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In this paper, we propose a class of Bayes estimators for the covari-
ance matrix of graphical Gaussian models Markov with respect to a
decomposable graph G. Working with the WPG

family defined by [27]
we derive closed-form expressions for Bayes estimators under the en-
tropy and squared-error losses. The WPG

family includes the classical
inverse of the hyper inverse Wishart but has many more shape param-
eters, thus allowing for flexibility in differentially shrinking various
parts of the covariance matrix. Moreover, using this family avoids re-
course to MCMC, often infeasible in high-dimensional problems. We
illustrate the performance of our estimators through a collection of
numerical examples where we explore frequentist risk properties and
the efficacy of graphs in the estimation of high-dimensional covari-
ance structures.

1. Introduction. In this paper we consider the problem of estimation
of the covariance matrix Σ of an r-dimensional graphical Gaussian model.
Since the work of Stein [35] the problem of estimating Σ is recognized as
highly challenging. In recent years, the availability of high-throughput data
from genomic, finance, marketing (among others) applications has pushed
this problem to an extreme where, in many situations, the number of samples
(n) is often much smaller than the number of parameters. When n < r the
sample covariance matrix S is not positive definite but even when n > r, the
eigenstructure tends to be systematically distorted unless r/n is extremely
small (see [12, 35]). Numerous papers have explored better alternative esti-
mators for Σ (or Σ−1) in both the frequentist and Bayesian frameworks (see
[4, 8, 9, 15, 16, 17, 19, 25, 26, 29, 35, 37]). Many of these estimators give
substantial risk reductions compared to the sample covariance estimator S
in small sample sizes. A common underlying property of many of these es-
timators is that they are shrinkage estimators in the sense of James-Stein
[19, 34]. In particular the Bayesian approach often yields estimators which
“shrink” towards a structure associated with a pre-specified prior. One of
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the first papers to exploit this idea is [4] who shows that if the prior used
on Σ−1 is the standard conjugate, i.e. a Wishart distribution, then for an
appropriate choice of the shape (or shrinkage) and scale hyperparameters,
the posterior mean for Σ is a linear combination of S and the prior mean
(see §3.1). It is easy to show (see 3.16) that the eigenvalues of such estima-
tors are also shrinkage estimators of the eigenvalues of Σ. More recently, for
high-dimensional complex data sets with r often larger than n, regulariza-
tion methods have been proposed, which impose structure on the estimators
through zeros in the covariance or the precision matrix (see [2, 18, 30]).
The idea of imposing zeros in the precision matrix is not new however, and
was introduced in [12] in a pioneering paper on covariance selection models
which are particular cases of graphical Gaussian models. Graphical Gaus-
sian models have proven to be excellent tools for the analysis of complex
high-dimensional data where dependencies between variables are expressed
by means of a graph ([3, 21]).

In this paper we combine the regularization approach given by graphi-
cal models with the Bayesian approach of shrinking towards a structure.
Through a decision theoretic approach, we derive Bayes estimators of the
covariance and precision matrices under certain priors and given loss func-
tions, such that the precision matrix has a given pattern of zeros. Indeed, we
work within the context of graphical Gaussian models Markov with respect
to a decomposable graph G. Restricting ourselves to decomposable graphs
allows us to use the family of inverse WPG

Wishart distributions [27] as pri-
ors for Σ. This is a family of conjugate prior distributions for Σ−1 which
includes the Wishart when G is complete (i.e. when the model is saturated)
and the inverse of the hyper inverse Wishart, the current standard conjugate
prior for Σ−1, when the model is Markov with respect to G decomposable.
A potentially restrictive feature of the inverse of the hyper inverse Wishart
(and the Wishart) is the fact that it has only one shape parameter. The
family of WPG

Wishart distributions considered here has three important
characteristics. First, it has k + 1 shape parameters where k is the number
of cliques in G. Second, it forms a conjugate family with an analytically
explicit normalizing constant. Third the Bayes estimators can be obtained
in closed form.

In §2, we give some fundamentals of graphical models. In §3, we recall
the properties of the WPG

family and its inverse, the IWPG
, and we derive

the mathematical objects needed for our estimators, that is the explicit
expression for the mean of the IWPG

. Parallel to the development of the
IWPG

, we present in §4, a non-informative reference prior for Σ (and the
precision matrix Ω). While offering an objective procedure that avoids the
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specification of hyperparameters, the reference prior also allows for closed-
form posterior estimation as the posterior for Σ remarkably falls within the
IWPG

family. In §5, we derive the Bayes estimator under two commonly used
loss functions adapted to graphical models and the prior considered in §3
and §4. Finally, in §6 and §7 we compare the performance of our estimators
in a series of high-dimensional examples.

2. Preliminaries. Let G = (V, E) be an undirected graph with vertex
set V = {1, . . . , r} and edge-set E. Vertices i and j are said to be neigh-
bors in G if (i, j) ∈ E. Henceforth in this paper, we will assume that G
is decomposable [24], where a perfect order of the cliques is available. For
(C1, . . . , Ck) in a perfect order, we use the notation H1 = R1 = C1 while for
j = 2, . . . , k we write

Hj = C1 ∪ . . . ∪ Cj , Rj = Cj \ Hj−1, Sj = Hj−1 ∩ Cj .

The Sj , j = 2, . . . , k are the minimal separators of G. Some of these sep-
arators can be identical. We let k′ ≤ k − 1 denote the number of distinct
separators and ν(S) denote the multiplicity of S that is the number of j such
that Sj = S. Generally, we will denote by C the set of cliques of a graph G
and by S its set of separators.

An r-dimensional Gaussian model is said to be Markov with respect to
G if for any edge (i, j) not in E, the i-th and j-th variables are condition-
ally independent given all the other variables. Such models are known as
covariance selection models [12] or graphical Gaussian models (see [24, 36]).
Without loss of generality, we can assume that these models have mean zero
and are characterized by the parameter set PG of positive definite precision
(or inverse covariance) matrices Ω such that Ωij = 0 whenever the edge (i, j)
is not in E. Equivalently, if we denote by M the linear space of symmetric
matrices of order r, by M+

r ⊂ M the cone of positive definite (abbreviated
> 0) matrices, by IG the linear space of symmetric incomplete matrices x
with missing entries xij , (i, j) 6∈ E and by κ : M 7→ IG the projection of M
into IG, the parameter set of the Gaussian model can be described as the
set of incomplete matrices Σ = κ(Ω−1), Ω ∈ PG. Indeed it is easy to verify
that the entries Σij , (i, j) 6∈ E are such that

(2.1) Σij = Σi,V \{i,j}Σ
−1
V \{i,j},V \{i,j}ΣV \{i,j},j ,

and are therefore not free parameters of the Gaussian models. We are there-
fore led to consider the two cones

PG = {y ∈ M+
r | yij = 0, (i, j) 6∈ E}(2.2)

QG = {x ∈ IG| xCi
> 0, i = 1, . . . , k}.(2.3)
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where PG ⊂ ZG and QG ⊂ IG, where ZG denotes the linear space of sym-
metric matrices with zero entries yij , (i, j) 6∈ E.

Grőne et al. [14] proved the following:

Proposition 2.1. When G is decomposable, for any x in QG there exists
a unique x̂ in M+

r such that for all (i, j) in E we have xij = x̂ij and such
that x̂−1 is in PG.

This defines a bijection between PG and QG:

(2.4) ϕ : y = (x̂)−1 ∈ PG 7→ x = ϕ(y) = κ(y−1) ∈ QG ,

where κ denotes the projection of M into IG.
If for any complete subset A ⊆ V , xA = (xij)i,j∈A is a matrix and we

denote by (xA)0 = (xij)i,j∈V the matrix such that xij = 0 for (i, j) /∈ A×A,
then the explicit expression of x̂−1 is

(2.5) y = x̂−1 =
∑

C∈C

(x−1
C )0 −

∑

S∈S

ν(S)(x−1
S )0.

For (x, y) ∈ IG × ZG, we define the notion of trace as follows

(2.6) tr (xy) = 〈x, y〉 =
∑

(i,j)∈E

xijyij .

Note that for x ∈ QG and y ∈ PG, 〈x, y〉 = tr (x̂y) , where tr (x̂y) is
defined in the classical way. In the sequel, we will also need the following.
If, for y ∈ PG we write y = σ̂−1 with σ ∈ QG, we have, for x ∈ QG, the two
formulas

〈x, σ̂−1〉 =
∑

C∈C

〈xC , σ−1
C 〉 −

∑

S∈S

ν(S)〈xS , σ−1
S 〉, and(2.7)

det x̂ =

∏
C∈C(det xC)∏

S∈S(det xS)ν(S)
.(2.8)

The graphical Gaussian model Markov with respect to G is therefore the
family of distributions

NG = {Nr(0, Σ), Σ ∈ QG} = {Nr(0, Σ), Ω = Σ̂−1 ∈ PG} .

In this paper, we will study various estimators of Σ ∈ QG and Ω ∈ PG.
We will write mle and mleg for “maximum likelihood estimate” in the sat-
urated model and in the graphical model respectively. Also, in this paper,
we will use the general symbol θ̃ to denote an estimator of θ rather than
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the traditional θ̂ as the notation θ̂ has been reserved for the completion
process (see Proposition 2.1). The mleg, Ω̃g, for the parameter Ω ∈ PG in
NG is well-known (see [24], p. 138). If Zi, i = 1, . . . , n is a sample from the
Nr(0, Σ) distribution in NG, if we write U =

∑n
i=1 ZiZ

t
i and S = U

n
and if

n > maxC∈C |C|, then Ω̃g exists and is equal to

(2.9) Ω̃g =
∑

C∈C

(
S−1

C

)0
−

∑

S∈S

ν(S)
(
S−1

S

)0

where clearly S as a subscript or S in ν(S) refers to the separator while the
remaining S’s refer to the sample covariance matrix. If we assume that the
graph is saturated, then, clearly the mle is Ω̃ = S−1.

