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Estimation of Symmetry-Constrained
Gaussian Graphical Models: Application

to Clustered Dense Networks

Xin GAO and Hélène MASSAM

We propose a model selection algorithm for high-dimensional clustered data. Our
algorithm combines a classical penalized likelihood method with a composite likeli-
hood approach in the framework of colored graphical Gaussian models. Our method
is designed to identify high-dimensional dense networks with a large number of edges
but sparse edge classes. Its empirical performance is demonstrated through simulation
studies and a network analysis of a gene expression dataset.
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1. INTRODUCTION

The analysis of complex high-dimensional data is one of the main problems of modern
statistics. To identify the dependencies or independencies among continuous variables, the
main parameter of interest is the covariance matrix between these variables. Conditional
independence between variables can be represented by means of a graph where each vertex
represents a variable and where the absence of an edge (i, j ) implies the conditional
independence of the variable Xi and the variable Xj given all the other variables. Gaussian
models with conditional independences between selected pairs of variables represented by
means of a graph are called graphical Gaussian models and have been one of the main
tools of modern statistics for the analysis of high-dimensional data. Since, in the case of
Gaussian data, conditional independence between variables translates into fixed zeros in
the precision (inverse covariance) matrix, graphical Gaussian models allow for a substantial
dimensionality reduction.

In real applications modeled with a graphical Gaussian model, there often exist ad-
ditional symmetry constraints on the parameters. For example, genes belonging to the
same functional or structural group may behave in a similar manner and thus share similar
network properties (Toh and Horimoto 2002). Similarly, in the analysis of social networks
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data, a fundamental problem is to estimate the friendship patterns among individuals, where
individuals belonging to the same geographical region or social group can be considered
as nodes from the same cluster in the network (Ma, Gong, and Bohnert 2007). For such
clustered networks, we may assume that the edges linking the same pair of clusters share
similar properties and that the nodes belonging to the same cluster also have similar prop-
erties. These restrictions will result in restrictions on the model parameters and further
dimensionality reduction.

To express these additional symmetry constraints, Højsgaard and Lauritzen (2008) in-
troduced colored graphical Gaussian models. Two of the models they define are the so-
called RCON and RCOR models which are graphical Gaussian models Markov with
respect to an undirected graph, with additional symmetry constraints on, respectively,
the entries of the concentration matrix � = �−1 and the partial correlation matrix
P = diag(�)−1/2�diag(�)−1/2. Likelihood estimation in both models can be obtained
through Newton iteration or partial maximization (Højsgaard and Lauritzen 2007). How-
ever, at each iterative step, such an algorithm involves the inversion of the concentration
matrix, which can be computationally costly for large matrices.

In this article, we work with colored graphical models but use a penalized likelihood
approach which performs model selection and estimation simultaneously. In practice, either
the clusters are known or we identify them through one of the many known clustering
techniques (see Section 4). Once the clusters of variables are identified, the model selection
is done within the class of colored graphical Gaussian models with given clusters. The
penalized likelihood function will select edges within and between given clusters. We cir-
cumvent the problem of the inversion of large matrices for the computation of the maximum
likelihood estimate by using a composite likelihood function rather than the likelihood
function. Following Besag (1974) and Friedman, Hastie, and Tibshirani (2010), the factors
of the composite likelihood are the likelihoods derived from the conditional distributions of
the variable Xi given all the other variables. These conditional distributions are univariate
Gaussian distributions, where the conditional mean and variance can be formulated as
functions of the other variables and the original parameters. The idea of forming fully
conditional composite likelihood can be viewed as performing all the linear regressions
of one variable on all the other variables in the graphical model. The composition of all
these conditional likelihoods will naturally yield a composite likelihood as a function of
the entries of � and P, the parameters of the RCON and RCOR models, respectively.

In the literature, various penalty functions and algorithms have been proposed to estimate
and select unconstrained Gaussian graphical models. Yuan and Lin (2007) proposed penal-
ized likelihood methods for estimating the concentration matrix with the L1 LASSO penalty.
Banerjee, Ghaoui, and D’Aspremont (2007) proposed a block-wise updating algorithm for
the estimation of the concentration matrix. Further along this line, Friedman, Hastie, and
Tibshirani (2008) proposed the graphical LASSO algorithm through a coordinate-wise up-
dating scheme. Fan, Feng, and Wu (2009) proposed to estimate the concentration matrix
using the adaptive LASSO and the smoothly clipped absolute deviation (SCAD) penalty to
reduce the bias problem. Zhang (2010) proposed the minimax concave penalty (MCP). The
MCP penalty applied in the regression setting and the graphical model setting have been
investigated by Breheny and Huang (2011) and Mazumder, Friedman, and Hastie (2011),
respectively.
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The remainder of this article is organized as follows. In Section 2, we recall some basic
properties of colored graphical Gaussian models and composite likelihood. In Sections 3.1
and 3.2, we derive the penalized likelihood function for the RCON and RCOR models
and present the coordinate descent algorithm with the LASSO, SCAD, and MCP penalties
to perform the estimation. In Section 3.3, we investigate the asymptotic behavior of the
penalized composite likelihood estimate and establish its ORACLE property. In Section 4,
we discuss ways of determining the color classes if they are not known a priori. In Section 5,
simulation studies are presented to demonstrate the empirical performance of the method.
In Section 6, we apply our method to a clustered microarray dataset to model the network
linking individual genes.

