U. and the U.K. with whom these two economies have preferential trading

relationships.

The graph also happens to be decomposable; hence, under a specified

hyper-inverse Wishart prior Σ ∼ HIWG(b0, D0), the implied posterior is the

decomposable hyper-inverse Wishart form (Σ|n, S) ∼ HIWG(b,D) with b =

b0 + n and D = D0 + S, where n = 100 and S is the sample variance

matrix of the centred and scaled returns. The prior parameters chosen are

relatively non informative, with b = 3 and D = I; see Jones et al. (2005) for

discussion of prior specifications. We make comparisons below with a parallel

analysis on the full graph, under the usual full inverse Wishart distribution

with no conditional independence constraint, thereby ignoring econometric

structuring and also the parsimony that is embodied in G. The difference in

log-marginal likelihood of G to the full graph is 102.6, which indicates that

the current n = 100 observations very strongly support the structured graph

relative to the full graph, even if numbers of parameters and the issue of

parsimony are ignored.

The simulation method was applied to generate 1000 samples from the

posterior hyper-inverse Wishart distribution. Figure 2 displays an image of

the theoretically exact value of E(Ω|n, S) and compares it to the image of
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the Monte Carlo estimate, the latter being just the sample mean of the 1000

simulated precision matrices. The comparison can be investigated in more

detail but the graphs suffice to demonstrate the efficacy of the simulation.

Of central practical importance in financial times series and portfolio

management are functions of variance matrices of residual returns that define

optimal portfolio reallocations in sequential decision making about invest-

ments on items such as exchange rates; see Aguilar & West (2000), Quintana

et al. (2003) and Simpson & Wilkinson (2002), for example. This serves as

a very nice and practically linked example of inference about functions of

variance-covariance parameters and the use of simulation of structured mod-

els of variance matrices. If y represents the returns at the next time-point,

and a is a vector of 11 weights representing proportional allocation of funds

invested in each of the 11 currencies, then the constrained, 1′a = 1, portfolio

minimising standard deviation as a measure of risk is given by the choice

a = Ω1/(1′Ω1), derived in Aguilar & West (2000), for example. The cor-

responding risk level is the standard deviation of a′y, equals to 1/√(1′Ω1).

Hence posterior samples of Ω produce, by direct computation, posterior sam-

ples for the optimal portfolio weights and related minimised risk. Figure 3

summarises these posterior samples from the hyper-inverse Wishart posterior
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on the structured graph G using, as a benchmark comparison, parallel anal-

ysis on the full, unconstrained graph that would typically be used. Figure

3 shows that the levels of variation of the optimal portfolio weights across

currencies are smaller than under the full model, implying a more stable

investment portfolio of a kind that is desirable on economic and business

grounds; see Ledoit & Wolf (2004). The first boxplot of Fig. 4 takes this

further, presenting the posterior distribution for the ratio of standard devi-

ations, i.e risks, of these optimal portfolios under the full graph relative to

that under the graph G. The optimal risk level is inferred as likely to be

smaller, and practically significantly smaller, under the graph G. This force-

fully suggests that a structured, parsimonious graphical model can indeed aid

in reducing uncertainty and variation in portfolio weights, and thereby re-

duce investment risk. Additional examples of graphical structure in portfolio

problems appear in Carvalho & West (2007a,b).

To take this further we combine variance matrix parameter learning with

learning about the graphical model using results from the Markov chain

Monte Carlo search over graphs too. From that search, the 20 most probable

graphs identified appear to have posterior probabilities substantially exceed-

ing those of other discovered graphs, so that uncertainty about the graph
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structure may be approximately represented by these 20 graphs; the graph

G is the posterior modal graph. Under a formal model averaging strategy,

the uncertainty about graphs feeds through to the posterior distribution for

the portfolio weights and variances, and these can be compared with the

portfolios from both the graph G and the full graph already described. The

computations then simply use the hyper-inverse Wishart simulator for the

posteriors conditional on each of the sampled graphs, and average results

with respect to the evaluated posterior probabilities of those graphs. The

results appear in the second and third boxplots of Fig. 4. Evidently, the pro-

jected portfolio risk under this ‘Bayesian model averaged’ strategy exceeds

that under the strategy that conditions on G, apparently naturally induced

by diversity in some aspects of the underlying graphical model structure that

induces more variation in portfolio weights. As with the modal graph G, the

model averaged graph beats the full graph in the sense of having smaller risk

for a fixed target return, as well as representing inferences based on graphs

that fit the data very substantially better than the full graph.
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4.2 Scaling experiments

A range of simulation studies to evaluate scalability has been performed on

standard desktop computing platforms. We have empirically verified that our

hyper-inverse Wishart simulation method is efficient in problems involving

up to one thousand variables. One of the contexts for experimentation we

have used concerns fitting models in several tens and low hundreds of dimen-

sions to gene expression data taken from Jones et al. (2005). That reference

describes various analyses of graphical models under hyper-inverse Wishart

priors in which the sparsity of graphs, in terms of the distribution of numbers

of edges, is controlled by prior distributions of the form Pr(edge in) = k/p,

independently over edges, for some small number k << p. Jones et al. (2005)

develop, and provide software for, stochastic search and Markov chain Monte

Carlo methods to explore posterior distributions over graphs. Using that

method, we fit such models to subsets of gene expression data from a set of

samples on up to 1000 genes, selecting subsets of increasing dimension. For

randomly selected graphs from that posterior analysis, we can then simulate

the implied hyper-inverse Wishart distribution for the variance matrix on

those graphs. This experiment thus provides insight into how the computa-

tional burden of the hyper-inverse Wishart sampler changes with dimension
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on relevant graphs in this real data context.