Finally, we need to recall some standard notation for various block sub-
matrices: for x ∈ QG, xCj

, j = 1, . . . , k are well defined and for j = 2, . . . , k,
it will be convenient to use the following:
(2.10)
xSj

= x<j>, xRj ,Sj
= x[j> = xt

<j], x[j] = xRj
, x[j]· = x[j] − x[j>x−1

<j>x<j],

where x<j> ∈ M+
sj

, x[j]· ∈ M+
cj−sj

, x[j> ∈ L(IRcj−sj , IRsj ), the set of linear

applications from IRcj−sj to IRsj . We will also use the notation x[12> and
x[1]· for

x[12> = xC1\S2,S2
x−1

S2
and x[1]· = xC1\S2·S2

= xC1\S2
−xC1\S2,S2

x−1
S2

xS2,C1\S2
.

3. Flexible conjugate priors for Σ and Ω. When the Gaussian
model is saturated, i.e. G is complete, the conjugate prior for Ω, as defined
by Diaconis & Ylvisaker [13] (henceforth abbreviated DY) is the Wishart
distribution. The induced prior for Σ is then the inverse Wishart IWr(p, θ)
with density

(3.1) IWr(p, θ; dx) =
|θ|p

Γr(p)
|x|−p− r+1

2 exp−〈θ, x−1〉1M+(x)dx

where p > r−1
2 is the shape parameter, Γr(p) the multivariate gamma func-

tion (as given on p.61 of [31]) and θ ∈ M+ is the scale parameter.
As we have seen in the previous section, when G is not complete, M+

is no longer the parameter set for Σ or the parameter set for Ω. The DY
conjugate prior for Σ ∈ QG was derived by [11] and called the hyper-inverse
Wishart (HIW ). The induced prior for Ω ∈ PG was derived by [32] and we
will call it the G-Wishart. The G-Wishart and the hyper-inverse Wishart
are certainly defined on the right cones but they essentially have the same
type of parametrization as the Wishart with a scale parameter θ ∈ QG and
a one-dimensional shape parameter δ.
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3.1. The WPG
distribution and its inverse. Letac and Massam [27] intro-

duced a new family of conjugate priors for Ω ∈ PG with a k +1-dimensional
shape parameter thus leading to a richer family of priors for Ω, and there-
fore for Σ = κ(Ω−1) ∈ QG through the induced prior. It is called the type
II Wishart family. Here, we prefer to call it the family of WPG

-Wishart dis-
tributions in order to emphasize that it is defined on PG. Details of this
distribution can be found in §3 of [27]. We will first recall here some of its
main features and then derive some new properties we shall need later in
this paper. Let α and β be two real-valued functions on the collection C and
S of cliques and separators respectively such that α(Ci) = αi, β(Sj) = βj

with βi = βj if Si = Sj . Let ci = |Ci| and si = |Si| denote the cardinality
of Ci and Si respectively. The family of WPG

-Wishart distributions is the
natural exponential family generated by the measure HG(α, β, ϕ(y))νG(dy)
on PG where ϕ(y) is as defined in (2.4) and where, for x ∈ QG,

HG(α, β; x) =

∏
C∈C(detxC)α(C)

∏
S∈S(det xS)ν(S)β(S)

, and(3.2)

νG(dy) = HG

(
1

2
(c + 1),

1

2
(s + 1);ϕ(y)

)
1PG

(y)dy .(3.3)

The parameters (α, β) are in the set B such that the normalising constant is
finite for all θ ∈ QG and such that it factorizes into the product of HG(α, β; θ)
and a function ΓII(α, β) of (α, β) only, given below in (3.5).

The set B is not known completely but we know that B ⊇ ∪P BP where,
if, for each perfect order P of the cliques of G, we write J(P, S) = {j =
2, . . . , k| Sj = S}, then BP is the set of (α, β) such that

1.
∑

j∈J(P,S)(αj+
1
2(cj−sj))−ν(S)β(S) = 0, for all S different from S2;

2. −αq−
1
2(cq−sq−1) > 0 for all q = 2, . . . , k and −α1−

1
2(c1−s2−1) > 0;

3. −α1 −
1
2(c1 − s2 + 1) − γ2 > s2−1

2 where γ2 =
∑

j∈J(P,S2)

(
αj − β2 +

cj−s2

2

)
.

As can be seen from the conditions above, the parameters β(S), S ∈ S
are linked to the α(C), C ∈ C by k′ − 1 linear equalities and various linear
inequalities and therefore B contains the set BP of dimension at least k +1,
for each perfect order P . We can now give the formal definition of the WPG

family.

Definition 3.1. For (α, β) ∈ B, the WPG
-Wishart family of distributions is

the family F(α,β),PG
= {WPG

(α, β, θ; dy), θ ∈ QG} where

WPG
(α, β, θ; dy) = e−〈θ,y〉 HG(α, β; ϕ(y))

ΓII(α, β)HG(α, β; θ)
νG(dy).(3.4)
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and

ΓII(α, β) = π
1

2
((c1−s2)s2+

∑k

j=2
(cj−sj)sj)

× Γs2

[
−α1 −

c1 − s2

2
− γ2

]
Γc1−s2

(−α1)
k∏

j=2

Γcj−sj
(−αj)

(3.5)

We can also, of course, define the inverse WPG
(α, β, θ) distribution as fol-

lows. If Y ∼ WPG
(α, β, θ), then X = ϕ(Y ) ∼ IWPG

(α, β, θ) with distribution
on QG given by (see (3.8) in [27])

IWPG
(α, β, θ; dx) =

e−〈θ,x̂−1〉HG(α, β; x)

ΓII(α, β)HG(α, β; θ)
µG(dx), where(3.6)

µG(dx) = HG

(
−

1

2
(c + 1),−

1

2
(s + 1);x

)
1QG

(x)dx .(3.7)

The hyper-inverse Wishart is a special case of the IWPG
distribution for

(3.8) αi = −
δ + ci − 1

2
, i = 1, . . . , k, βi = −

δ + si − 1

2
, i = 2, . . . , k .

which are all functions of the same one-dimensional parameter δ. It is tra-
ditional to denote the hyper inverse Wishart, that is this particular IWPG

,
as the HIW (δ, θ) and this is the notation we will use in §6.

Corollary 4.1 of [27] states that the IWPG
is a family of conjugate distri-

butions for the scale parameter Σ in NG, more precisely, we have:

Proposition 3.1. Let G be decomposable and let P be a perfect order of
its cliques. Let (Z1, . . . , Zn) be a sample from the Nr(0, Σ) distribution with
Σ ∈ QG. If the prior distribution on 2Σ is IWPG

(α, β, θ) with (α, β) ∈ BP

and θ ∈ QG, the posterior distribution of 2Σ, given nS =
∑n

i=1 ZiZ
t
i is

IWPG
(α − n

2 , β − n
2 , θ + κ(nS)), where α − n

2 = (α1 − n
2 , . . . , αk − n

2 ) and
β− n

2 = (β2−
n
2 , . . . , βk−

n
2 ) are such that (α− n

2 , β− n
2 ) ∈ BP and θ+κ(nS) ∈

QG so that the posterior distribution is well-defined. Equivalently, we may
say that if the prior distribution on 1

2Ω is WPG
(α, β, θ), then the posterior

distribution of 1
2Ω is WPG

(α − n
2 , β − n

2 , θ + κ(nS)).

For the expression of the Bayes estimators we will give in §5, we need to
know the explicit expression of the posterior mean of Ω and Σ when the prior
on Ω is the WPG

or equivalently when the prior on Σ is the IWPG
. The mean

of the WPG
can be immediately obtained by differentiation of the cumulant

generating function since the WPG
family is a natural exponential family.

From (3.4), from Corollary 3.1 and from (4.25) in [27], we easily obtain the
posterior mean for Ω = Σ̂−1 as follows.
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Proposition 3.2. Let S and Ω be as in Corollary 3.1, then the posterior
mean of Ω, given nS, is
(3.9)

E(Ω|S) = −2




k∑

j=1

(
αj −

n

2

) (
(θ + κ(nS))−1

Cj

)0

−
k∑

j=2

(
βj −

n

2

) (
(θ + κ(nS))−1

Sj

)0


 .

Since the IWPG
is not an exponential family, its expected value is not as

straightforward to derive. It is given in the following theorem.

Theorem 3.1. Let X be a random variable on QG such that X ∼ IWPG
(α, β, θ)

with (α, β) ∈ BP and θ ∈ QG, then E(X) is given by equations (3.10)-(3.14)
below

E(x<2>) =
θ<2>

−(α1 + c1−s2

2 + γ2) −
s2+1

2

=
θ<2>

−(α1 + c1+1
2 + γ2)

,(3.10)

E(xC1\S2,S2
) =

θC1\S2,S2

−(α1 + c1+1
2 + γ2)

,(3.11)

E(xC1\S2
) =

θ[1]·

−(α1 + c1−s2+1
2 )

(
1 −

s2

2(α1 + c1+1
2 + γ2)

)
(3.12)

+
θC1\S2,S2

θ−1
<2>θS2,C1\S2

−(α1 + c1+1
2 + γ2)

and for j = 2, . . . , k

E(x[j>) = E((x[j>x−1
<j>))E(x<j>) = θ[j>θ−1

<j>E(x<j>) ,(3.13)

E(x[j]) =
θ[j]·

−(αj +
cj−sj+1

2 )

(
1 +

1

2
tr (θ−1

<j>E(x<j>))

)
(3.14)

+θ[j>θ−1
<j>E(x<j>)θ−1

<j>θ<j].

