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Abstract

We present a Bayesian variable selection procedure that is applicable to genomewide
studies involving a combination of clinical, gene expression and genotype information.
We use the Mode Oriented Stochastic Search (MOSS) algorithm of Dobra and Massam
(2010) to explore regions of high posterior probability for regression models involving
discrete covariates and to perform hierarchical log-linear model search to identify the
most relevant associations among the resulting subsets of regressors. We illustrate our
methodology with simulated data, expression data and SNP data.

Key words: Bayesian analysis; contingency tables; expression data; log-linear mod-
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1 Introduction

High-throughput sequencing studies together with clinical and physiological data produce
large amounts of biological information that is used for molecular phenotyping of many
diseases. Due to the extremely small sample size relative to the total number of possible co-
variates, it is imperative that the key feature in the development of predictive models based
on a combination of gene expression, genotype and phenotype data should be the selection of
a small number of predictors. Many variable selection approaches proposed in the literature
involve using univariate rankings that individually measure the dependency between each
candidate predictor and the response – see, for example, Golub et al. (1999); Nguyen and
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Rocke (2002); Dudoit et al. (2002); Tusher et al. (2001). Besides the need to address com-
plex issues related to assessing the statistical significance of a huge number of null hypothesis
tests associated with each individual predictor (Benjamini and Hochberg (1995); Efron and
Tibshirani (2002); Storey and Tibshirani (2003)), there is no theoretical justification of the
implicit claim that the resulting set of predictors can be converted into a good classification
model for two reasons: (i) the variable selection criteria are not necessarily related to the
actual classification method; (ii) there is no clear way to include other candidate variables if
the covariates already selected do not lead to the desired classification peformance.

The alternative is to take into consideration combinations of predictors, that leads to an
exponential increase of the number of candidate models. Exhaustively enumerating all these
models is computationally infeasible for genomewide studies, thus a lot of efforts have been
invested in finding stochastic search algorithms that are capable of quickly discovering re-
gions of interest in the model space. In the context of linear regression, the stepwise methods
of Furnival and Wilson (1974) can only be used for very small datasets due to their inability
to escape local modes created by complex patterns of collinear predictors. A significant step
forward were Markov chain Monte Carlo (MCMC) algorithms that explore the models space
by sampling from the joint posterior distribution of the candidate models and regression
parameters – see, for example, George and McCulloch (1993, 1997); Green (1995); Raftery
et al. (1997); Nott and Green (2004). Excellent review papers about Bayesian variable se-
lection for Gaussian linear regression models are Carlin and Chib (1995), Chipman et al.
(2001) and Clyde and George (2004). Lee et al. (2003) make use of MCMC techniques in
the context of probit regression to develop cancer classifiers based on expression data. The-
oretical considerations related to the choice of priors for regression parameters are discussed
in Fernández et al. (2003) and Liang et al. (2008).

Of particular interest for us is the analysis of genomewide single-nucleodite polymor-
phisms (SNPs) data – see, for example, Christensen and Murray (2007). While some relative
consensus seems to emerge on the design of such studies, emphasizing the advantage of multi-
stage designs in terms of cost-efficiency, their analysis raises many methodological questions,
yet not answered – see Thomas et al. (2005). Hoggart et al. (2008) address the problem
of multiple testing in SNP data arising from multiple studies and genotyping platforms.
Although Schaid (2004) points out that single-marker analysis exploits a fraction of the
information that exists in multilocus genotype data, only a few papers proposed analytic
approaches that go beyond this exhaustive single-marker association testing. Marchini et al.
(2005); Zhang and Liu (2007) showed the feasibility of genome-scale testing of the joint ef-
fect of two markers, but their extension to higher dimensionality problems still needs to be
demonstrated. Wang and Abbott (2008) describe a multiple regression approach in which
the predictors are the principal components of the sample covariance matrix of the SNP
genotype scores. Clark et al. (2007) identify combinations of SNPs and environmental fac-
tors associated with disease status by extending the logic trees of Ruczinski et al. (2003) to
a Bayesian framework. Swartz et al. (2007) discuss the use of model selection and Bayesian
methods in the context of genomewide association studies (GWAS, henceforth) with the
aim of selecting the best subsets of markers associated with the outcome of interest. Cordell
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and Clayton (2002) give a stepwise logistic regression procedure applicable for small, tightly
linked subsets of the genome, while Lunn et al. (2006) extend this approach to a Bayesian
framework that accounts for uncertainty in variable selection and missing data. Verzilli et al.
(2006) proposed Bayesian graphical models for GWAS discrete data. Model selection and
fitting is based on the MCMC approach of Madigan and York (1995). This methodology
focused only on decomposable graphical models restricted to SNPs physically close to each
other, thereby potentially ignoring the complex nature of association patterns in GWAS.
Therefore there is a compelling need for developing appropriate methodologies for GWAS,
allowing an efficient evaluation of a large number of multi-marker models, where the markers
can be linked or unlinked.