2. PRELIMINARIES

2.1 RCON AND RCOR GRAPHICAL GAUSSIAN MODELS

The reader is referred to Højsgaard and Lauritzen (2008) for a detailed description
of colored graphical Gaussian models. We will recall here their main features. Let G =
(V,E) be an undirected graph, where V = {1, 2, . . . , p} is the set of vertices and E the set
of edges. If X = (X1, . . . , Xp)t follows the Np(0, �) distribution for some positive definite
covariance matrix �, it is a well-known result that Xi is independent of Xj given all the
other variables XV \{i,j} if and only if θij , the ij th entry of �, is 0 where � = �−1 (Lauritzen
1996) . For a given graph G, we therefore consider the cone PG of positive definite matrices
with zero ij th entry whenever the edge (i, j ) does not belong to G. The graphical Gaussian
model Markov with respect to G is the model

{Np(0, �), � = �−1 ∈ PG}. (1)

We note that, here and in the remainder of the article, we take μ to be equal to 0 without
any loss of generality. If μ �= 0, we simply center our data. Given two variables Xi and
Xj , let θ(ij ) be the 2 × 2 matrix (θlk)l = i,j, k = i,j . The conditional covariance matrix of
(Xi,Xj )t given XV \{i,j} is

�(ij )·V \{i,j} = 1

det(θ(ij ))

(
θjj −θij

−θji θii

)
,

and similarly, the conditional covariance σ ii of Xi given all the other variables is

σ ii = �ii·V \{i} = [(�−1)ii]
−1 = 1

θii

. (2)

The (p − 1)-dimensional vector �jj�
−1
j,V \{j} of regression coefficients βij of Xj on the

other variables is equal to

(βij , i ∈ V \ {j}) = −θV \{j},j θ−1
jj . (3)

It follows that, for model (1), if (i, j ) �∈ E, βij = 0. Later in the article, we will use the
convenient notation Bj for the p-dimensional vector

Bj = (β1j , . . . , βj−1,j , 0, βj+1,j , . . . , βpj ) (4)
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of regression coefficients of Xj on Xi, i = 1, . . . , j − 1, j + 1, . . . , p augmented by
the entry 0 in the jth spot. Also for model (1), the conditional correlation coefficient
of Xj and Xk given XV \{j,k}, that is, the partial correlation coefficient between Xj and
Xk , is ρjk = − θjk√

θjj θkk

and, therefore, the partial correlation matrix P = (ρij )1 ≤ i,j ≤p =
diag(�)−1/2� diag(�)−1/2 and the concentration matrix � have the same zeros.

Now, let V = {V1, . . . , Vk} form a partition of V = {1, . . . , p} and let E =
{E1, . . . , El} form a partition of the edge set E. If all the vertices belonging to an el-
ement Vi of V have the same color, we say that V = {V1, . . . , Vk} is a coloring of V .
Similarly if all the edges belonging to an element Ei of E have the same color, we say that
E is a coloring of the edges of G and that (V, E) is a colored graph.

Consider model (1). If, for � = �−1 ∈ PG , we impose the further restrictions that

1. if m is a vertex class in V , then for all i ∈ m, θii are equal;

2. and, if s is an edge class in E , then for all (i, j ) ∈ s, the entries θij of the concentration
matrix are equal,

then model (1) becomes a colored graphical Gaussian model called the RCON(V, E) model.
We use the notation

θ = (θE1 , . . . , θEl
, θV1 , . . . , θVk

) (5)

for the vector of free parameters in �.
Let us now define an RCOR model. Given V and E as above, if a model of the type (1)

satisfies the two additional properties that

1. if m ∈ V , then for all i ∈ m, θii are equal;

2. and, if s ∈ E , then for all (i, j ) ∈ s, the entries ρij of the partial correlation matrix
are equal,

then this model becomes the RCOR(V, E) model. We use the notation

ρ = (ρE1 , . . . , ρEl
) (6)

for the vector of free correlation parameters in P. We note that an RCON model forms a
natural exponential family while an RCOR model forms a curved exponential family. In
the models defined above, the color for the vertices and the edges are not related to each
other. But we could impose further constraints linking those two colorings. For example,
we could further assume that different edges linking two vertices belonging to the same
two vertex color classes have to belong to the same edge color class. Such constraints only
affect the partitioning of the vertices and edges, but do not affect the estimation.

2.2 COMPOSITE LIKELIHOOD

The estimation of Gaussian graphical model has been mainly based on the likelihood
method. An alternative method of estimation based on composite likelihood (henceforth
abbreviated CL) has drawn much attention in recent years (Cox and Reid 2004; Varin 2008).
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It has been demonstrated to possess good theoretical properties, such as consistency for
the parameter estimation, and can be used to establish hypothesis testing procedures. Let
Y = (Y1, . . . , Yp)T be a random vector in Rp. Let {f (y; θ ), y ∈ Y, θ ∈ T } be a parametric
model, with Y ⊆ Rp, T ⊆ Rq, p ≥ 1, and q ≥ 1. Let {Ai , i = 1, . . . , m} be a set of
events with associated likelihood functions Li(θ ; y) = f (y ∈ Ai ; θ ). Then, according to
Varin (2008), see also Lindsay (1988), a composite likelihood (CL) is the weighted product
of the likelihoods corresponding to each event,

Lc(θ ; y) =
m∏

i=1

f (y ∈ Ai ; θ )wi ,

where wi, i = 1, . . . , m are positive weights. As the composite score function
∂ log Lc(θ ; y)/∂θ is a linear combination of several likelihood score functions, its expec-
tation is equal to zero under the usual regularity conditions (Varin 2008). Even though the
composite likelihood is not a real likelihood, the maximum composite likelihood estimate
is still consistent for the true parameter. The asymptotic covariance matrix of the maxi-
mum composite likelihood estimator takes the form of the inverse of the Godambe infor-
mation: H (θ )T V (θ )−1H (θ ), where H (θ ) = E{−∑m

i=1 ∂2 log f (y ∈ Ai ; θ )/∂θ∂θT } and
V (θ ) = var{∑m

i=1 ∂ log f (y ∈ Ai ; θ )/∂θ} are the sensitivity matrix and the variability ma-
trix, respectively. Readers are referred to Cox and Reid (2004) and Varin (2008) for a more
detailed discussion on the asymptotic behavior of the maximum composite likelihood esti-
mator. Gaussian graphical models with added colored classes constraints on the parameters
are not closed exponential families in the sense of Mardia et al. (2009). So the maximum
composite likelihood estimates for the RCOR and RCON models suffer a slight loss of
efficiency compared to the maximum likelihood estimates. We recall, however, that in terms
of computational complexity, composite likelihood estimation does not require large matrix
inversions and will make the computations quite fast.