The proof is rather long and technical and given in the Appendix. Let us
note here that formulae (3.10)-(3.14) can also be written in a closed form
expression of the Choleski type i.e. E(X) = T tDT with T lower triangular
and D diagonal, where the shape parameters (α, β) are solely contained in
D. We do not give it here for the sake of brevity.

The important consequence of this theorem is that, from equations (3.10)
to (3.14), we can rebuild E(X) ∈ QG. Indeed, by definition of QG, E(X)
is made up first of E(XC1

) which is given by (3.10), (3.11), and its trans-
pose and (3.12) and then, successively, of the j-th “layer”: E(X[j>) and its
transpose, and E(X[j]), for each j = 2, . . . , k. These are immediately ob-
tained from (3.13) and (3.14) since, by definition Sj ⊆ Hj−1 and therefore
the quantity E(X<j>) is a sub-block of E(XHj−1

) and has therefore already
been obtained in the first j − 1 steps. We can therefore now deduce the
posterior mean of Σ when the prior is IWPG

(α, β, θ).
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Corollary 3.1. Let S and Σ be as in Corollary 3.1, then the posterior
mean for Σ when the prior distribution on 2Σ is IWPG

(α, β, θ) is given by
formulas (3.10)-(3.14) where X is replaced by 2Σ, θ is replaced by θ+κ(nS)
and (αi, βi)’s are replaced by αi −

n
2 , βi −

n
2 ’s.

3.2. Shrinkage by layers and the choice of the scale parameter θ. When
we use the IWPG

(α, β, θ) as a prior distribution for the scale parameter Σ, we
have to make a choice for the shape hyper parameters (α, β) and the scale
hyper parameter θ. When G is complete, the IWPG

(α, β, θ) becomes the
regular inverse Wishart IW (p, θ) as given in (3.1). When G is decomposable
and one uses the hyper-inverse Wishart HIW (δ, θ), in the absence of prior
information, it is traditional to take θ to be equal to the identity or a multiple
of the identity and δ small such as 3 for example (see [21]).

The scale parameter however can play an important role if we have some
prior knowledge on the structure of the covariance matrix (see [4]) and we
are interested in “shrinking” the posterior mean of Σ towards a given target.

In the saturated case, for a sample of size n from the N(0, Σ) distribution
with a Wishart W (ν

2 , (νD)−1) prior on Ω = Σ−1, the posterior mean of Σ is

(3.15) E(Σ|S) =
νD + nS

ν + n − r − 1
.

First, we note that when n is held fixed and ν is allowed to grow, the
posterior mean tends towards D while if ν is held fixed and n is allowed to
grow, the estimator tends towards S. Next, let us consider the eigenvalues
of the posterior mean. If we take D = l̄I where l̄ is the average of the
eigenvalues l1, . . . , lr of the mle S, then it is easy to see that the eigenvalues
gi, i = 1, . . . , r of E(Σ|S) are

(3.16) gi =
νl̄ + nli

ν − (r + 1) + n
,

nearly a weighted average of l̄ and li. Some simple algebra will show that
for li < l̄ we always have li < gi and that for i such that li > l̄, i.e. for
Ci = li

l̄
> 1, we will have gi < li whenever ν > Ci

Ci−1(r + 1). Since in order
for the prior to be proper, we must have that ν > r − 1, we see that this
condition is very weak as long as Ci

Ci−1 is close to 1. When the condition
ν > r − 1 is satisfied, the eigenvalues of the posterior mean are shrunk
towards l̄ and the span of the eigenvalues of E(Σ|S) is smaller than the span
of the eigenvalues of S, which generally can be used to correct the instability
of S. (We note that if Ci = li

l̄
is sufficiently large, Ci

Ci−1 will be sufficiently
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close to 1 and if li
l̄

is close to 1, then there is really no need to shrink the
eigenvalues.)

In §5 we show that our Bayes estimators can be expressed in terms of
the posterior mean of Σ and Ω with the IWPG

and the WPG
respectively

as priors. One would like to be able to prove properties for the eigenvalues
of our estimators similar to those of the posterior mean under the Wishart
in the saturated case. This is beyond the scope of this paper. However, we
observe in the numerical examples given in §6 and §7 that the eigenvalues
of our estimators do have shrinkage properties. With this motivation, in
§6 and §7, we will use IWPG

priors with θ so that the prior mean of Σ is
the identity as well as with θ equal to the identity. Thus, we first derive θ

so that E(Σ) = 1
2E

(
IWPG

(α, β, θ)
)

= I and then, we will argue that our

estimators can be viewed as shrinkage estimators in the sense of shrinkage
towards structure.

Lemma 3.1. Let Σ ∈ QG be such that 2Σ ∼ IWPG
(α, β, θ) for given (α, β) ∈

A. In order to have E(Σ) = I it is sufficient to choose θ as a diagonal matrix
with diagonal elements equal to

θll = −2

(
α1 +

c1 − s2 + 1

2

) (
1 −

s2

2(α1 + c1+1
2 + γ2)

)−1

, for l ∈ [1]

θll = −2

(
α1 +

c1 − s2

2
+ γ2

)
− (s2 + 1) , for l ∈< 2 >

θll = −2

(
αj +

cj − sj + 1

2

)(
1 +

1

2
tr (θ−1

<j>E(x<j>))

)−1

,

for l ∈ [j], j = 2, . . . , k

The proof is immediate from equation (3.10)-(3.14).

Let us now argue that one of our estimators (to be derived in §5), Ω̃
WPG

L1
,

equal to the inverse of the completion of the posterior mean E(Σ|S) of Σ
when Σ ∼ IWPG

(α, β, θ), can be viewed as a shrinkage estimator. It follows
from Theorem 4.4 of [27] that, when the prior on Σ is the IWPG

(α, β, θ),
Σ[i]· ∼ IWci−si

(−αi, θ[i]·) as defined in (3.1). Then, since nSHi
∼ W|Hi|(

n
2 , ΣHi

)

and thus nS[i]· ∼ Wci−si
(n−si

2 , Σ[i]·), through an argument parallel to the one
for (3.15), it follows that the posterior mean E(Σ[i]·|S) is a linear combina-
tion of S[i]· and θ[i]·, with αi playing a role parallel to that of ν in (3.15), and
is therefore a shrinkage estimator of Σ[i]·. Thus, we can shrink with different
intensities various parts of the matrix S. The posterior mean E(Σ|S) is re-
constructed, layer by layer, as can be seen in the proof of Theorem 3.1 using
E(Σ[i]·|S) as a building block (see 9.4) through what we might call a condi-
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FLEXIBLE COVARIANCE ESTIMATION 11

tional Choleski reconstruction. The resulting estimate Ω̃
WPG

L1
can therefore

be regarded as a shrinkage estimator. A similar argument can be made for
all our Bayes estimators.

4. Reference prior. In this section, we derive a reference prior for Σ
and therefore Ω (see [1, 5, 6]). This is done first by reparametrizing the
density of the mle κ(S) of Σ with a parametrization naturally induced by
a given perfect order P of cliques. The parameters are in fact, the elements
of the Choleski decomposition of Σ̂ for the order of the vertices given by
P . As we will see below, the density of the mle of Σ belongs to a natural
exponential family and we will therefore follow the method given by Datta
and Ghosh [10] and later used by Consonni and Veronese [7] in the context
of general Wishart distributions, to derive the reference prior for the new
parameter. We will then consider the induced prior on Σ. It was shown in
[27] (Equations (4.14)-(4.18)), that if, for X = κ(nS) and a given perfect
order of the cliques P , we make the following change of variable

x 7→ ξ =
(
x[1]·, x[12>, x<2>, x[j]·, x[j>x−1

<j>, j = 2, . . . , k
)
,

then the density of the new variable Ξ is

W ∗∗
QG

(α, β, σ; dξ) ∝ |σ−1
[1]·|

p−
s2
2 |x[1]·|

p−
s2
2 −

c1−s2+1

2 e
−〈x[1]·,σ

−1
[1]·

〉
dx[1]·

× |σ−1
<2>|

p|x<2>|
p−

s2+1

2 e
−〈x<2>,σ−1

S2
〉

× |σ−1
[1]·|

+
s2
2 |x<2>|

c1−s2
2

(
e
−〈(x[12>−σ[12>),σ−1

[1]·
(x[1,2>−σ[1,2>)x<2>〉

dx[12>

)
dx<2>

×
k∏

j=2

|σ−1
[j]·|

+
sj

2 |x<j>|
cj−sj

2 e
−〈(x[j>x−1

<j>
−σ[j>σ−1

<j>
),σ−1

[j]·
(x[j>x−1

<j>
−σ[j>σ−1

<j>
)x<j>〉

× |σ−1
[j]·|

p−
sj

2 |x[j]·|
p−

sj

2 −
cj−sj+1

2 e
−〈x[j]·,σ

−1
[j]·

〉
dxC1

k∏

j=2

d(x[j>x−1
<j>)dx[j]·.

(4.1)

and the new parametrization replacing σ, in the order induced by the order of the
new variables, is clearly

(4.2) φ =
(

σ<2>, (σ−1
[1]·, σ[12>), (σ−1

[j]·, σ[j>σ−1
<j>), j = 2, . . . , k

)
.