MCMC methods can have a slow convergence rate due to the high model uncertainty
resulting from the small number of available samples. This uncertainty is readily apparent
when there are many models each with a very small posterior probability and the total
posterior probability of these models approches one. Any MCMC approach might fail to dis-
cover better models in a reasonable number of iterations because it spends most of its time
moving around models that are ultimately not relevant. MCMC algorithms are required only
if the model parameters cannot be integrated out. If the marginal likelihood of each model
can be evaluated exactly or at least approximated, more efficient stochastic search methods
that do not attempt to sample from the posterior distribution over all candidate models
can be developed. A very good example is Yeung et al. (2005) who develop a multi-class
classification method by introducing a stochastic search algorithm called iterative Bayesian
model averaging. While this method performs very well in the context of gene selection in mi-
croarray studies, it is still based on an univariate ordering of the candidate predictors. Hans
et al. (2007) make another step forward and propose the shotgun stochastic search (SSS)
algorithm that is capable of quickly moving towards high-probable models while evaluating
and recording complete neighborhoods around the current most promising models.

The aim of this chapter is to describe the use of the Mode Oriented Stochastic Search
(MOSS, henceforth) algorithm of Dobra and Massam (2010) to perform variable selection in
regression models involving discrete covariates. We further employ MOSS to determine the
most probable hierarchical log-linear models associated with the small subsets of regressors
identified at the variable selection step. As such, our proposed methodology represents a
unified framework of the variable selection MCMC methods of Lunn et al. (2006) and of the
graphical models selection approach of Verzilli et al. (2006). However, our model determi-
nation step is not restricted to a subset of decomposable log-linear models as proposed in
Verzilli et al. (2006). The use of MOSS makes our methods scale to genomewide data due to
its abilility to rapidly reach regions of high posterior probability in the target models space.

Following the ideas in Pittman et al. (2004) and Hu et al. (2009), we transform the ob-
served data in multi-way contingency tables. While there is an inherent loss of information
associated with our proposed discretization, we are able to treat covariates coming from var-
ious sources (e.g., expression levels, SNPs or clinical data) in a coherent manner. In addition,
we reduce the influence of the particular choice of the normalization method employed for
the initial pre-processing of the available information.
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The structure of this chapter is as follows. In Section 2 we recall MOSS introduced by
Dobra and Massam (2010) in the context of hierarchical log-linear models. We show the
connections between MOSS and SSS, and describe how to use MOSS to perform small sub-
sets regression selection. In Section 3 we briefly discuss the conjugate priors for log-linear
parameters from Massam et al. (2009) and give the formula for the marginal likelihood of a
regression involving the response variable and a reduced number of predictors. In Section 4
we show how to transform the observed data into a multi-way contingency table. In Section
5 we describe our Bayesian model averaging algorithm for performing variable selection and
for developing efficient multi-class classifiers. Sections 6, 7 and 8 illustrate the use of our
proposed methods for simulated datasets, expression data and SNP data, respectively. In
Section 9 we make some concluding remarks.

2 MOSS

We denote by (n) the available data. The Bayesian paradigm to model determination in-
volves choosing models m with high posterior probability Pr(m|(n)) selected from a set
M of competing models. We associate with each candidate model m ∈ M a neighbor-
hood nbd(m) ⊂ M. Any two models m,m′ ∈ M are connected through at least a path
m = m1,m2, . . . ,ml = m′ such that mj ∈ nbd(mj−1) for j = 2, . . . , l. The neighborhoods
are defined with respect to the class of models considered. There are two types of models of
interest for the development of our framework:

(i) Regressions. As described in Hans et al. (2007), the neighborhood of a regression m
containing k regressors is obtained by: (i) addition moves: individually including in m any
variable that is not in m. The resulting neighbors contain k + 1 regressors; (ii) deletion
moves: individually deleting from m any variable that belongs to m. The resulting neighbors
contain k − 1 regressors; and (iii) replacement moves: replacing any one variable in m with
any one variable that is not in m. The resulting neighbors contain k regressors. Replacement
moves are extremely important especially if we restrict the search to models having at most
k′ regressors, where k′ is small (say, at most 5) with respect to the total number of available
predictors. Since a variable cannot be added to a regression with k′ predictors, a stochastic
search algorithm would have to move to a smaller dimensional model before being able to
consider a new covariate for inclusion in the current model. Here we assumed that no in-
teractions among two or more predictors are considered for inclusion in a regression model.
Since the search involves only main effects, each term can be included or removed indepen-
dently. The removal of a main effect involved in an interaction requires the deletion of the
corresponding interaction term, hence other types of moves would have to be developed –
see Hans et al. (2007).

(ii) Hierarchical log-linear models. The neighborhood of a hierarchical model m consists
of those hierarchical models obtained from m by adding one of its dual generators (i.e.,
minimal interaction terms not present in the model) or deleting one of its generators (i.e.,
maximal interaction terms present in the model). For details see Edwards and Havranek
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(1985) and Dellaportas and Forster (1999).

The MC3 algorithm proposed by Madigan and York (1995) constructs an irreducible
Markov chain mt, t = 1, 2, . . . with state spaceM and equilibrium distribution {Pr(m|(n)) :
m ∈M}. If the chain is in state mt at time t, a candidate model m′ is drawn from a uniform
distribution on nbd(mt). The chain moves in state m′ at time t + 1, i.e. mt+1 = m′ with
probability

min

{
1,

Pr(mt+1|(n))/#nbd(mt+1)

Pr(mt|(n))/#nbd(mt)

}
, (1)

where #nbd(m) denotes the number of neighbors of m. Otherwise the chain does not move,
i.e. we set mt+1 = mt.