3. COMPOSITE LIKELIHOOD ESTIMATION

3.1 THE RCON MODEL

Let X = (X1, . . . , Xp) be a random vector with distribution following the
RCON(V, E) model. Following (2), (3), and (4), we have that the conditional distribu-
tion of Xj given XV \{j} can be written as

f (xj ; �, xV \{j}) = θ
1/2
jj√
2π

exp −1

2
θjj

⎛⎝xj + θ−1
jj

⎛⎝ p∑
i=1,i �=j

θjixi

⎞⎠⎞⎠2

. (7)

Let x(1), . . . , x(n) be a sample from this RCON model with x(i) = (xi1, xi2, . . . , xip)T and
let X be the n × p data matrix. The composite likelihood function obtained from the
conditional distribution of Xj given XV \{j}, j = 1, . . . , p is

Lc(�) =
n∏

i=1

p∏
j=1

f (xij ; �, x
(i)
V \{j}). (8)



914 X. GAO AND H. MASSAM

The composite log-likelihood can also be written in matrix form as


c(�) = 1

2

p∑
j=1

(
n log θjj − θjj ||X(j ) − XBj ||22

)
(9)

up to a constant, where X(j ) = (x1j , x2j , . . . , xnj )T is the jth column of the n × p data
matrix and Bj is a p-vector with elements βij except for a zero at the jth position (see (4)).

From (7) above, we see that each f (xij ; �, x
(i)
V \{j}), i = 1, . . . , n depends only on the

vector θj of free parameters in the jth row of �. Since 
c(�) is a function of just the vector
θ of free parameters, we will simply write 
c(�) = 
c(θ ) and we, therefore, have that

E

(−∂2
c(θ )

∂θ2

)
=

n∑
i=1

p∑
j=1

E

⎛⎝E

⎛⎝−∂2l
(
xij |x(i)

V \{j}
)

∂θ2
j

|x(i)
V \{j}

⎞⎠⎞⎠

=
n∑

i=1

p∑
j=1

E

⎛⎝var

⎛⎝∂l
(
xij |x(i)

V \{j}
)

∂θj

|x(i)
V \{j}

⎞⎠⎞⎠
is a positive definite matrix. Thus −
c(θ ) is asymptotically convex around the true null
value θ0. We propose to estimate the sparse RCON model by solving the minimization
problem:

min
θEs ,1≤s≤l,θVm ,1≤m≤k

Q(θ ) = −
c(θ ) + n
∑
s∈E

pλ(|θEs
|),

where pλ(.) is a penalty function, λ is the penalty parameter and the penalty is on the
off-diagonal parameters θEs

, s = 1, . . . , l (there is no sparsity for the reciprocal conditional
variances θii). The contribution of the composite likelihood is of the order of n, so the
penalty term has to be of the order of n to compete. Such a penalization scheme will
encourage the sparsity of edge classes but not the sparsity of the total number of edges.

There are several penalty functions available. The LASSO penalty (Tibshirani 1996),
pλ(|θ |) = λ|θ |, increases linearly with the size of its argument. It is convex and the nu-
merical algorithm is stable. It is a classical tool and it is widely used in many applications.
However, the LASSO estimates may suffer from bias for large parameters. Furthermore, the
LASSO estimator may not be selection consistent unless a strong irrepresentable condition
is satisfied. To avoid such problems, the smoothly clipped absolute deviation (SCAD, Fan
and Li 2001) and the minimax concave penalty (MCP, Zhang 2010) have been proposed.

• The SCAD penalty function is symmetric about 0 and for any real θ > 0 is equal to

pλ(θ ) =

⎧⎪⎨⎪⎩
λθ, if θ ≤ λ;

1
(a−1)

(
aλθ − θ2

2

)
+ C1, if λ < θ ≤ aλ;

C2, if aλ < θ ,

(10)

where a is some constant, usually set to 3.7, C1 = −1
2(a−1)λ

2, and C2 = λ2(a+1)
2 .

• The MCP penalty gradually relaxes the penalization rate until, when θ > γλ, the rate
of penalization decreases to zero. The penalty function is symmetric about 0, and for
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any real θ > 0, it takes the form

pλ,γ (θ ) =
{

λθ − θ2

2γ
, if θ ≤ λγ ;

1
2γ λ2, if θ > λγ

(11)

for λ ≥ 0, and γ > 1.

In the literature, it has been shown that both SCAD and MCP regression methods have the
so-called oracle property, implying that the corresponding penalized estimator is consistent
and as efficient as the maximum likelihood estimate obtained under the true subset model.
To numerically minimize Q(θ ), we can employ the coordinate descent algorithm, which
proceeds by updating each parameter of the objective function one at a time (Tseng 2001;
Friedman et al. 2007). The use of the LASSO, SCAD, and MCP penalty with coordinate
descent algorithm and the convergence properties of the corresponding estimators have
been extensively investigated in Breheny and Huang (2011) and Mazumder, Friedman, and
Hastie (2011).

• We first consider the LASSO penalty. Differentiating Q(θ ), we obtain the first deriva-
tive of the objective function with respect to the edge class parameter θEs

(see the
online supplementary file for its derivation). This provides the update for θEs:

θ̂Es
=

S
(
− 1

n

∑p

j=1

( ∑
k;(k,j )∈Es

XT
(j )X(k) + θ−1

jj

∑
k;(k,j )∈Es

∑
l;(l,j )∈Ec

s
XT

(k)X(l)θlj

)
, λ

)
1
n

(∑p

j=1

∑
k;(k,j )∈Es

∑
l;(l,j )∈Es

θ−1
jj XT

(k)X(l)

) ,

where S(z, λ) = sign (z)(|z| − λ)+ is the soft-thresholding operator, C = 1
n
XT X de-

notes the sample covariance matrix, and Ec
s = {(k, j )|k �= j and (k, j ) /∈ Es}.