We now derive the reference prior for φ and the induced prior for σ.

Theorem 4.1. Consider the scale parameter Σ ∈ QG for the Gaussian model NG.
Let σ = 2Σ and let φ be the ordered parameter as defined in (4.2). The reference
prior for φ is independent of the order of the components and has density equal to

(4.3) πφ(φ) = |σ[1]·|
c1+1

2 −s2 |σ<2>|
s2+1

2

k∏

j=2

|σ[j]·|
cj+1

2 −sj .
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12 B. RAJARATNAM ET AL.

Moreover the induced reference prior for the parameter σ ∈ QG is

πσ(σ) =
|σC1

|−
c1+1

2

∏k
j=2 |σCj

|−
cj+1

2

|σS2
|

c1+c2
2 −s2−

s2+1

2

∏k
j=3 |σSj

|
cj−sj

2 −
sj+1

2

(4.4)

which corresponds to an improper IWPG
(α, β, 0) distribution with

(4.5) αj = 0, j = 1, . . . , k, β2 =
c1 + c2

2
− s2, βj =

cj − sj

2
, j = 3, . . . , k .

The proof of the theorem is given in the Appendix. Let us note here that the
fact that the induced prior on σ is an IWPG

, albeit an improper one, is not too
surprising since, (see Theorem 4.1 of [27]), the IWPG

is a conjugate distribution for
the scale parameter of the distribution of κ(nS).

Because the distribution (4.4) has the form of an IWPG
, its posterior given

U = nS is an IWPG
with parameters

(4.6)

αj = 0 −
n

2
j = 1, . . . , k; β2 =

c1 + c2

2
− s2 −

n

2
; βj =

cj − sj

2
−

n

2
, j = 3, . . . , k

and
θ = κ(nS).

Of course, κ(ns) ∈ QG and it is easy to check that (α, β) ∈ B, that is, the posterior
distribution is a proper IWPG

. As in §3, we now need to compute the explicit
expression for E(Ω|S) and E(Σ|S) when the prior distribution on σ = 2Σ is the
objective prior (4.4). From Proposition 3.2 and equation (3.9), we immediately
obtain the following.

Corollary 4.1. Let Zi, i = 1, . . . , n be a sample from the N(0,Σ) distribution with
Σ ∈ QG. Let U =

∑n
i=1 ZiZ

t
i and let the prior distribution on 2Σ be as in (4.4).

Then the posterior mean of Ω = Σ̂−1 is

(4.7) E(Ω|S) =

k∑

j=1

(S−1
Cj

)0−

(
1 −

c1 + c2 − 2s2

n

)
(S−1

S2
)0−

k∑

j=3

(1−
cj − sj

n
)(S−1

Sj
)0

It is interesting to note here that when n tends to +∞, the expression of the
posterior mean in (4.7) becomes very close to the expression of the mleg of Ω as
given in (2.9). This will also be illustrated by our numerical results further in this
paper.

¿From Theorem 3.1, we immediately derive the posterior mean of Σ as follows.

Corollary 4.2. Let U and Σ as above, then E(2Σ|S) is given by equations (3.10)-
(3.14)for θ = π(nS) and (α, β) as in (4.6) with the additional condition that (α, β)
in (4.6) satisfy the inequalities

α1 +
c1 + 1

2
+ γ2 < 0, α1 +

c1 − s2 + 1

2
< 0, αj +

cj − sj + 1

2
< 0, j = 2, . . . , k.

We note here that the additional conditions imposed on the posterior hyper
parameters are there to insure that the moments given in (3.10)-(3.14) exist.
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FLEXIBLE COVARIANCE ESTIMATION 13

5. Decision theoretic results. In this section, we will derive the Bayes
estimators for Σ and Ω, under two loss functions similar to the classical L1 and L2

loss functions, but adapted to QG and PG. These Bayes estimators are of course
computed with respect to a given prior distribution. The prior distributions we will
consider are the HIW and the IWPG

as recalled in §3, and the reference prior as
developed in §4.

5.1. Bayes estimators for Σ and Ω. We now proceed to place the covariance
estimation problem in graphical models in a decision theoretic framework. Let us
first recall what is traditionally done in the saturated case, i.e. when G is complete.
Given a sample of size n from a Nr(0,Σ) distribution, letting Σ̃ be any estimator
of Σ based on that sample, we consider the following two loss functions

(5.1) L1(Σ̃,Σ) = 〈Σ̃, Σ−1〉 − log |Σ̃Σ−1| − r, L2(Σ̃,Σ) = 〈Σ̃ − Σ, Σ̃ − Σ〉

called Stein’s (or entropy, or likelihood, [34], [19]) and squared-error (or Frobenius,
[28], [25]) losses respectively. Other losses have also been considered in the literature
(see [33] for details). Many authors such as ([15, 22, 23]) have also considered the
estimation of the precision matrix Ω = Σ−1, instead of Σ. The reader is referred to
[37] for a more complete list. The natural analogues for Ω of (5.1) are

(5.2) L1(Ω̃,Ω) = 〈Ω̃,Ω−1〉−log |Ω̃Ω−1|−r, L2(Ω̃,Ω) = 〈Ω̃−Ω, Ω̃−Ω〉 = tr (Ω̃−Ω)2

A question that naturally arises in various contexts in multivariate analysis and
related topics is whether to estimate Σ or its inverse Ω = Σ−1. We choose to
focus on the estimation of both Σ and Ω in this paper for a variety of reasons.
The parameter Σ has a natural and well understood interpretation in multivariate
analysis and its direct estimation has numerous applications. The precision matrix
on the other hand has a natural and central place in Gaussian graphical models as
it is the canonical parameter of the natural exponential family NG and it sits in the
parameter set PG as defined in (2.2), a parameter set of dimension much smaller
than that of M+

r .
To our knowledge, in the case where G is decomposable and not complete, a

decision theoretic estimation of the scale parameters Σ or Ω has not been previously
considered. We will do so now. We first observe that the traditional loss functions
used for saturated models need to be reconsidered for graphical models as we now
have fixed zeros in the inverse covariance matrix and therefore fewer parameters.
This is clear in the expression of L2(Ω̃,Ω) in (5.2) when Ω is in PG. Indeed, we have

L2(Ω̃,Ω) =
∑

(i,j)∈E

(Ω̃ij − Ωij)
2

dependent not on r(r + 1)/2 parameters but on the non zero parameters only.
Similarly, because of the structural zeros of Ω ∈ PG, L1(Ω̃,Ω) in (5.2) depends only
on the non zero elements of Ω. We also note that, according to (2.7) and (2.8), for
an arbitrary decomposable graph G, when Σ̃ and Σ both belong to QG, (5.1) can
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14 B. RAJARATNAM ET AL.

be written as L1(
̂̃Σ, Σ̂) = L1(Σ̃,Σ) where

(5.3) L1(Σ̃,Σ) =
∑

C∈C

〈Σ̃C ,Σ−1
C 〉 −

∑

S∈S

〈Σ̃S ,Σ−1
S 〉 − log

∏
C∈C |Σ̃C |

∏
S∈S |ΣS |∏

C∈C |ΣC |
∏

S∈S |Σ̃S |
− r

which involves solely the elements of Σ ∈ QG and Σ̃ ∈ QG and not the non free

elements of their completions Σ̂ and
̂̃
Σ. Accordingly, we shall modify the traditional

L2 loss function for Σ ∈ QG as follows so that, like L1(Σ̃,Σ), it depends only on

the free parameters of ̂̃Σ. For Σ and Σ̃ in QG, we define

L2(Σ̃,Σ) = 〈Σ̃ − Σ, Σ̃ − Σ〉 =
∑

(i,j)∈E

(Σ̃ij − Σij)
2 .(5.4)

We have therefore modified, when necessary, the traditional loss functions given
by (5.1)-(5.2) to take into account the graphical nature of the covariance matrix.
We now derive the corresponding Bayes estimators for these newly defined loss
functions and given priors.

Proposition 5.1. Let Zi, i = 1, . . . , n and U = nS be as in Corollary 3.1. Then,
for a given prior π(Σ) on Σ ∈ QG, the Bayes estimators of Σ under (5.3) and (5.4)
are equal to, respectively,

Σ̃
π(Σ|U)
L1 = κ

(
[Eπ(Σ|U)(Σ̂−1)]−1

)
and Σ̃

π(Σ|U)
L2 = Eπ(Σ|U)(Σ)(5.5)

where π(Σ|U) denotes the posterior distribution of Σ given U .

For a given prior π(Ω) for Ω ∈ PG, the Bayes estimators of Ω under the loss
functions in (5.2) are equal to, respectively,

Ω̃
π(Ω|U)
L1 = ̂[Eπ(Ω|U)(κ(Ω−1))]

−1

and Ω̃
π(Ω|U)
L2 = Eπ(Ω|U)(Ω)(5.6)

Proof. We first derive the expression of Σ̃
π(Σ|U)
L1 in (5.5). The Bayes estimator is

the estimator Σ̃ that minimizes the posterior expected loss. So for L1 loss, we have

Eπ(Σ|U)
[
L1(Σ̃,Σ)

]
=

∫ [
〈Σ̃ , Σ̂−1〉 − log |Σ̃ Σ̂−1| − r

]
π(Σ|U)dΣ

= 〈Σ̃ , Eπ(Σ|U)[Σ̂−1]〉 − log |Σ̃| − Eπ(Σ|U)[log |Σ̂−1|] − r

= 〈Σ̃ , R(U)〉 − log |Σ̃| − c

for some constant c and R(U) = Eπ(Σ|U)[Σ̂−1]. Minimizing the posterior expected
loss is equivalent to maximizing the function log |Σ̃| − 〈Σ̃ , R(U)〉 with respect to

Σ̃. This function is concave and is maximized at Σ̃ = R(U)−1 = [Eπ(Σ|U)[Σ̂−1]]−1

hence yielding the Bayes estimator of Σ for L1 loss.