Jones et al. (2005) and Hans et al. (2007) build on the MC3 approach to construct the
shotgun stochastic search (SSS) algorithm specifically designed to explore regions of high
posterior probability in the candidate model space. SSS originates from earlier ideas proposed
in Dobra et al. (2004). It visits the space by evaluating the posterior probability Pr(m′|(n))
of each model m′ in the neighborhood of the current model m and by choosing a new current
model by sampling from these candidates with probabilities proportional with Pr(m′|(n)).
The efficiency of SSS comes from the fact that it focuses on rapidly moving towards models
that maximize Pr(m|(n)), m ∈ M. As opposed to SSS, MC3 might spend most of its time
exploring models with low posterior probability if there are many such models and their total
posterior probability dominates the space. This is precisely what happens when the sample
size remains fixed while the number of candidate models increases rapidly which leads to a
high degree of model uncertainty.

Dobra and Massam (2010) define the mode oriented stochastic search (MOSS, henceforth)
algorithm that identifies models in

M(c) =

{
m ∈M : Pr(m|(n)) ≥ c · max

m′∈M
Pr(m′|(n))

}
, (2)

where c ∈ (0, 1). As proposed in Madigan and Raftery (1994), models with a low posterior
probability compared to the highest posterior probability model are discarded. This choice
drastically reduces the size of the target space from M to M(c). For suitable choices of c,
M(c) can be exhaustively enumerated.

MOSS makes use of a current list S of models that is updated during the search. De-
fine the subset S(c) of S in the same way we defined M(c) based on M. Define S(c′) with
0 < c′ < c so that S(c) ⊂ S(c′). Let q be the probability of pruning the models in S \ S(c).
A model m is called explored if all its neighbors m′ ∈ nbd(m) have been visited. A model in
S can be explored or unexplored. MOSS proceeds as follows:

PROCEDURE MOSS(c,c′,q)

(a) Initialize the starting list of models S. For each model m ∈ S, calculate and record
its posterior probability Pr(m|(n)). Mark m as unexplored.
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(b) Let L be the set of unexplored models in S. Sample a model m ∈ L according to
probabilities proportional with Pr(m|(n)) normalized within L. Mark m as explored.

(c) For each m′ ∈ nbd(m), check if m′ is currently in S. If it is not, evaluate and record
its posterior probability Pr(m′|(n)). If m′ ∈ S(c′), include m′ in S and mark m′ as
unexplored. If m′ is the model with the highest posterior probability in S, eliminate
from S the models in S \ S(c′).

(d) With probability q, eliminate from S the models in S \ S(c).

(e) If all the models in S are explored, eliminate from S the models in S \ S(c) and
STOP. Otherwise go back to step (b).

END.

At step (c) the models m′ ∈ nbd(m) can be considered in any possible order. As opposed
to MC3 or SSS, MOSS edobra623652nds by itself without having to specify a maximum
number of iterations to run. In a MOSS search, the model explored at each iteration is
selected from the most promising models identified so far. In MC3 or SSS, this model is
selected from the neighbors of the model evaluated at the previous iteration. This feature
allows MOSS to move faster towards regions of high posterior probability in the models
space.

Choosing c in the intervals (0, 0.01], (0.01, 0.1], (0.1, 1/3.2], (1/3.2, 1] means eliminating
models having decisive, strong, substantial or “not worth more than a bare mention” evidence
against them with respect to the highest posterior probability model – see Kass and Raftery
(1995). We recommend using a value for c′ as close to zero as possible. The role of the
parameter c′ is to limit the number of models that are included in S to a manageable number.
We also suggest running the algorithm with several choices of c, c′ and q to determine the
sensitivity of the set of models selected.

3 Conjugate Priors for Hierarchical Log-linear Models

Massam et al. (2009) developed and studied the conjugate prior as defined by Diaconis
and Ylvisaker (1979) (henceforth abbreviated the DY conjugate prior) for the log-linear
parameters for the general class a discrete hierarchical log-linear models. We outline the
notation and most relevant results from Massam et al. (2009). We also give a formula for
the marginal likelihood of a regression model induced by these conjugate priors.

3.1 Model Parameterization

Let V be the set of criteria defining the contingency table. Denote the power set of V by E
and take E	 = E \ {∅}. Let X = (Xγ, γ ∈ V ) such that Xγ takes its values (or levels) in the
finite set Iγ of dimension |Iγ|. When a fixed number of individuals are classified according to
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the |V | criteria, the data is collected in a contingency table with cells indexed by combination
of levels for the |V | variables. We adopt the notation of Lauritzen (1996) and denote a cell
by i = (iγ, γ ∈ V ) ∈ I = ×γ∈V Iγ. The count in cell i is denoted n(i) and the probability of
an individual falling in cell i is denoted p(i).

For E ⊂ V , cells in the E-marginal table are denoted iE ∈ IE = ×γ∈EIγ. The marginal
counts are denoted n(iE). For N =

∑
i∈I n(i), (n) = (n(i), i ∈ I) follows a multinomial

M(N, p(i), i ∈ I) distribution with probability density function

P
(

(n)
)

=

(
N
(n)

)∏
i∈I

p(i)n(i) . (3)

Let i∗ be a fixed but arbitrary cell that we take to be the cell indexed by the “lowest levels”
of each factor. We denote these lowest levels by 0. Therefore i∗ can be thought to be the cell
i∗ = (0, 0, . . . , 0). We define the log-linear parameters to be

θ(iE) =
∑
F⊆E

(−1)|E\F | log p(iF , i
∗
F c) (4)

which, by the Moebius inversion, is equivalent to

p(iE, i
∗
Ec) = exp

∑
F⊆E

θ(iF ) . (5)

Remark that θ∅(i) = log p(i∗), i ∈ I. We denote θ∅(i
∗) = θ∅ and p(i∗) = p∅ = exp θ∅. It is

easy to see that the following lemma holds.