Given the color edge group Es, define the edge adjacency matrix T Es , with T
Es

kj = 1, if

(k, j ) ∈ Es, and T
Es

kj = 0 otherwise. The update for θEs
can be simplified as follows:

θ̂Es
=

S
(
−

(
tr(T Es C) + tr(T Es (T Ec

s 	 B)C)
)
, λ

)
tr(T Es (T Es �)C)

, (12)

where 	 denotes the component-wise product, B is the p × p matrix with columns
Bj , j = 1, . . . , p, and � denotes the p × p diagonal matrix with entries θ−1

jj .

• If the SCAD penalty is used, we use the method of one-step local linear approximation
(Zou and Li 2008). The size of the penalty is equal to the first derivative of the penalty
function evaluated at an initial consistent estimate θ∗

Es
. We, therefore, modify the

LASSO updating Equation (12) into the following SCAD updating equation:

θ̂Es
= S

(−tr(T Es C) + tr(T Es (T Ec
s 	 B)C), p′

λ(|θ∗
Es

|))
tr(T Es (T Es �)C)

, (13)

where p′
λ denotes the first derivative of the SCAD penalty function.

• If the MCP penalty is used, we can apply the univariate thresholding rule proposed in
Breheny and Huang (2011) and Mazumder, Friedman, and Hastie (2011) and obtain
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the updating equation:

θ̂Es
=

{
S(u, λ)/

(
v − 1

γ

)
, if |u| ≤ vγ λ,

u/v, if |u| > vγλ,
(14)

with u = −tr(T Es C) + tr(T Es (T Ec
s 	 B)C), and v = tr(T Es (T Es �)C).

Now, let us differentiate Q(θ ) with respect to θVm
, the common values of θjj for the vertex

class Vm. Using (9) again and recalling that −XBj = ∑
k �=j θkj θ

−1
jj X(k), the likelihood

equation for θVm
is

∂Q(θ )

∂θVm

= n

2

⎡⎣⎛⎝∑
j∈Vm

Cjj

⎞⎠ − |Vm|θ−1
Vm

−
⎛⎝∑

j∈Vm

qj

⎞⎠ θ−2
Vm

⎤⎦ = 0, (15)

where qj = ∑
k �=j

∑
l �=j θkj θljCkl = θ2

jjB
t
jX

tXBj/n and |Vm| is the cardinality of Vm.
Therefore, the solution of this likelihood equation is

θ̂−1
Vm

=
−|Vm| +

√
|Vm|2 + 4(

∑
j∈Vm

qj )(
∑

j∈Vm
Cjj )

2
∑

j∈Vm
qj

.

Since, clearly from its expression above, qj is positive, the quadratic Equation (15) has one
unique positive solution as given above. Alternating the updating scheme throughout all the
θEs

, and θVm
until convergence, we obtain the penalized sparse estimate of the concentration

matrix under the RCON model.

3.2 THE RCOR MODEL

Consider an RCOR(V, E) model with vertex coloring V and edge coloring E . Recall
that P = (ρij )1 ≤ i, j ≤ p denotes the partial correlation matrix. Given an edge color class,
for all edges (i, j ) ∈ Es, ρij are all equal and denoted as ρEs

. Let ρ = (ρEs
, Es ∈ E).

Given a vertex color class, for all vertices i ∈ Vm, θii are all equal and denoted as θVm
. Let

�D denote the diagonal matrix with entries θjj , j = 1, . . . , p. We propose to estimate the
sparse RCOR model by solving the minimization problem:

min
ρEs ,1 ≤ s ≤ l,θVm ,1 ≤ m ≤ k

Q(�D, ρ) = −
c(ρ,�D) + n
∑

s

pλ(|ρEs
|). (16)

First we consider the LASSO penalty. Differentiating (16) with respect to ρEs
, we obtain

the thresholded estimate of the partial correlation which takes the following form:

ρ̂Es
=

S
(

tr
(
T Es

(
�

1
2
DC�

1
2
D

))
− tr

(
T Es

(
T Ec

s 	 P̃
) (

�
1
2
DC�

1
2
D

))
, λ

)
tr

(
T Es T Es

(
�

1
2
DC�

1
2
D

)) , (17)

where P̃ denotes the matrix P with the 1 on the diagonal being replaced by 0. For the
SCAD and MCP penalties, updating equations similar to (13) and (14) can be obtained in
a parallel manner.
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Differentiating (16) with respect to θVm
, we obtain

∂Q(�D, ρ)

∂θVm

= n

2
{−|Vm|y2 + by + a},

where y = θ
−1/2
Vm

, b = −2tr(T VmC�−1/2T V c
mP̃ ) + tr(P̃ T vc

m�−1/2CT VmP̃ ), and a =
tr(T VmC) − 2tr(T VmCT VmP̃ )) + tr(P̃ T VmCT VmP̃ ). We solve the likelihood equation
|Vm|y2 − by − a = 0. The solution

y = b +
√

b2 + 4a|Vm|
2|Vm|

is the unique positive solution because a = tr(C(T Vm − P̃ T Vm )T (T Vm − P̃ T Vm )) > 0.