Evidently, computation time increases with the complexity of the graph,

in terms of the sizes of larger cliques in decomposable graphs and the na-

ture and dimension of larger prime components in non-decomposable cases.

Figure 5 displays some results from this experiment. The analysis described

above was run repeatedly, first with graphs generated under priors in which

edges are included independently with probability 2/p and then, separately,

4/p, to generate graphs with differing complexity, as measured by degrees

of sparsity in terms of numbers of edges. In this series of experiments, and

in others we have evaluated, there is an approximately linear increase in

cpu time for smaller numbers of nodes, and the experiments bear out the

view that the computational burden will increase at linear or less than linear

rates. This is understandable since the number of cliques in larger decom-

posable graphs with similar degrees of sparsity will increase roughly linearly.

We comment on decomposable cases in the following discussion section. For

this evaluation, Table 1 provides some details of the structure of the graphs

simulated for this experiment, in terms of numbers of cliques and edges.
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5 Discussion

Theoretical investigations of the scalability of the method are of interest but

seem very challenging. It will be of particular interest to investigate fur-

ther how different aspects of sparsity in terms of numbers of edges, or size

and ‘density’ of prime components, influence the computational burden with

dimension, as in denser graphs, with larger components, matrix manipula-

tions of higher-order are required. In non-decomposable graphs, the compu-

tational demands are affected by the complexity of the structure of prime

components as well the distribution of component size. Jones et al. (2005)

discuss scalability of computations in trying to estimate marginal likelihoods

for non-decomposable graphs and their experiences are germane here too. In

non-decomposable graphs we encounter substantially diverse structures, i.e.

very large and sparse incomplete components as well as more dense large

incomplete components, and the computational burdens are rather unpre-

dictable; they are, however, predictably more substantial than for decom-

posable graphs in general. Advances here will rely on advances in applied

probability over random graphs to generate insights into structure and com-

plexity of sparse graphs as dimension increases. There are also evident con-

nections with computational questions in other related areas of multivariate
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modelling with Gaussian graphical structures, including directed graphs and

other models, such as in Wilkinson & Yeung (2002), Wilkinson & Yeung

(2004) and Yeung & Wilkinson (2002). A concern for computational scala-

bility seems likely to force an even closer focus on questions of modelling and

prior specification, and especially on the issue of sparsity of graphical struc-

tures as dimension increases, in these contexts as in undirected graphical

models.
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Upper:

Nodes 10 30 50 100 150 1000

Cliques 7 27 47 89 130 1130

Edges 11 31 51 118 204 2020

Lower:

Nodes 10 30 50 100 150 1000

Cliques 2 18 30 70 99 998

Edges 25 89 160 276 572 1170

Table 1: Structure of simulated graphs for cpu benchmark studies. The table

gives the median number of cliques and edges in the 100 generated graphs

for each case, i.e. number of nodes, under the two different sparsity priors,

namely the upper, dotted line, and lower, solid line, examples in Fig. 5.
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Figure 1: Exchange rate example. The currencies are as follows: New

Zealand Dollar (NZD), Australian Dollar (AUS), Japanese Yen (JPY),

Swedish Krone (SEK), British Pound (GBP), Spanish Peseta (ESP), Bel-

gian Franc (BEF), French Franc (FRF), Swiss Franc (CHF), Dutch Guilder

(NLG) and German Mark (DEM).
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Figure 2: Exchange rate example. Grey-scale images of (a) the Markov chain

Monte Carlo estimate of the posterior mean of Ω, and (b) the theoretically

exact posterior mean of Ω.
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Figure 3: Exchange rate example. Boxplot summaries of posterior distribu-

tions of optimal portfolio weights a under G, first plot of each pair, and the

competing full graph.
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Figure 4: Exchange rate example. Posterior distributions for the ratios of

standard deviations of the optimal portfolios under three strategies: the full

graph relative to that under the graph G, the Bayesian model average (MA)

over graphs relative to that on the graph G, and the full graph relative to

the model average (MA).
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Figure 5: Computation time as a function of the size of graph. The graph

shows the increase in cpu time to simulate the hyper-inverse Wishart dis-

tribution 100 times on a decomposable graph, and how the time changes

as a function of the dimension, i.e. number of vertices. Graphs were gener-

ated randomly from posterior distributions over graphs using the Metropolis-

Hastings algorithm described in Jones et al. (2005) and with subsets of data

from the gene expression data used in their example. The figure here has

upper, dotted, and lower, solid, lines represent differing degrees of sparsity:

the upper cases correspond to graphs in which edges occur with prior prob-

ability 2/p, and the lower those with probability 4/p, where p is the number

of vertices. The points and squares represent cpu times for specific simulated

graphs.
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