Lemma 1 If for γ ∈ E,E ⊆ V we have iγ = i∗γ = 0, then θ(iE) = 0.

3.2 The Multinomial for Hierarchical Log-linear Models

Consider the hierarchical log-linear model m generated by the class A = {A1, . . . , Ak} of
subsets of V , which, without loss of generality, can be assumed to be maximal with respect
to inclusion. We write D = {E ⊆	 Ai, i = 1, . . . , k} for the indexing set of all possible
interactions in the model, including the main effects. It follows from the theory of log-linear
models (for example, see Darroch and Speed (1983)) and from Lemma 1 that the following
constraints hold:

θ(iE) = 0, E 6∈ D (6)

Therefore, in this case, for iE ∈ I∗E, (5) becomes

log p(iE, i
∗
Ec) = log p(i(E)) = θ∅ +

∑
F⊆E,F∈D,iF∈I∗F

θ(iF ) . (7)

and after the change of variable (n) = (n(i), i ∈ I∗) 7→ (n(iE), E ∈ E	), the multinomial
distribution for the hierarchical log-linear model becomes the distribution for the random
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variable Y = (n(iD), D ∈ D, iD ∈ I∗D) with density

fD(y; θ) ∝ exp

∑
D∈D

∑
iD∈I∗D

θ(iD)n(iD)

−N log
(

1 +
∑

E∈E	,iE∈I∗E

exp
∑
F⊆DE

θ(iF )
) (8)

with respect to a measure µ∞(y). It is important to note here that

θD = (θ(iD), D ∈ D, iD ∈ I∗D) (9)

is the canonical parameter and

pD = (p(i(D)), D ∈ D, iD ∈ I∗D) , (10)

is the cell probability parameter of the multinomial distribution of m. The other cell proba-
bilities p(i(E)), E 6∈ D are not free and are a function of pD.

3.3 The Diaconis-Ylvisaker Conjugate Prior

The natural exponential family form of the distribution of the marginal counts Y =
(n(iE), E ∈ D, iE ∈ I∗E) of a contingency table with cell counts n(i), i ∈ I is given in
Equation (8). The conjugate prior for θ as introduced by Diaconis and Ylvisaker (1979) is

πD(θD|s, α) = ID(s, α)−1h(θD), (11)

where ID(s, α) =
∫
IRdD h(θD)dθD is the normalizing constant of πD(θD|s, α), the dimension

of the parameter space dD is
∑

D∈D
∏

γ∈D(|Iγ| − 1) and

h(θD) = exp

∑
D∈D

∑
iD∈I∗D

θ(iD)s(iD) (12)

−α log
(

1 +
∑
E∈E	

∑
iE∈I∗E

exp
∑
F⊆DE

θ(iF )
) . (13)

The corresponding hyper-parameters are:

(s, α) = (s(iD), D ∈ D, iD ∈ I∗D, α), s ∈ IRdD , α ∈ IR. (14)

Massam et al. (2009) give a necessary and sufficient condition for the distribution in Equa-
tion (11) to be proper as well as two methods to choose hyper-parameters (s, α) such that
ID(s, α) < +∞.
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From the similarity between the form (8) of the distribution of the marginal cell counts
Y and the form (11) of the prior on θ, one can think of the hyper-parameters s as the
marginal cell entries of a fictive contingency table whose cells contain positive real numbers.
Consequently, α can be taken to be the grand total of this fictive table. The lack of prior
information can be expressed through a non-informative prior specified by taking all the
fictive cell entries to be equal to α

|I| so that

s(iD) =
∑

j∈I,jD=iD

α

|I|
. (15)

In the case of decomposable log-linear models, this approach to constructing a conjugate
prior is equivalent to eliciting hyper-Dirichlet priors – see, for example, Dawid and Lauritzen
(1993) and Madigan and York (1997). While the hyper-Dirichlet priors are restricted to
decomposable log-linear models, the properties of the Diaconis-Ylvisaker conjugate priors
extend naturally to graphical and hierarchical log-linear models.

Given the prior πD(θD|s, α), from the form (8) of the distribution of the marginal cell
counts Y , the posterior distribution of θD given Y = y = (n(iD), D ∈ D, iD ∈ I∗D) is

πD(θD|y, s, α) =
1

ID(s+ y, α +N)
exp

∑
D∈D

∑
iD∈ID∗

θ(iD)(s(iD) + n(iD))

−(α +N) log
(

1 +
∑

E∈E	,iE∈I∗E

exp
∑
F⊆DE

θ(iF )
) . (16)

If we look at the posterior πD(θD|y, s, α) as a function of (s, α), s(iD) + n(iD) represent the
(iD)-counts in the D-marginal entries of a table having the same structure as (n) and whose
entries are obtained by augmenting the actual cell counts in (n) with the fictive cell counts
from the prior. The grand total of this augmented table is α +N .