3.3 ASYMPTOTIC PROPERTIES

Although penalized estimators based on SCAD or MCP penalty have been shown
to possess the ORACLE property in the regression setting, this property has not been
established for composite likelihood on colored graphical Gaussian models. We do so in
Theorems 1 and 2. These two theorems are stated for the SCAD penalty and the asymptotic
behavior of θ̂Es

in (13) for the RCON model. Similar statements can be proved for the MCP
penalty and the asymptotic behavior of the estimates of the RCOR model. For notational
convenience, let z = {Es : θEs

�= 0} ∪ V denote all the nonzero parameters representing
nonzero edge classes and all vertex classes and zc = {Es : θEs

= 0} denote all the zero
edge classes. We assume that both H (θ ) and V (θ ) are positive definite, where H (θ ) =
E(−∂2
c(θ )/∂θ∂θT ), and V (θ ) = var(∂
c(θ )/∂θ ).

Theorem 1. Given the SCAD penalty function pλ(θ ), for a sequence of λn such that
λn → 0, and

√
nλn → ∞ as n → ∞, there exists a local maximizer θ̂ of Q(θ ) with

||θ̂ − θ0||2 = Op(n− 1
2 ). Furthermore, we have

lim
n→∞ P (θ̂zc = 0) = 1.

The proofs of Theorems 1 and 2 are given in the supplementary file. Next, we estab-
lish the asymptotic distribution of the estimator θ̂z, where θz denoting the subvector of
nonzero parameters in θ. Let �0 be the true value of the parameter. Define the matrix
�1 = diag{p′′

λn
(|θj0|); j ∈ z}, and the vector b1 = (p′

λn
(|θj0 |)sign(θj0); j ∈ z). Let Hzz and

Vzz denote the submatrices of H (θ0) and V (θ0), respectively, corresponding to z.

Theorem 2. Given the SCAD penalty function pλ(θ ), for a sequence of λn such that
λn → 0 and

√
nλn → ∞, as n → ∞, the subvector of the root-n consistent estimator

θ̂z has the following asymptotic distribution:
√

nHzz(θ̂z − θz0) → N{0, Vzz}, as n → ∞.

Under the assumption of Theorem 2, the subvector of the root-n consistent estimator
θ̂z has the following asymptotic covariance H−1

zz VzzH
−1
zz . The formulas for ∂2
c/∂θ∂θT can
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be found in the proof of Lemma 1 of the online supplementary file. The corresponding
estimate for the Hessian matrix is Ĥzz = ∂2
c/∂θz∂θT

z |θ̂ . To estimate Vzz, we use the sam-
ple covariance matrix of the composite score vector V̂zz = 1

n

∑n
i=1 SizS

T
iz|θ̂ , where Si =

∂
c(Yi)/∂θ denotes the score vector obtained for the ith observation and Siz denote the sub-
vector of Si corresponding to the subvector of θz. Combining the estimated Hzz and Vzz, we
can compute the standard error estimates of the penalized composite likelihood estimates.
In practice, the bootstrap method can also be used to provide the standard error estimation.

4. REMARKS ON THE DETERMINATION OF COLOR CLASSES

So far, we have assumed the color classes are known. If there are not known, there exist
strategies to determine them. We list some of them here. First the fused LASSO penalty
(Tibshirani 2005) can be used to collapse the estimates of θij which are close to each other.
For illustration purposes, let us focus on the determination of the color classes for edges.
The approach can be readily extended to obtain color classes for vertices. We first obtain
an initial LASSO estimate of all the edges and rank them from the smallest to the largest.
We then consider the following objective function with penalties on the distances between
parameters which are adjacent in the order previously obtained:

min −
c(θ ) + n
∑
i<j

pλ1 (|θij |) + n
∑
i<j

pλ2 (|θij − a(θij )|) + n
∑
i<j

pλ2 (|θij − b(θij )|),

(18)
where pλ1 and pλ2 are two penalty functions (L1 or SCAD), and a(θij ) and b(θij ) are the
two edge parameters which are ordered left and right next to θij . The resulting estimates
from the graphical fused LASSO are clumped together. As λ2 increases, more and more
edges are fused together and therefore form color classes. By tuning the size of λ2, we can
vary the number of color classes. To solve this minimization problem, we can adopt the
fused LASSO signal approximator (FLSA) algorithm originally proposed for regression
problems (Friedman et al. 2007) to the graphical model setting. The algorithm consists of
iteratively applying the three following steps with λ1 being fixed and λ2 being incremented
starting from zero with small δ values added at each cycle:

• Coordinate descent step: compute ∂Q(θ)
θij

, and use the subgradient at points where
the objective function is not differentiable. By the Karush–Kuhn–Tucker (KKT)
conditions, we solve for θij while other parameters are fixed at the current update.

• Fusion step: examine adjacent θij ’s, a(θij ) and b(θij ) and force them to be fused into
one parameter and see if the objective function can be decreased by doing so.

• Smooth step: add a small increment δ to λ2 which thus becomes λ2 + δ and repeat
the coordinate descent and fusion steps.

As an alternative strategy for the determination of color classes, we can perform spectral
clustering (Ng, Jordan, and Weiss 2001; Qin and Rohe 2013) on the nodes. The algorithm
consists of the following steps:

• Obtain the standard LASSO estimate A of �, and form the diagonal matrix D with
Dii = ∑n

l=1 Ail + τ, where τ is a positive number chosen to make sure that the
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appropriate matrices are positive definite. Construct the normalized symmetric graph
Laplacian which is L = D−1/2AD−1/2.

• Inspect the eigenvalues of L, take the k largest eigenvalues and form the N × k matrix
X with columns the corresponding eigenvectors of L. We note that one may use the
Laplacian defined as I − L (Shi and Malik 2000) rather than L as we did here.
The two versions of the Laplacian matrix have the same set of eigenvectors, but the
eigenvalues change from λi to 1 − λi. Therefore, if I − L is used, one should choose
the k smallest eigenvalues rather than the k largest. Form the matrix X̃ with entries
X̃ij = Xij/(

∑
j ′ X

2
ij ′ )

1
2 .

• Run k-means on the rows of X̃. The cluster of rows is equivalent to the cluster of
nodes.

The two methods discussed above can both provide the color classes for our proposed
colored graph algorithm.