Let us now derive the expression of Σ̃
π(Σ|U)
L2 in (5.5). Once more the L2 Bayes

estimator is found by minimizing the posterior expected loss. Now,

RL2
[Σ̃,Σ] =

∫ ∑

(i,j)∈E

(Σ̃ij − Σij)
2π(Σ|U)dΣ =

∑

(i,j)∈E

∫
(Σ̃ij − Σij)

2π(Σ|U)dΣ .
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FLEXIBLE COVARIANCE ESTIMATION 15

Since we are minimizing a sum of terms, it is sufficient to minimize each one of
the terms. It is well-known (see [15]) that each one of these is minimized for Σ̃ij =

Eπ(Σ|U)(Σij), which gives us the desired expression for Σ̃
π(Σ|U)
L2

. The proofs for the
Bayes estimators of Ω follow along similar lines.

We derived the expression of Σ̃
π(Σ|U)
L2

above, even though it is straightforward,
in order to emphasize the fact that, unlike in the classical case when one estimates
a complete covariance matrix, the posterior means are Bayes optimal only if the L2

loss function is modified to reflect the graph that underlies Σ. In other words the
posterior mean will not be the Bayes estimator if non-free elements of the matrix Σ
contribute to the loss, a point that can be easily overlooked when considering deci-
sion theoretic estimation for graphical models using the traditional loss functions.

It is important to note here, since it will simplify many of our computations in
§6 and §7, that the L1 estimator for Σ is the ϕ transformation of the L2 estimator
for Ω. A similar result holds for L2 estimator for Σ i.e.

Σ̃L1
= κ

(
[Ω̃L2

]−1
)
, Σ̃L2

= κ
(
[Ω̃L1

]−1
)

The risk functions corresponding to the losses above are

RLi
(Σ̃Li

) = E[Li(Σ̃Li
,Σ)], RLi

(Ω̃Li
) = E[Li(Ω̃Li

,Ω)], i = 1, 2

In the subsequent sections, these risk functions will be used to assess the quality
of the eight estimators that we consider. For each of Σ and Ω, the eight estimators
considered will be the sample covariance matrix S (if ignoring the graphical model

structure) and its inverse, the mleg for Σ and Ω, Σ̃g and Ω̃g, and

Σ̃π
Li

, i = 1, 2 and Ω̃π
Li

, i = 1, 2

where the prior π will be a HIW or more generally an IWPG
, or the reference prior.

5.2. Risk properties of Σ̃g . We now proceed to state a decision-theoretic

property of the maximum likelihood estimator Σ̃g of Σ ∈ QG. From (2.9), it follows
immediately that

Σ̃g =




k∑

j=1

[S−1
Cj

]0 −
k∑

j=2

[S−1
Sj

]0



−1

.

Lemma 5.1. The maximum likelihood estimator Σ̃g is the best L1 estimator in the

class of estimators of the form aΣ̃, a ∈ IR where

Σ̃ =




k∑

j=1

[κ(U))−1
Cj

]0 −
k∑

j=2

[κ(U)−1
Sj

]0



−1

(5.7)

and U =
∑n

i=1 ZiZ
t
i

imsart-aos ver. 2006/03/07 file: RMC07v13.tex date: May 1, 2008



16 B. RAJARATNAM ET AL.

Proof. Recall that for the estimator aΣ̃ under L1 loss we have,

R1(aΣ̃,Σ) = E[〈Σ̂−1, aΣ̃〉 − log |Σ̂−1aΣ̃| − r]

= a〈Σ̂−1, E[Σ̃]〉 − r log(a) − E[log |Σ̂−1Σ̃|] − r

Now since E[Σ̃] = nΣ (see [24], page 133) we have that a〈Σ̂−1, E[Σ̃]〉 = nra.
Moreover, by (2.8),

E[log |Σ̂−1Σ̃|] = E

[
log

det Σ̃

detΣ

]
= E

[
log

∏
C∈C |Σ̃C |

∏
S∈S |ΣS |∏

C∈C |ΣC |
∏

S∈S |Σ̃S |

]

= E


log

∏
C∈C |Σ

− 1
2

C Σ̃CΣ
− 1

2

C |
∏

S∈S |Σ
− 1

2

S Σ̃SΣ
− 1

2

S |




Since Σ
− 1

2

C Σ̃CΣ
− 1

2

C ∼ WC(n, IC) and Σ
− 1

2

S Σ̃SΣ
− 1

2

S ∼ WS(n, IS) (see [31]),

log |Σ
− 1

2

C Σ̃CΣ
− 1

2

C | =

ci∏

j=1

χ2
n−j+1, log |Σ

− 1
2

S Σ̃SΣ
− 1

2

S | =

si∏

j=1

χ2
n−j+1 .

Letting E[log |Σ̂−1Σ̃|] = m which is a constant independent of Σ or a, we therefore
now have R1(aΣ̃,Σ) = anr − r log a − m − r. Differentiating with respect to a and
setting the derivative to zero gives a = 1/n, which proves the lemma.

6. Risk comparisons and numerical properties. In this section, through
two examples, we investigate the performance of our Bayes estimators derived from
the different priors presented in §3 and 4. We base our comparisons on frequentist
risk calculations obtained from simulations under losses L1 and L2 for both Σ and
Ω, on predictive properties and on eigenvalues properties.

6.1. Example 1: “Two Cliques”. In this example, we illustrate the power
and flexibility of the IWPG

family and its multiple shape parameters. We build a
general example based on the call center data analyzed in [18] and described in §7.
First, we define a graph G with 100 vertices (r = 100) where C1 = {1, . . . , 70}, C2 =
{61, . . . , 100} and S2 = {61, . . . , 70}. The true covariance matrix Σ is constructed
by: (i) taking the sample covariance of the first 100 variables in the call center
data; (ii) removing the ij entries corresponding to (i, j) which are not edges of G
and (iii) performing the completion operation described in (2.1). This procedure
guarantees that Σ preserves the conditional independence relationships specified in
G. This example involves cliques of different dimensions (c1 = 70 and c2 = 40)
and our goal is to show that it is possible to obtain improved estimators by using
an IWPG

prior with multiple shape parameters. The idea here is to apply different
levels of shrinkage for each clique, i.e more shrinkage for larger cliques, following
the intuition that more shrinkage is necessary in higher-dimensional problems.

Our simulations compare estimators based on the reference prior, the traditional
hyper-inverse Wishart (one shape parameter, δ = 3) and five versions of the IWPG

.
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Table 1

Two Cliques: Risk for estimators.

n = 75 n = 100 n = 500 n = 1000

L1(Ω) L1(Σ) L1(Ω) L1(Σ) L1(Ω) L1(Σ) L1(Ω) L1(Σ)

Reference 212.7 66.61 60.71 40.93 7.02 6.66 3.33 3.28

HIW (3, I) 98.76 59.28 80.72 43.41 7.76 7.18 3.54 3.43

Empirical Bayes (i) 127.47 58.43 78.05 42.87 7.70 7.13 3.52 3.41
Empirical Bayes (i)-D 27.44 25.84 23.74 21.95 6.31 6.02 3.20 3.12

Empirical Bayes (ii) 121.55 57.12 74.45 41.81 7.60 7.05 3.51 3.39
Empirical Bayes (ii)-D 24.78 23.04 21.48 19.95 6.12 5.86 3.16 3.08

IWPG
(1/2ci, D) 29.99 25.18 24.53 24.49 6.37 6.21 3.27 3.22

IWPG
(1/2ci, I) 207.4 67.88 116.7 49.78 8.69 7.80 3.76 3.61

IWPG
(1/4ci, D) 22.18 17.96 18.57 15.87 5.67 5.43 3.03 2.96

IWPG
(1/4ci, I) 165.5 63.10 96.14 46.20 8.14 7.43 3.67 3.50

IWPG
(1/10ci, D) 35.71 31.99 31.59 27.02 6.77 6.41 3.32 3.23

IWPG
(1/10ci, I) 141.7 60.23 89.67 45.03 7.98 7.32 3.59 3.47

MLEg 813.9 70.72 154.6 43.51 8.13 6.79 3.62 3.32
MLE – – 7.3×108 102.5 14.45 10.85 6.00 5.22

In the latter, we first choose the shape parameters in proportion to clique size. More
specifically, we choose αi of the form

αi = −
δi + ci − 1

2
i = 1, 2

with δi equal to 1
2ci,

1
4ci and 1

10ci. In addition, we also compare risk obtained from
empirical Bayes estimates of shape parameters. These were computed based on the
following specifications of α and β as a function of clique size:

(i) αi = −(δci+ci−1)
2 and βi = −(δsi+si−1)

2 ;

(ii) αi = aci + b and βi = asi + b.