3.4 Computing the Marginal Likelihood of a Regression

Let Y = Xr, r ∈ V be a response variable and XA, A ⊂ V \{r} are a set of explanatory vari-
ables. Denote by (n)A∪{r} and (n)A the marginals of the full contingency table (n). Here (n),
(n)A∪{r} and (n)A are cross-classifications involving XV , XA∪{r} and XA, respectively. Dobra
and Massam (2010) explored the connection between log-linear models and the regressions
derived from them. They expressed the regression parameters of the conditional [Y |XA] as
a function of a log-linear model for Y and XA. To assure the consistency of the distribu-
tions for regression parameters associated with various subsets of explanatory variables, we
assume a saturated log-linear model for the full table (n). After collapsing across variables
XV \(A∪{r}), we obtain a saturated log-linear model for (n)A∪{r}. This means that the DY
conjugate prior for the saturated log-linear model for (n) reduces to the DY conjugate prior
for the saturated log-linear model for (n)A∪{r} by setting some of the θ parameters to zero.
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A similar statement can be made about the posterior distribution in Equation (16).
The properties shared by the DY priors and posteriors imply that the marginal likelihood

of the regression [Y |XA] is the ratio between the marginal likelihoods of the saturated mod-
els for (n)A∪{r} and (n)A – see Dawid and Lauritzen (1993); Geiger and Heckerman (2002);
Dobra and Massam (2010):

Pr(r|A) =
IDA∪{r}((s+ y)A∪{r}, α +N)

IDA((s+ y)A, α +N)
· IDA(sA, α)

IDA∪{r}(sA∪{r}, α)
. (17)

Dobra and Massam (2010) show that, for any set B ⊂ V , we have

IDB(sB, α) = Γ(αB∅ )
∏
D∈DB

∏
iD∈I∗B

Γ(αB(iD, i
∗
Dc)),

where

αB(iD, i
∗
B) =

∑
B⊇F⊇D

∑
jF∈I

∗
F

(jF )D=iD

(−1)|F\D|s(jF ),

αB∅ = α +
∑
D⊆B

(−1)|D|
∑
i∈I∗D

s(iD).

4 Discretizing Ordered Variables

The methods developed in this chapter perform well for datasets involving covariates of
almost any type. The only constraints we impose on the nature of the observed covariates
is that they have to be either categorical or their values can be ordered. Variables of the
latter type are transformed in categorical variables as follows. Let {x1, x2, . . . , xn} be the
possible values of x. Denote by τ1 < τ2 < . . . < τk−1 < τk = ∞ a set of levels of x called
splits. Here τ1 is the minimum value of x and k ≥ 3. We replace each value xi, 1 ≤ i ≤ n,
by j ∈ {1, . . . , k − 1} if τj ≤ xi < τj+1. This implies that x is transformed in a categorical
covariate with (k−1) levels. A sequential discretization of all the observed variables leads to
a multi-way contingency table (n) with the same dimension as the original data. The table
(n) is invariant to monotonic transformations of covariates – see Hu et al. (2009).

The splits used for discretization can be chosen either based on background information
that might be available or can be defined to maximize the individual predictive ability of
each covariate with respect to a categorical response variable y. Let xτ be the categorical
version of a predictor x, where τ are a set of splits for x. Following Pittman et al. (2004) and
Hu et al. (2009), we use percentiles as a possible choice of splits for continuous covariates
such as gene expression levels. A segregating SNP site has three possible genotypes: 0/0,
0/1 and 1/1, where 0 is the wild type and 1 is the mutant allele. Diallelic SNPs can be
represented as three-category discrete variables, or can be dichotomized as presence of 0 vs.
absence of 0, or as presence of 1 vs. absence of 1.

We choose the splits τ having the largest marginal likelihood in Equation (17) of the
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regression of y on xτ . Ideally we would like to consider combinations of choices of splits for all
available predictors and choose those splits that lead to large values of the marginal likelihood
of regressions of y on one, two or more categorical predictors. Each predictor will have several
categorical versions associated with various splits sets. Unfortunately the datasets resulting
from genomewide studies precludes us to perform such large scale computations, and we
need to choose splits sequentially for each covariate.

The conjugate priors of Massam et al. (2009) are appropriate for the analysis of general
multi-way tables in which each variable is allowed to have any number of categories. In order
to increase the mean number of observations per cell we make the constraint that the data
needs to be transformed in a dichotomous rather than a polychotomous contingency table.
The response variable y is either dichotomous by design or has been dichotomized based on
background information. Each predictor is replaced by a dichotomous version constructed
with respect to 20, 21, . . . , 80-th percentiles. The smallest and largest percentile to be used
as a split candidate is chosen such that at least one sample falls in each of the two categories.
However, we emphasize that our theoretical framework can be employed to develop multi-
class predictive models – see Yeung et al. (2005) for a related approach.

5 Bayesian Model Averaging

Let (n) be the multi-way contingency table obtained by discretizing the observed covariates as
described in Section 4. As before, the variables cross-classified in (n) areXγ, γ ∈ V . Denote by
Y = Xr, r ∈ V , a response variable of interest. We use MOSS to identify regressions [Y |XA],
A ⊂ V \{r} that maximize the marginal likelihood Pr(r|A) in Equation (17). We assume that
all the models are apriori equally likely, so that the posterior probability of each regression
is proportional with its marginal likelihood. However, we are only interested in regressions
involving a relatively small number of predictors (less than five) because the available number
of samples is usually small. One should evaluate the mean number of observations per cell in
a marginal (n)A∪{r}, where A has the maximum number of predictors allowed. If the resulting
mean is too low, the maximum number of predictors should be decreased.