5. SOME NUMERICAL EXAMPLES

5.1 SIMULATED EXAMPLES WITHOUT PENALIZATION

We examine the performance of the unpenalized composite likelihood estima-
tor on large matrices. First we consider the RCON model. We simulate data un-
der different scenarios with n varying from 250 to 1000 and p varying from 40,
60, to 100. We include 30 different edge classes and 20 different vertex classes.
We simulate multivariate Gaussian random vectors with entries of the sparse preci-
sion matrix given by θE = (025, 0.2591, 0.1628,−0.1934, 0.0980, 0.0518), and θV =
(1.3180, 1.8676, 1.788004, 1.7626, 1.6550, 1.1538, 1.3975, 1.7877, 1.7090, 1.6931,

1.46313, 1.5131, 1.7084, 1.7344, 1.1441, 1.8059, 1.7446, 1.8522, 1.3146, 1.1001), where
0p denotes a zero vector of length p. The values for nonzero θEs

are uniformly sampled from
−0.3 to 0.3. The values for θVm

are uniformly sampled from 1 to 2. Then these θE and θV are
used by all the 100 simulated datasets. We consider two different scenarios for the assign-
ment of edges to the edge classes. In the balanced network scenario, each edge is randomly
assigned to the s = 30 edge classes with equal probability. So the number of edges for each
edge class varies from dataset to dataset but is on average equal to p(p − 1)/2s edges.
In a similar manner, for each simulated dataset, each node is randomly assigned to the
m = 20 vertex (or node) classes with equal probability. So the number of nodes in each
node class varies from simulation to simulation but each node class has an average number
of p/m nodes. For comparison purposes, we also simulate an unbalanced network and
investigate the performance of our method: the first three edge classes have only on average
p(p − 1)/(4s) edges, the fourth class has an average of 13p(p − 1)/(4s) number of edges
while all the other classes have an average of p(p − 1)/s of edges. The results are given
in Table 1 where we compare both the absolute errors and relative errors of the composite
likelihood estimates with those of the naive estimates from 100 simulated datasets. The
naive estimator estimates the edge class parameters and vertex class parameters by simply
averaging all the values belonging to the same class in the inverse sample covariance matrix.
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Table 1. Comparison of composite likelihood and moment estimates for simulated datasets and the RCON model
(balanced and unbalanced network) with no penalization

Comp Naive Comp Naive

n p ae θ̂Es mre θ̂Es ae θ̃Es mre θ̃Es ae θ̂Vm mre θ̂Vm ae θ̃Vm mre θ̃Vm

250 40 0.0986 0.1312 0.1589 0.2622 0.4263 0.0481 1.5228 0.1987
(0.0133) (0.0444) (0.0239) (0.0722) (0.0837) (0.0089) (0.1464) (0.0199)

250 60 0.0626 0.0830 0.1619 0.3283 0.3224 0.0365 2.3640 0.3224
(0.0092) (0.0302) (0.0211) (0.0792) (0.0552) (0.0064) (0.1526) (0.0205)

250 100 0.0332 0.0470 0.2727 0.6672 0.2207 0.0246 4.8573 0.6766
(0.0045) (0.0175) (0.0207) (0.0965) (0.0340) (0.0038) (0.2072) (0.0273)

500 40 0.0714 0.0890 0.0940 0.1419 0.2883 0.0322 0.7289 0.0910
(0.0095) (0.0364) (0.0130) (0.0521) (0.0450) (0.0051) (0.0968) (0.0124)

500 60 0.0455 0.0549 0.0816 0.1567 0.2345 0.0261 1.0399 0.1394
(0.0068) (0.0237) (0.0110) (0.0438) (0.0362) (0.0042) (0.0861) (0.0124)

500 100 0.0233 0.0316 0.1049 0.2576 0.1532 0.0172 1.8300 0.2536
(0.0039) (0.0130) (0.0089) (0.0384) (0.0310) (0.0035) (0.0742) (0.0101)

1000 40 0.0498 0.0654 0.0603 0.0815 0.2071 0.0235 0.3855 0.0458
(0.0067) (0.0235) (0.0077) (0.0313) (0.0379) (0.0043) (0.0582) (0.0071)

1000 60 0.0319 0.0425 0.0475 0.0814 0.1626 0.0182 0.5059 0.0653
(0.0042) (0.0160) (0.0063) (0.0273) (0.0278) (0.0032) (0.0499) (0.0071)

1000 100 0.0166 0.0225 0.0492 0.1124 0.1096 0.0124 0.8164 0.1121
(0.0022) (0.0085) (0.0053) (0.0226) (0.0163) (0.0019) (0.0421) (0.0059)

250 40 0.1157 0.1336 0.1788 0.2545 0.4239 0.0474 1.5219 0.1973
(0.0207) (0.0549) (0.0296) (0.0865) (0.0663) (0.0075) (0.1471) (0.0200)

250 60 0.0712 0.0807 0.1713 0.3307 0.3301 0.0372 2.3616 0.3217
(0.0118) (0.0339) (0.0242) (0.0901) (0.0583) (0.0064) (0.1532) (0.0204)

250 100 0.0371 0.0434 0.2778 0.6771 0.2191 0.0248 4.8582 0.6760
(0.0059) (0.0156) (0.0216) (0.0885) (0.0351) (0.0041) (0.2050) (0.0284)

500 40 0.0773 0.0908 0.1005 0.1319 0.2983 0.0335 0.7282 0.0901
(0.0120) (0.0357) (0.0152) (0.0430) (0.0476) (0.0053) (0.0973) (0.0121)

500 60 0.0496 0.0543 0.0879 0.1574 0.2289 0.0260 1.0327 0.1389
(0.0074) (0.0214) (0.0112) (0.0414) (0.0367) (0.0042) (0.0868) (0.0121)