Notice that in order to obtain the empirical Bayes estimates of α and β we maximize
the marginal likelihood as a function of δ in case (i) whereas in (ii) the maximization
is done as a function of both a and b. For all choices of shape parameters, we define
the scale matrix in two ways: the identity matrix I and a matrix D for which the
prior expected value of Σ ∈ QG is I. Conditional on a shape parameter, D can
be easily derived as we saw in Lemma 3.1. This example focuses on L1 loss and
the impact of flexible priors in estimating the eigenstructure of Σ and Ω. The
results in Table 1 show that appropriate choices of different shape parameters have
a significant effect in reducing the risk of estimators. Looking at L1(Ω), and n = 75,
for the estimator under IWPG

( 1
4ci,D) there is approximately a 78% (76% for n =

100, 20% for n = 500 and 9% for n = 1000) reduction in risk when compared with
the more traditional HIW (3, I). When comparing to the constrained maximum
likelihood estimator (mleg) the reduction is even more impressive: 97% for n = 75,
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Fig 1. Scree plots of eigenvalues for Ω (top row) and Σ (bottom row) in the simulation
with n = 100. For each estimator, the lines represent the average of the eigenvalues after
1000 simulations. “Best” refers to the estimator with lowest risk (IWPG

(1/4ci, D)).

87% for n = 100, 30% for n = 500 and 16% for n = 1000. Additionally the reference
prior performs well and always beats the mleg.

We emphasize the connection between L1 and the eigenstructure of Ω and Σ
by the scree plots in Figure 1. It is our belief that the superior performance of
the Bayesian estimators under the IWPG

and the reference prior relative to the
mleg is a direct consequence of the better estimation of the eigenvalues of both the
precision and covariance matrices.

This experiment also indicates that choosing the amount of shrinkage as a func-
tion of shape parameters can be a delicate task. Here, we find that δi = 1

4ci (that
is δ1 = 17.5 and δ2 = 10) performs best and seems to be a good compromise
between δi = 1

10ci and δi = 1
2ci. The definition of appropriate hyperparameters

and the choice of shrinkage level is context specific and depends on the amount
of prior information available. An alternative to the subjective specification of the
hyperparameters is the empirical Bayes approach presented. The results in Table
1 show that this alternative performs reasonably well and uniformly outperforms
the reference prior (the other objective alternative). As we show in this example,
the IWPG

offers a very general framework for the incorporation of prior knowledge
with the ability to significantly improve the performance of posterior estimators
and estimation of covariance matrices in general.

6.2. Example 3: Choosing the Graph. Our second example demonstrates the
potential of graphical models as a model-based tool for regularization and estima-
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tion of large covariance structures. So far, we have presented examples that compare
the performance of different estimators (based on different priors) assuming knowl-
edge of G. In real problems, G is unknown and often has to be inferred before
parameter estimation. ¿From a Bayesian perspective, model selection involves the
exploration of the posterior distribution of graphs given by

(6.1) p(G|X) ∝ p(X|G)p(G)

where p(X|G) is the marginal likelihood of G and p(G) represents its prior. In Gaus-
sian graphical models the marginal likelihood for any G is given by the following
integral

(6.2) p(X|G) =

∫

QG

f(X|Σ, G)π(Σ|G)dΣ,

where f(X|Σ, G) is the density of X given Σ and G and π(Σ|G) is the prior distri-
bution for Σ given G. Using IWPG

conjugate priors for Σ makes the computation of
the above integral straightforward since the expression of the marginal likelihood is
obtained explicitly through the normalizing constant of the IWPG

as given in (3.4).
If we assume a uniform prior over the graphs, computing the posterior distribution
of graphs is equivalent to computing the marginal likelihoods.

To illustrate how graphical models can be used as a regularization tool, we
build an example where the underlying graph is unknown and will be selected
based on marginal likelihoods of a particular restricted set of graphs. We focus on
a subclass Gb60 of graphs where the precision matrix is “banded” (see [2]). The
restricted subclass Gb60 consists of the decomposable graphs Gk, k = 1, . . . , 60 with
cliques Cj = {j, j + 1, . . . , j + k}, j = 1, . . . , r − k. The graphical Gaussian model
Markov with respect to Gk can be viewed as an AR(k) model and the corresponding
precision matrix is a banded matrix with a band of width k + 1, indicating that all
elements beyond the kth supra-diagonals are zero. For added simplicity, we use the
HIW (3, I), a special case of the IWPG

, as a prior for Σ.
As in the previous example we build the true covariance matrix from the sample

covariance of the call center data using a graph corresponding to k = 20 followed by
the completion operation in (2.1). We proceed by sampling n observations from a
Nr(0,Σ), 1000 times. At each iteration, we compute the marginal likelihood for all
graphs with k = 1, . . . , 60, choosing the top model to proceed with the estimation
of Σ. For each estimator, under the different priors, losses are computed and risk
compared. We also investigate the performance of the procedure by comparing
estimators generated through the “oracle” that knows the correct value of k. The
corresponding risk values are given in brackets.

We repeat this exercise for n = 100, 500 and 1000 with results presented in
Table 2. In each case, the average of the best k’s is denoted k̂ and is also given in
the table.

It is clear from the example that more parsimonious models are selected from
small sample sizes. Indeed, for n = 100 we choose the average band size k̂ = 4.36;
for n = 500, we choose k̂ = 7.38 and for n = 1000, k̂ = 18.80. This highlights the
Ockham’s razor effect of marginal likelihoods [20], in selecting a graph. Moreover,
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Table 2

Choosing the Graph Example: Risk for estimators. The values in parentheses refer
to the risk of estimators generated by the “oracle” (k = 20)

n = 100 k̂ = 4.36

R1(Ω) R1(Σ) R2(Ω) R2(Σ)

Reference 15.36 (23.67) 17.14 (19.85) 1902.6 (13375.0) 22.19 (241.2)

HIW (3, I) 14.76 (22.77) 16.55 (19.11) 1736.3 (10350.0) 16.23 (56.88)

MLEg 15.89 (32.64) 18.42 (21.08) 1876.0 (9897.80) 16.54 (57.74)
MLE 9.9×106 102.53 1.1×1018 133.08

n = 500 k̂ = 7.38

R1(Ω) R1(Σ) R2(Ω) R2(Σ)

Reference 8.084 (11.94) 9.078 (11.79) 1105.6 (1500.6) 5.648 (16.01)

HIW (3, I) 8.053 (11.96) 8.961 (12.81) 1101.7 (1234.5) 5.070 (11.09)

MLEg 8.129 (12.20) 9.297 (15.85) 1116.8 (1571.2) 5.088 (11.12)
MLE 14.45 10.85 3147.4 26.43

n = 1000 k̂ = 18.80

R1(Ω) R1(Σ) R2(Ω) R2(Σ)

Reference 2.256 (1.930) 2.203 (1.893) 345.5 (310.3) 6.624 (7.009)

HIW (3, I) 2.259 (1.936) 2.197 (1.899) 350.4 (317.9) 5.480 (5.736)

MLEg 2.311 (1.992) 2.232 (1.910) 331.8 (291.3) 5.492 (5.747)
MLE 6.003 5.226 1006.8 13.20

for n = 100 and n = 500 the losses generated by the oracle are always larger
than those of our estimators, with the oracle only being relatively competitive for
n = 1000.

7. Call centre data. In this section, we apply our methodology to the call
center data analyzed in [2, 18]. With this example, we will illustrate the predictive
properties of our estimators and the flexibility yielded by graphical models. Indeed,
we will show that our estimators when using banded matrices and the IWPG

have
a smaller predictive error than the mleg. More strikingly, we will show that when
using bands varying in width along the diagonal together with the IWPG

, our
estimators yield significantly improved predictive power over the best uniformly
banded model.

The dataset in this example constitutes records from a call center of a ma-
jor financial institution in 2002 where the number of incoming phone calls during
10-minute intervals from 7:00 am till midnight were recorded. Weekends, public
holidays and days with equipment malfunction are excluded, resulting in data for
239 days. The number of calls in each of these intervals are denoted as Nij ,
i = 1, 2, ..239 and j = 1, 2, .., 102. A standard transformation xij = (Nij + 1

4 )1/2 is
applied to the raw data to make it closer to Normal.

7.1. Analysis with banded precision matrices. We consider the class of mod-
els Gb60 as described in §6.2 and as we saw there, choosing a model Markov with
respect to Gk ∈ Gb60 is equivalent to banding the inverse covariance matrix and our
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results can therefore be readily compared to those in [2]. It is important to note,
however, that our approach differs from that of [2] in two ways. First, in [2] the
banded estimators for the precision matrix are used as estimators of the saturated
Σ−1. We, on the other hand, fit graphical models to the call center data, explic-
itly assuming that the true Σ is such that Σ−1 is in PG, that is, has fixed zeros.
Secondly, we use the eight estimators for Σ as described in §5.1. This includes the
traditional frequentist estimator for the graphical model, mleg, and the Bayesian
estimators that we have developed above.