MOSS identifies a set of regressions S for some c ∈ (0, 1). The cutoff c is chosen so
that S = S(c) can be exhaustively enumerated. A regression mj ∈ S(c) is [Y |XAj

] with
Aj ⊂ V \ {r} and j ∈ B. Here B is a set of indices. The regression of Y on the remaining
variables is a weighted average of the regressions in S, where the weights represent the
posterior probability of each regression (see, for example, Yeung et al. (2005)):

Pr(Y = y|(n)) =
∑
j∈B

Pr(Y = y|(n)Aj
) · Pr(mj|(n)). (18)

Since we assumed that all models are apriori equally likely, the posterior probability of each
regression is equal to its marginal likelihood normalized over all the models in S:

Pr(mj|(n)) =
Pr(r|Aj)∑

l∈B
Pr(r|Al)

.
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Madigan and Raftery (1994) show that the weighted average of regressions in (18) has a better
predictive performance than any individual model in S. The revelance of each predictor Xj

can be quantified by its posterior inclusion probability defined as the sum of the posterior
probabilities of all the models that include Xj.

There is an additional step we perform to assure the most parsimonious versions of
regressions [Y |Aj] are employed in Equation (18). Dobra and Massam (2010) developed a
version of MOSS for hierarchical log-linear models with the DY conjugate priors. We use
their stochastic search procedure to determine the hierarchical log-linear model with the
highest posterior probability for each marginal (n)Aj∪{r}, where Aj identifies a regression in
S. Dobra and Massam (2010) also determine the regression induced by a hierarchical log-
linear model for a given response variable Y . It is possible that some variables Xγ, γ ∈ Aj
interact with Y indirectly through other variables in Aj and in this case [Y |XAj

] reduces
to [Y |XEj

] for Ej ⊂ Aj. Each regression [Y |XAj
] in Equation (18) is the regression induced

by the highest posterior probability log-linear model for the marginal (n)Aj∪{r}. Since the
same choice of conjugate priors is employed in the stochastic search for regressions and in
the subsequent stochastic search for log-linear models, the overall consistency of our variable
selection method coupled with log-linear model determination is guaranteed.

Dobra and Massam (2010) describe an algorithm called the Bayesian iterate proportional
fitting (Bayesian IPF, henceforth) for sampling from the joint posterior in Equation (16) of
parameters θ corresponding with a log-linear model. The resulting posterior samples can be
used to estimate the coefficients of the regressions in S(c). The coefficients for the Bayesian
model averaging regression Pr(Y = y|(n)) from Equation (18) are estimated by sampling
from the joint posterior of the coefficients for each individual regression mj = [Y |XAj

], j ∈ B,
for a number of iterations proportional with Pr(mj|(n)).

6 Simulated Examples

6.1 First Simulated Example

We apply the MOSS algorithm to perform model selection when the set of potential predictors
exhibit strong pairwise correlations. This is a variation of the example suggested by Nott and
Green (2004). As in George and McCulloch (1997), we generate Z1, . . . , Z15, Z ∼ N300(0, I),
where N300(0, I) is the 300-dimensional normal distribution with zero mean and identity
covariance matrix. Let Xi = Zi + 2Z, i = 1, 3, 5, 8, 9, 10, 12, 13, 14, 15 and also X2 = X1 +
0.15Z2, X4 = X3 + 0.15Z4, X6 = X5 + 0.15Z6, X7 = X8 + X9 − X10 + 0.15Z7 and X11 =
X14 +X15 −X12 −X13 + 0.15Z11. George and McCulloch (1997) point out that this design
matrix leads to correlations of about 0.998 between Xi and Xi+1 for i = 1, 3, 5. There are
also strong linear associations between (X7, X8, X9, X10) and (X11, X12, X13, X14, X15). We
let X̃ = [X(1)X(2)] be a 300 × 30 design matrix obtained by independently simulating two
instances X(1) and X(2) of the 300× 15 design matrix X.
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Consider the 30-dimensional vector of regression coefficients β defined by

βj =


1.5, if j = 1, 3, 5, 7, 11, 12, 13,
−1.5, if j = 8,

0, otherwise.

We generate Y = X̃β. The binary response Ỹ is obtained as Ỹj = 1 if Yj ≥ 0 and Ỹj = 0 if
Yj < 0.

We would like to study whether predictors that belong to X(2) are not selected by MOSS.
Note that some predictors in X(1) might still be selected even if their regression coefficients
are zero because of the complex correlation structure that exists in this block.

We employed MOSS with c = 0.333, c′ = 0.0001, a pruning probability of 0.25 and five
different starting points. We allowed MOSS to explore regressions containing at most five
predictors. In order to reduce the sample variability, we report the results we obtained by
averaging across 100 replicates of this experiment. The percentage of selected predictors that
belong to the block X(1) is 100% with a 95% confidence interval of [50%, 100%]. This implies
that MOSS almost never selects predictors from X(2). The mean number of predictors se-
lected is 2 with a 95% confidence interval of [1, 9]. The mean number of regressions evaluated
by each instance of MOSS was 1403 with a 95% confidence interval of [957.2, 2615.2]. The
number of possible regressions with 5 predictors or less is 174437 which is indicative of how
fast our proposed stochastic search method can move towards models with high posterior
probability.