500 100 0.0261 0.0299 0.1080 0.2536 0.1526 0.0170 1.8286 0.2536
(0.0043) (0.0114) (0.0089) (0.0374) (0.0288) (0.0032) (0.0738) (0.0102)

1000 40 0.0575 0.0617 0.0689 0.0792 0.2071 0.0231 0.3841 0.0459
(0.0107) (0.0248) (0.0121) (0.0319) (0.0361) (0.0042) (0.0520) (0.0068)

1000 60 0.0365 0.0436 0.0519 0.0844 0.1632 0.0182 0.5053 0.0648
(0.0063) (0.0187) (0.0085) (0.0289) (0.0243) (0.0031) (0.0484) (0.0068)

1000 100 0.0184 0.0208 0.0517 0.1139 0.1101 0.0122 0.8162 0.1122
(0.0029) (0.0086) (0.0049) (0.0186) (0.0191) (0.0021) (0.0431) (0.0058)

NOTE: The “ae” stands for absolute error and “mre” stands for mean relative error. For example, the “ae” of θ̂Es is
defined as ||θ̂Es − θEs ,0||2; and the “mre” of θ̂Es is defined as mean of (|(θ̂Es − θEs ,0)/θEs ,0|). The “mre” are only
calculated for the nonzero subset of parameters. The first half of table above the line is for balanced network and
the second half of the table below the line is for unbalanced network.

The proposed composite likelihood estimates consistently enjoy much smaller errors than
the naive method across all settings. As shown also in Table 1, the absolute sum of squared
errors of the edge class parameters are slightly larger for the unbalanced network than for
the balanced one. With regard to the mean of the relative errors for the nonzero edge class
parameters, the two networks have a comparable performance.

Next, we investigate the empirical performance of the proposed composite like-
lihood estimator under the RCOR model. We simulate under different scenarios
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with n varying from 250 to 1000 and p varying from 40, 60 to 100. We in-
clude 30 different edge classes and 20 different vertex classes. We simulate
multivariate Gaussian random vectors with entries of the sparse partial correla-
tion matrix given by ρE = (026, 0.1628, −0.1534, 0.0980, 0.0518) and with θV =
(3.0740, 3.6966, 3.7772, 3.5475, 3.2841, 3.4699, 3.7235, 3.5987, 3.3313, 3.8183, 3.9236,

3.9008, 3.9011, 3.0470, 3.0139, 3.2072, 3.8438, 3.4823, 3.9373, 3.0125). The values for
nonzero θEs

are uniformly sampled from −0.3 to 0.3. The values for θVm
are uniformly

sampled between 3 and 4. We choose the range of 3 to 4 for θVm
, because we find that for

large p, such as p = 100, in order for the matrix to be positive definite, the θVm
have to

be large. This set of θ is used by all the 100 simulated datasets. The assignment of edges
to each edge color classes is done randomly with equal probability. We conduct a similar
random assignment of vertices to each vertex color class. The simulation results are given
in Table 2. We provide both the absolute errors and relative errors for the composite
likelihood estimates and the naive estimates from the 100 simulated datasets. For both
the estimated partial correlations and the conditional variances, the composite likelihood
estimates yield consistently smaller errors compared to the naive estimates. This superior
performance is consistent across all the different sample sizes and different dimensions of
the matrices.

5.2 SIMULATED EXAMPLES WITH PENALIZATION

In our next calculations, we introduce penalization. We examine the empirical perfor-
mance of the penalized composite likelihood estimator. We simulate the RCON model
using the same settings as in Table 1. We consider different scenarios with n = 250 or
n = 500, and p = 40, p = 60, and p = 100. We use the penalized composite likelihood es-
timator to estimate the sparse matrix. The tuning parameter is selected by the Bayesian infor-
mation criterion (BIC), with BIC = −2
(θ̂ ) + df log n, or composite likelihood Bayesian
information criterion (COMP-BIC), with COMP-BIC = −2
c(θ̂) + df log n, where df de-
notes the total number of nonzero edges and θ̂ denotes the penalized composite likelihood
estimate (Gao and Song 2010). Although traditionally, the degree of freedom should be the
number of parameters, we use the number of nonzero edges here instead. The reason is that
for large network with large p, the likelihood term grows with both n and p, for the penalty
term to compete with the likelihood term, we use the term of log n multiplied by the number
of nonzero edges, which grows with p as well. As shown in the simulation result below,
the model selection performance with the number of nonzero edges used as the degree of
freedom is very good. It yields small false positive rates and small false negative rates.

For each setting, 100 simulated datasets are generated and for each dataset we calculate
the number of false negatives and false positives. The results are given in Table 3: we see
that the proposed method has satisfactory model selection properties with very low false
negative and false positive edges. For example, with n = 500 and p = 60, each simulated
dataset has an average number of 1475 zero edges and 295 nonzero edges. The proposed
method identifies an average of zero false negatives and 0.58 false positives. The size of
the tuning parameters is also listed in Table 3. To compare the efficiency of our method
using colored graphical Gaussian models with that of more classical methods, we also
did a model search using the unconstrained LASSO and the unconstrained SCAD. We
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used the GLASSO package (Friedman et al. 2008) to perform the unconstrained LASSO.
For the unconstrained SCAD, we follow the standard procedure, that is, we first find
the LASSO estimate. Then at this estimate, we linearize the SCAD penalty function,
evaluate it at the LASSO estimate and use it as the penalty term in the GLASSO package.
With n = 500 and p = 60, the LASSO has an average of 221.85 false negatives and
6.47 false positives and SCAD has an average of 212.86 false negatives and 9.59 false
positives. Another interesting phenomenon is that with the same sample size, the symmetry-
constrained approach has better performance as p increases, and in contrast, the LASSO and
SCAD have decreased performance as p increases. This is because increasing p increases
the number of parameters in the LASSO and SCAD, but does not affect the number of
parameters in the symmetry-constrained approach. On the contrary, with the same sample
size, and the same number of edge and vertex classes, increasing p actually provides more
information about the edge class and vertex class parameters. We further examine the
empirical performance of the penalized composite likelihood estimator for model selection
with an RCOR model. We consider different scenarios with n = 250, n = 500, and p =
40, p = 60, and p = 100. We include 30 different edge classes and 20 different vertex
classes. We simulate multivariate Gaussian random vectors with entries of the sparse partial
correlation matrix given by ρE = (026, 0.0628, −0.0534, 0.0380 , 0.0519) and with θV =
(1.3181, 1.8676, 1.7880, 1.7626, 1.6550, 1.1539, 1.3975, 1.7877, 1.7090, 1.6931,1.4631,