We employ both the traditional cross-validation and Bayesian model selection
procedures to determine the “best” model among the class of graphical models
with k-banded precision matrices. The cross-validation procedure is done through
the K-fold cross-validation method with K = 10. The dataset with 239 data points
is divided into 10 parts (the first 9 parts have 40 observations and the last has 39
observations). We predict the second half of the day, given data for the first half,
on the test data after computing estimators on the training dataset. In particular,
we partition the 102-dimensional random vectors X1,X2, ...,X239 into two equal
parts, each representing the first and second half of the day as follows:

x =

(
x(1)

x(2)

)
, µ =

(
µ1

µ2

)
, Σ =

(
Σ11 Σ12

Σ21 Σ22

)

where x
(1)
i = (xi1, xi2, ..., xi51)

t and x
(2)
i = (xi52, xi53, ..., xi102)

t. The mean vectors

are partitioned in a similar manner. The best linear predictor for x
(2)
i from x

(1)
i is

given by

x
(2)
i = µ2 + Σ21Σ

−1
11 (x

(1)
i − µ1)

We use the prediction equation above with the following eight estimators for Σ: the

mle and mleg, the estimators based on L1 loss, Σ̃
IWPG

L1
, Σ̃HIW

L1
, Σ̃Ref

L1
, and the esti-

mators based on L2 loss, Σ̃
IWPG

L2
, Σ̃HIW

L2
, Σ̃Ref

L2
. For the Bayes estimators we use the

traditional choice of the identity matrix as the scale hyper-parameter and the shape
parameters for the IWPG

are set as αi = −5,∀i, β2 = −4+ k
2 . The prediction error

on the test data is measured by the average absolute forecast error. The Bayesian
model selection procedure entails choosing the model with the maximum marginal
likelihood according to the principles given in §6.2. Here the prior distribution used
for Σ ∈ QG is the IWPG

with the same hyperparameters as above.
For all eight estimators, the cross-validation procedure identifies k = 4 as the

model with the lowest prediction error for the second half of the day given the
first. The Bayesian model selection procedure identifies k = 5 as the model with
highest marginal likelihood. We note that both model selection procedures yield
very similar, parsimonious models for the call-center data.

We proceed to compare the forecast performance (or prediction error) of our
estimators. As done in [2], we forecast the second half of the day based on the first
half using the first 205 data points as the training set and the last 34 as the test
set. The prediction error lines are given in Figure 2.
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Fig 2. Forecast error for selected banded and “differentially banded” models.

The Σ̃
IWPG

L1 and Σ̃Ref
L1 prediction error lines are so close that it is difficult to

distinguish between the two in a plot and thus we only show the one for Σ̃
IWPG

L1
.

Prediction errors using the Bayes estimators are all lower than the prediction error
given by the mleg and by the standard sample covariance matrix, the mle. For
the sake of clarity, Figure 2 gives the forecast error for the best model (AR(4))

chosen via cross-validation for the mle, the mleg, Σ̃
IWPG

L1 and another estimator,
“L1IWPG

diff” we will describe in §7.2.
Besides the overall poor performance of the standard estimator S, it is also well

understood that S overestimates the largest eigenvalues and underestimates the
lowest eigenvalue. An examination of the scree plots implied by the eigenvalues
of our Bayes estimators (not shown here for brevity) reveals that our Bayes esti-
mators compared to S have lower estimates of the largest eigenvalues and higher
estimates for the smallest eigenvalues - hence the Bayes estimators seem to shrink
the eigenvalues towards the center of the eigenspectrum, a property often sought
by estimators proposed in previous work ([9, 25, 35]).

7.2. Analysis with Differential Banding. In the above analysis we restricted
ourselves to the class of k-banded inverse covariance models or AR(k) models. This
approach highlighted, among other important properties, the fact that banding the
inverse covariance matrix, as carried out in Bickel and Levina [2], essentially entails
fitting graphical models.

We noted that the cross-validation error from predicting the second half of the
day given the first half suggested that the AR(4) model (i.e. k = 4) gave the lowest
prediction error. The cross-validation error from predicting the first half of the day
given the second half suggested that the AR(16) model (i.e. k = 16) gives the
lowest prediction error. These two different values of k suggests that one single k
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may not be sufficient to explain the features of this data set. An examination of the
sample correlation matrix suggests different correlation structures during the first
and second half of the day. In particular the correlation between variables which
are farther apart is stronger in the first half of the day than in the second half of the
day, suggesting that the order of the lag, which represents the level of the strength
between neighboring variables, could be different in different parts of the day. It
seems that “differential banding” of the inverse covariance matrix is necessary to
capture this effect and fitting a straight k-banded model, as was done previously,
may not necessarily allow the flexibility that we want.

A natural approach to obtaining this flexibility is to frame the problem once
more in the context of graphical models. Let us now consider graphical models
with two different clique sizes for the two parts of the day as an extension of the
single clique size suggested by k-banded models. We note that k-banded models
have cliques of size k + 1 and separators of size k. Let us consider what we term
as (k1, k2, r) “differentially banded” models, where k1 + 1 represents the size of the
cliques in the first part of the day, k2 + 1 the size of the cliques in the second part
of the day, and r the point at which the change takes place - and in our case this
point r will be the variable at which the the last clique of size k1 + 1 ends1. The
next clique after this last clique of size k1 + 1 will be the clique of size k2 + 1 such
that only variable r + 1 does not belong to the previous clique of size k1 + 1. The
cliques in the second part of the day will now cascade as before but will be of size
k2 + 1.

We keep the same hyperparameters (α, β, θ) as in §7.1 since they still satisfy the
conditions in §3.1 for the given perfect order P of cliques. The same K-fold cross-
validation procedure is used to select the (k1,k2,r) model with the lowest prediction
error. We found that the (k1 = 14, k2 = 4, r = 58) differentially banded model has
the lowest prediction error when using the IWPG

priors. These results are consistent
with those from the cross-validation in §7.1 and show that there is compelling
evidence to suggest that there are different correlation structures during different
parts of the day. For a concrete illustration of the benefits of differential banding,
and for comparison purposes with [2], we also considered the task of choosing the
best model for predicting the second half of the day based on the first half, as done
in §7.1. In this case, the model with the lowest prediction error using the IWPG

prior Bayes estimates under the L1 loss turns out the be the (k1 = 14, k2 = 1,
r = 55) model. Other estimators also perform comparably but we omit the details
here. The corresponding forecast error from using this model in comparison with
the k-banded models from before is given in Figure 2. Clearly, the “differentially
banded” model gives us a substantial reduction in prediction error. Using the k-
banded model yields a 23% reduction in prediction error over the sample covariance
matrix S and the “differentially banded” model gives a 16% improvement over the
best k-banded model. Our new class of models gives better prediction than the
k-banded models for almost all time points.

The results above highlight the performance of our estimators and their versatil-
ity in different settings. Moreover, and perhaps equally important is that taking a

1Naturally one can also extend this concept to multiple banding
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graphical models approach yields a much richer class of models than simple banding
and achieves this flexibility in a very natural way in high dimensional problems.

8. Discussion. In this paper we considered the estimation of high-dimensional
covariance and precision matrices in Gaussian graphical models using a family of
flexible, conjugate priors with multiple shape parameters. Existing Bayesian meth-
ods resort to either using the restrictive Diaconis-Ylvisaker conjugate prior with
only one-dimensional shape parameter or using MCMC methods, both of which
can be completely inadequate or at times even infeasible in very high-dimensional
settings. Our objective in this paper was to overcome both of these obstacles and
develop a comprehensive Bayesian solution to the problem at hand.

We derived the form of the Bayes estimators under two commonly used loss
functions, adapted to graphical models, for our flexible class of priors. Another
important contribution of our work is the derivation of a non-informative refer-
ence prior for Σ and Ω. Finally, we observe that our Bayes estimators have good
frequentist risk properties and yield shrinkage in the eigenvalues.

The unique set of properties of the approach proposed in this paper for the esti-
mation of large covariance matrices makes it a viable and competitive methodology.
Nevertheless, there is further scope to fully assess the properties of our estimators.
For instance, we would like to know more about their asymptotic properties when
both r and n become large and we would also like to know more about the behavior
of their eigenvalues. These and many other questions will be the subject of further
work.
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9. Appendix.

9.1. Proof of Theorem 3.1. To compute the mean of the IWPG
, that is to

prove Theorem 3.1, we first need to recall the definition of the normal matrix variate
and to prove the lemma below. Let us first recall the form of the matrix normal
distribution as given in [31], page 79. Let X be an r × s random matrix. Then we
say that X ∼ N(m,σ1 ⊗ σ2) where σ1 is r× r and σ2 is s× s if its density is of the
form

(9.1) f(x) = (2π)
rs
2 |σ1|

− s
2 |σ2|

− r
2 exp−

1

2
〈σ−1

1 (x − m)σ−1
2 , (x − m)〉.

Lemma 9.1. Let X ∈ IRr×s follow a normal distribution Nr×s(m,σ1 ⊗ σ2) where
σ1 is a positive definite s × s matrix and σ2 is a positive definite r × r matrix. Let
a = (aij)1≤i,j≤s be a given fixed s × s matrix. Let

(σ1 ⊗ σ2)ij

be the r × r block in the i-th block row and the j-th block column of the rs × rs
covariance matrix (σ1 ⊗ σ2) where the rows are divided into s sets of r rows and so
are the columns. Similarly, divide the rs × rs matrix vecE(X)(vecE(X))t matrix
into s2 blocks

(vecE(X)(vecE(X))t)ij , 1 ≤ i, j ≤ s

of size r × r. Then

E(XaXt) =
∑

1≤i,j≤s

aij

(
(σ1 ⊗ σ2)ij + (vec(m)vec(m)t)ij

)
(9.2)

= mamt + tr (σ1a
t)σ2(9.3)

Proof. Let Xi, i = 1, . . . , s denote the columns of the r × s matrix X, then a
straightforward calculation shows that XaXt =

∑
1≤i,j≤s aijXiX

t
j and therefore

E(XaXt) =
∑

1≤i,j≤s

aijE(XiX
t
j) .