We employed Bayesian model averaging to construct classifiers for Ỹ based on the re-
gressions in the sets S(0.333). The mean area below the corresponding ROC curves was
0.996 with a 95% confidence interval of [0.979, 1]. Therefore MOSS can construct excellent
classifiers by identifying predictors that are actually related to the binary response.

6.2 Second Simulated Example

The second example was suggested by George and McCulloch (1993). We generate
Z1, . . . , Z60, Z ∼ N120(0, I) and construct the 120 × 60 design matrix X = (X1, . . . , X60)
with Xi = Zi + Z for i = 1, . . . , 60. The average pairwise correlations in X is about 0.5
which makes variable selection difficult. Consider the 60-dimensional vector of regression co-
efficients β given by βj = 0 if j = 1, . . . , 15, βj = 1 if j = 16, . . . , 30, βj = 2 if j = 31, . . . , 45
and βj = 3 if j = 46, . . . , 60. We take Y = X̃β. The binary response Ỹ is obtained as Ỹj = 1
if Yj ≥ 0 and Ỹj = 0 if Yj < 0. Here the goal is to see if we do not select the first 15 variables.

We run MOSS with the same choice of parameters as in the first simulated example and
replicate the experiment 100 times to reduce the sample variability of the results. The mean
percentage of predictors that are among the first 15 variables is 20% with a 95% confidence
interval of [0%, 40%]. This is very close to 25% that represents the actual percentage of
“unwanted” predictors in X. We can explain these results by the large correlations among
the candidate predictors and by the loss of information that occurs during dichotomization
of the response variable and of the predictors themselves. The mean number of predictors
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selected is 4 with a 95% confidence interval of [1, 20]. The mean number of regressions eval-
uated by each instance of MOSS was 3681 with a 95% confidence interval of [1841, 7370].
This is much smaller than 5985198 – the number of all possible regressions with 5 variables
or less. Again, this indicates the computational efficiency achieved by MOSS. The Bayesian
model averaging classifiers for Ỹ have excellent predictive accuracy. The mean area below
the corresponding ROC curves was 1 with a 95% confidence interval of [0.997, 1].

7 Real Examples: Gene Expression

7.1 Breast Cancer Data

We analyze the breast cancer prognosis dataset from van’t Veer et al. (2002). Here the
goal is to develop a gene expression classifier to predict which patients are likely to develop
metastases within 5 years. Yeung et al. (2005) identified 4919 significantly regulated genes
in the training set of 76 samples. The test set comprises 19 samples. van’t Veer et al. (2002)
select 70 genes based on their high correlation with the response and report that only two
samples in the test set were incorrectly classified based on the expression levels of these genes.
Yeung et al. (2005) used Bayesian model averaging to produce a classifier that involves only
6 genes. Their predictive model gives 3 classification errors on the test set.

We employed MOSS with c = 0.5, c′ = 0.0001, a pruning probability of 0.1 and five
different starting points. We searched for regression models containing at most 3 predictors.
The number of models evaluated by MOSS in each of the five instances were: 368779, 368781,
486787, 565463, and 206521. These counts are very small compared to the total number of
possible regressions 19837151360.

Using the ordering of the genes of Yeung et al. (2005), we identify seven regressions in the
set S(0.5). These regressions involve 11 genes as follows: TSPYL5 (1), NM 021199 (0.88),
Contig31010 RC (0.44), Contig16367 RC (0.22), AA555029.RC (0.1), IFIT3 (0.07), PDIA4
(0.07), Contig1829 (0.06), CASC3 (0.06), GDS1048 (0.05), NUP210 (0.05). The numbers of
parentheses represent the posterior inclusion probabilities of each gene. Remark that only
gene TSPYL5 was also selected by van’t Veer et al. (2002) and Yeung et al. (2005) and
is the gene with the highest posterior probability in our ranking. The remaining 10 genes
do not appear in the list of Yeung et al. (2005). We were not able to determine the actual
overlap between our list and the candidate genes of van’t Veer et al. (2002). It is likely that
this overlap is empty because van’t Veer et al. (2002) select genes based on a univariate
dependency measure (correlation), while we take into account combinations of at most three
genes and the response. Yeung et al. (2005) consider similar combinations in their stochastic
search algorithm.

Figure 1 shows the performance of the classifier we produced by employing MOSS for
hierarchical log-linear models to determine the most relevant models for the 24 contingency
tables associated with the binary response and the dichotomized expression levels of the
genes in each regression. We chose c = 0.01, c′ = 0.0001, a pruning probability of 0.1 and
five starting points. We generated 10000 samples from the posterior distributions of the
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Figure 1: The left panel shows the performance of the 11 gene classifier of disease-free pa-
tients after at least 5 years (blue) versus patients with metastases within 5 years (red). The
horizontal lines represent 80% confidence intervals. The right panel shows the ROC curve
associated with this classifier.

induced logistic regression parameters using Bayesian IPF. These samples are necessary for
parameter estimation and to quantify prediction uncertainty. Only two test samples are
misclassified in Figure 1. The area below the ROC curve in the right panel of Figure 1 is 0.98
which indicates an excellent predictive performance. The Brier score is 1.73 with a standard
deviation of 0.19. For comparison, the Brier Score reported by Yeung et al. (2005) is 2.04.
Smaller values of the Brier score indicate a better performance.