1.5131, 1.7084, 1.7344, 1.1442, 1.8060, 1.7447, 1.8522, 1.3146, 1.1001). In Table 4, one
can see that the proposed method has satisfactory model selection property with very low
false negative and false positive results. With n = 500 and p = 60, our approach has an
average of 0 false negative results and 10.38 false positive results. In comparison, the
LASSO has an average of 212.32 false negatives and 32.72 false positives and SCAD has
an average of 212.10 false negatives and 33.31 false positives. These results exemplify that
if the data are generated from a clustered network, the symmetry-constrained approach,
whether with an RCON or an RCOR model, fully uses the clustering structure in model
selection and outperforms the unconstrained approach.

6. APPLICATION

We now apply our proposed method to a real biological dataset. The experiment was con-
ducted to examine how GM-CSF modulates global changes in neutrophil gene expressions
(Kobayashi et al. 2005). Time course summary PMNs were isolated from venous blood
of healthy individuals. Human PMNs (107) were cultured with and without 100 ng/mL
GM-CSF for up to 24 h. The experiment was performed in triplicate, using PMNs from
three healthy individuals for each treatment. There are in total 12,625 genes monitored,
each gene is measured nine times at time 0, and then measured six times at time 3, 6, 12,
18, 24. At each of these five points, three of the six measurements were obtained for the
treatment group and the other three were obtained for the control group. We first proceed
with standard gene expression analysis. For each gene, we perform an ANOVA test on the
treatment effect while acknowledging the time effect. We rank the F statistic for each gene
and select the top 1000 genes that have the most significant changes in expression between
treatment and control group. Our goal is to study the network among these 1000 genes. We
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Figure 1. The clustered gene networks for the top ranked 1000 individual genes is estimated based on the
symmetry-constrained SCAD. Only the subgraph for the first 200 genes is depicted.

cluster these genes using the spectral clustering method (Qin and Rohe 2013). The number
of clusters is chosen by inspecting the biggest gap between the eigenvalues of the Laplacian
matrix of the data matrix. There are five leading large eigenvalues followed by 995 small
eigenvalues. Therefore, the number of clusters is chosen to be five. The genes clustered
together can be viewed as a group of genes who share similar expression profiles. This
imposes symmetry constraints to the networks modeling. We assume that edges connecting
the same pair of clusters or edges linking genes from the same cluster belong to the same
edge class and vertices belonging to the same cluster belong to the same vertex class.
Therefore, there is a total of 15 edge classes and 5 vertex classes parameters to be estimated
based on a 1000 × 1000 data matrix. We perform penalized symmetry-constrained SCAD
estimation and the tuning parameter is selected using the BIC and the Comp-BIC criteria.
Both BIC and COMP-BIC are minimized at the same subset model. The selected model
has five nonzero edge classes which include 335,196 nonzero edges. In Figure 1, the gene
network among individual genes is depicted. Some of the underlying clustering structure
is evident from the plot. The model is sparse containing only a few nonzero edge classes.
Nevertheless, the overall network is very dense with more than 335,000 nonzero edges.
Due to space limitations, we only show the estimated graph of the first 200 genes. For com-
parison purposes, we also perform network estimation based on the plain unconstrained
SCAD, and the selected subset model has 4446 edges. This is a much sparser network than
the one obtained by the symmetry constrained approach. Due to space limitations, Figure
2(a) shows the sparse network obtained by SCAD for the first 200 genes only. There is a
small group of genes with at least one edge in Figure 2(a). In Figure 2(b), we zoom into
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Figure 2. The gene networks for the top ranked 1000 individual genes is estimated based on the unconstrained
SCAD. Only the subgraph for the first 200 genes is depicted.

this group and depict the network among all the genes that have at least one edge. The
validity of the symmetry-constrained approach is dependent upon the underlying clustering
structure. If such a clustering structure is based on some prior biological knowledge, the
symmetry-constrained approach is the option of choice. For many biological systems, the
sparsity assumption could be too constraining. Our proposed approach offers an alternative
tool to model a potentially dense network.

7. CONCLUSION

For symmetry constrained RCON or RCOR graphical Gaussian models, the penalized
composite likelihood based on conditional distributions offers a computationally conve-
nient way to perform estimation and model selection while maintaining efficiency of the
estimator. When the Gaussian graphical model is parameterized, in terms of edge and
vertex classes, it is shown that the proposed penalized composite likelihood estimator will
threshold the estimates for zero parameters to 0 with probability tending to 1 and the
asymptotic distribution of the estimates for nonzero parameters follow the multivariate nor-
mal distribution corresponding to the estimation under the true submodel. In the literature,
high-dimensional network modeling has been mainly restricted to sparse models. When
the actual network is dense, symmetry constraints can be imposed onto the model to reflect
the underlying symmetric structure and reduce the dimensionality of the model. It is a
very useful dimension reduction strategy to model high-dimensional dense network with
clusters.
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SUPPLEMENTARY MATERIALS

Supplementary file: Proofs and technical derivations. (pdf file).
Code package: MATLAB and R codes for simulations. (zip file).
Data analysis: The web address for the gene expression dataset and the R codes to

analyze the gene expression data. (zip file).
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