Since by [31], if X ∼ Nr×s(m,σ1 ⊗ σ2), then vec(X) ∼ Nrs(vec(m), σ1 ⊗ σ2), it is
clear that

E(XiX
t
j) = cov(Xi,Xj) + E(Xi)E(Xj)

t = (σ1 ⊗ σ2)ij + (vec(m)vec(m)t)ij

E(XaXt) =
∑

1≤i,j≤s

aij

(
(σ1 ⊗ σ2)ij + (vec(m)vec(m)t)ij

)

which gives (9.2) and (9.3) can be verified by inspection. This completes the proof
of the lemma.
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Proof. Using the distributional properties of various sublocks of an IWPG
matrix

as given in Theorem 4.4 of [27], we will compute the expected value of the different
entries of the matrix X. Because of the difference dependences, we shall proceed in
the following order:

E(x<2>)

E(xC1\S2,S2
) = E(x[12>x<2>) = E(x[12>)E(x<2>) = E(E(x[12>|x[1]·))E(x<2>)

E(xC1\S2
) = E(x[1]·) + E(x[12>x<2>x<21]) = E(x[1]·) + E(x[12>E(x<2>)x<21])

= E(x[1]·) + E(E(x[12>E(x<2>)x<21]|x[1]·))

E(x[j>) = E((x[j>x−1
<j>)x<j>) = E((x[j>x−1

<j>))E(x<j>), j = 2, . . . , k

E(x[j]) = E(x[j]·) + E((x[j>x−1
<j>)x<j>(x−1

<j>x<j])) j = 2, . . . , k

= E(x[j]·) + E((x[j>x−1
<j>)E(x<j>)(x−1

<j>x<j]))

= E(x[j]·) + E(E((x[j>x−1
<j>)E(x<j>)(x−1

<j>x<j])|x[j]·))(9.4)

Following the general formula for the expectation of an inverse Wishart distribution
we have

E(x<2>) =
θ<2>

−(α1 + c1−s2

2 + γ2) −
s2+1

2

=
θ<2>

−(α1 + c1+1
2 + γ2)

.

Next,

E(xC1\S2,S2
) = E(x[12>x<2>) = E(x[12>)E(x<2>)

= θ[12>
θ<2>

−(α1 + c1+1
2 + γ2)

=
θC1\S2,S2

−(α1 + c1+1
2 + γ2)

.
(9.5)

Next,

E(xC1\S2
) = E(x[1]·) + E(x[12>x<2>x<21]) = E(x[1]·) + E(x[12>E(x<2>)x<21])

= E(x[1]·) + E(E(x[12>E(x<2>)x<21]|x[1]·))

=
θ[1]·

−(α1 + c1−s2+1
2 )

+ E

(
θ[12>

θ<2>

−(α1 + c1+1
2 + γ2)

θ<21] +
1

2

trθ−1
<2>θ<2>

−(α1 + c1+1
2 + γ2)

x[1]·

)

=
θ[1]·

−(α1 + c1−s2+1
2 )

+
θC1\S2,S2

θ−1
<2>θS2,C1\S2

−(α1 + c1+1
2 + γ2)

+
s2θ[1]·

2(α1 + c1+1
2 + γ2)(α1 + c1−s2+1

2 )

=
θ[1]·

−(α1 + c1−s2+1
2 )

(
1 −

s2

2(α1 + c1+1
2 + γ2)

)
+

θC1\S2,S2
θ−1

<2>θS2,C1\S2

−(α1 + c1+1
2 + γ2)

(9.6)

and

E(x[j>) = E((x[j>x−1
<j>)x<j>) = E((x[j>x−1

<j>))E(x<j>)

= θ[j>θ−1
<j>E(x<j>) ,

(9.7)
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where E(x<j>) is given by the previous calculations (note that we are computing
E(X) layer by layer starting from the top).

Now, using the same type of calculations as in the computation of E(x[1]·), we
have, for j = 2, . . . , n

E(x[j]) = E(x[j]·) + E(E((x[j>x−1
<j>)E(x<j>)(x−1

<j>x<j])|x[j]·))

=
θ[j]·

−(αj +
cj−sj+1

2 )
+ θ[j>θ−1

<j>E(x<j>)θ−1
<j>θ<j] +

tr(θ−1
<j>E(x<j>))

−2(αj +
cj−sj+1

2 )
θ[j]·

=
θ[j]·

−(αj +
cj−sj+1

2 )

(
1 +

1

2
tr(θ−1

<j>E(x<j>))

)
+ θ[j>θ−1

<j>E(x<j>)θ−1
<j>θ<j]

(9.8)

This completes the proof.

9.2. Proof of Theorem 4.1.

Proof. Following (4.1), we see that the log-likelihood for φ is

l(φ) = l(σ−1
[1]·, σ[12>, σ−1

<2>, σ−1
[j]·, σ[j>σ−1

<j>, j = 2, . . . , k)

= p log |σ−1
[1]·| + p log |σ−1

<2>| +
k∑

j=2

p log |σ−1
[j]·|

− 〈x[1]·, σ
−1
[1]·〉 − 〈x<2>, σ−1

<2>〉 − 〈(x[12> − σ[12>), σ−1
[1]·(x[1,2> − σ[1,2>)x<2>〉

−
k∑

j=2

〈x[j]·, σ
−1
[j]·〉 −

k∑

j=2

〈(x[j>x−1
<j> − σ[j>σ−1

<j>), σ−1
[j]·(x[j>x−1

<j> − σ[j>σ−1
<j>)x<j>〉.

(9.9)

In order to obtain the information matrix Hφ(φ) = E
(

d2l(φ)
dφ2

)
we differentiate the

log-likelihood twice. We can then see that the Fisher’s information matrix is block
diagonal with blocks Hφ

j (φ), j = 1, . . . , k + 1 according to

φ1 = σ−1
<2>, φ2 = (σ−1

[1]· , σ[12>), φj+1 = (σ−1
[j]· , σ[j>σ−1

<j>), j = 2, . . . , k

In fact, since E(x[12>) = σ[12> and E(x[j>x−1
<j>) = σ[j>σ−1

<j>, j = 2, . . . , k, each

Hφ
j (φ), j = 2, . . . , k + 1 is itself block diagonal and its determinant is

det Hφ(φ) =
k+1∏

l=1

det Hφ
l (φ)

where

det(Hφ
1 (φ)) = |σ<2>|

s2+1(9.10)

det(Hφ
2 (φ)) = |σ[1]·|

−s2 |E(X<2>)|c1−s2 |σ[1]·|
c1−s2+1

det(Hφ
j+1(φ)) = |σ[j]·|

cj−sj+1|σ[j]·|
−sj |E(X<j>)|cj−sj
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for j = 2, . . . , k.
In the general case where X ∼ WQG

(α, β, σ) we would have to use the expression
of E(X) as given in (4.21) of [27]. In the case that concerns us here, X is hyper
Wishart and it is well-known that E(X) ∝ σ and therefore

E(x<j>) ∝ σ<j>.

Thus, up to a constant independent of σ, we have

det(Hφ
1 (φ)) = |σ<2>|

s2+1

det(Hφ
2 (φ)) = |σ[1]·|

−s2 |σ<2>|
c1−s2 |σ[1]·|

c1−s2+1

det(Hφ
j+1(φ)) = |σ[j]·|

cj−sj+1|σ[j]·|
−sj |σ<j>|

cj−sj , for j = 2, . . . , k

and therefore for l = 1, . . . , k + 1, detHφ
l (φ) are of the form

det Hφ
l (φ) = al(φl)bl(φ1, . . . , φl−1)

where al and bl are functions from the parameter space to IR+. More precisely, we
see that

a1(φ1) = |σ<2>|
s2+1, a2(φ2) = |σ[1]·|

c1+1−2s2 , al+1(φl+1) = |σ[l]·|
cl+1−2sl , l = 2, . . . , k

According to the theory developed for natural exponential families by [10] and
recalled in §2.3 of [7], the reference prior for φ, with the given order of its component,
is

(9.11) πφ(φ) = |σ<2>|
s2+1

2 |σ[1]·|
c1+1

2 −s2

k∏

j=2

|σ[j]·|
cj+1

2 −sj .

In fact, we see that the prior is independent of the order of these components and
(4.3) is proved.

We now want to derive the induced prior for σ. Meticulous but relatively easy
computations show that the Jacobian from φ to σ̂−1 is equal to

|σ[1]·|
s2

k∏

j=2

|σ[j]·|
sj .

Moreover, the Jacobian from σ̂−1 to σ is known (see [32]) and equal to

(9.12)

k∏

j=1

(|σ[j]·||σ<j>|)
−cj−1

k∏

j=2

(|σ<j>|)
(sj+1).

where some of the separators may be identical. Therefore the Jacobian from φ to
σ is

J = |σ[1]·|
s2−c1−1

k∏

j=2

|σ[j]·|
sj−cj−1|σ<2>|

−c1−1
k∏

j=2

(|σ<j>|)
(sj−cj)
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Therefore the induced prior for σ is

πσ(σ) = |σ<2>|
s2+1

2 −c1−1−c2+s2 |σ[1]·|
c1+1

2 −s2+s2−c1−1 ×
k∏

j=2

|σ[j]·|
cj+1

2 −sj+sj−cj−1
k∏

j=3

(|σ<j>|)
(sj−cj)

= |σ<2>|
−

c1+c2
2 −

c1+1

2 −
c2+1

2 +
s2+1

2 +s2 |σ[1]·|
−

c1+1

2 ×
k∏

j=2

|σ[j]·|
−

cj+1

2

k∏

j=3

(|σ<j>|)
(sj−cj)

=
|σC1

|−
c1+1

2

∏k
j=2 |σCj

|−
cj+1

2

|σS2
|

c1+c2
2 −s2−

s2+1

2

∏k
j=3 |σSj

|
cj−sj

2 −
sj+1

2

and Theorem 4.1 is proved.
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