7.2 Leukemia Data

The leukemia dataset of Golub et al. (1999) comprise samples from patients with acute
lymphoblastic leukemia (ALL) or acute myeloid leukemia (AML). The initial pre-processing
leaves the expression levels of 3051 genes on 38 training samples and 34 test samples – see
Yeung et al. (2005). We employed MOSS with c = 0.5, c′ = 0.0001, a pruning probability of
0.1 and five different starting points. We searched for regression models containing at most
2 predictors which gives a total number of possible regressions of 4655827. The number of
models evaluated by MOSS in each of the five instances were considerably smaller: 115902,
323301, 189102, 176901, 79302. The six regressions in the resulting S(0.5) involve eight genes:
MGST1 (0.67), APLP2 (0.33), CCND3 (0.17), TRAC (0.17), NCAPD2 (0.17), ACADM
(0.17), MAX (0.17) and PSME1 (0.16). As before, the posterior inclusion probabilities are
indicated in parentheses.

We used MOSS to identify relevant hierarchical log-linear models for the corresponding
23 contingency tables. We chose c = 0.01, c′ = 0.0001, a pruning probability of 0.1 and
five starting points. We generated 10000 samples from the posterior distributions of the
induced logistic regression parameters using Bayesian IPF. Figure 2 shows the prediction
results for the test data of the classifier obtained by Bayesian model averaging of the six
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Figure 2: The left panel shows the performance of the 8 gene classifier for the 34 test samples
in leukemia data. The ALL samples are coded in blue, while the AML samples are coded in
red. The horizontal lines represent 80% confidence intervals. The right panel shows the ROC
curve associated with this classifier.

logistic regressions. Only one sample is incorrectly predicted. The Brier score is 0.7 with
a standard error of 0.48. The area below the ROC curve is almost 1. Yeung et al. (2005)
reports two classification erros based on 20 selected genes and a Brier score of 1.5. Lee et al.
(2003) misclassifies one sample based on the expression levels of five genes, while Nguyen
and Rocke (2002) reports 1− 3 misclassified samples based on 50− 1500 genes.

7.3 Lymph Node Data

We predict lymph node positivity status in human breast cancer based on the expression
levels of 4512 genes – see Hans et al. (2007); Pittman et al. (2004). There are 100 low-risk
(node-negative) samples and 48 high-risk (high node-positive). There are two additional pre-
dictors: estimated tumor size (in centimeters) and estrogen receptor status (binary variable
determined by protein assays).

We employed MOSS with c = 0.01, c′ = 0.0001, a pruning probability of 0.1 and five
different starting points. We searched for regression models containing at most 5 predictors
due to the larger number of available samples. This choice corresponds with a mean number
of samples per cell in the corresponding 26 contingency tables of 2.31. The number of models
evaluated by MOSS in each of the five instances (2896078, 1109722, 2057022 and 721769)
are significantly smaller than the total number of possible regressions 1.56 ·1016. MOSS iden-
tifies 49 regressions in S(0.01). These regressions involve 69 predictors, but only eight have
posterior inclusion probabilities greater than 0.1: ENTPD4 (0.89), tumor size (0.62), ADD3
(0.34), MGLL (0.32), ST6GALNAC2 (0.32), HEXA (0.18), MEGF9 (0.11) and FAM38A
(0.1). Remark that tumor size is identified as the second most important predictor. The
tree models of Pittman et al. (2004) also found tumor size to be one of the most relevant
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Figure 3: Fitted prediction probabilities for the lymph node data. The node-negative sam-
ples are blue, while the node-positive samples are red. The horizontal lines represent 80%
confidence intervals. The right panel shows the ROC curve associated with this classifier.

predictors, in contrast with the logistic regressions of Hans et al. (2007) that place a different
set of eight genes at the top of their list.

We used MOSS to identify relevant hierarchical log-linear models for the 26 contingency
tables corresponding with the 49 regressions. We chose c = 0.01, c′ = 0.0001, a pruning
probability of 0.1 and five starting points. We generated 10000 samples from the posterior
distributions of the induced logistic regression parameters using Bayesian IPF. Figures 3 and
4 show the excellent predictive performance of our classifier. For the fitted values, the area
below the ROC curve is almost one, while the Brier score is 11.68 with a standard deviation
of 2.27. Five samples were incorrectly predicted: 97% of the positives are above 0.5, and
95.8% of the negatives are below 0.5. For comparison, Hans et al. (2007) evaluate the fit of
their model to 96% of the positives above 0.5 and 89% of the negatives below 0.5. We also
performed a five-fold cross-validation check of our models. The area below the ROC curve
is 0.98, the Brier score increases slightly to 16.59 with a standard deviation of 2.64. In this
case six samples were incorrectly predicted which gives a prediction accuracy of almost 96%.

8 Real Examples: Genome-wide Analysis of Estrogen

Response with Dense SNP Array Data

A long-term goal of pharmacogenetics research is the accurate prediction of patient response
to drugs, as it would facilitate the individualization of patient treatment. Such an approach
is particularly needed in cancer therapy, where currently used agents are ineffective in many
patients, and side effects are common. The recent development of genome-wide approaches
such as high-density SNP arrays enables the simultaneous measurement of thousands of
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Figure 4: Five-fold cross-validation prediction probabilities for the lymph node data. The
node-negative samples are blue, while the node-positive samples are red. The horizontal
lines represent 80% confidence intervals. The right panel shows the ROC curve associated
with this classifier.

genes in a single experiment and raises the possibility of an unbiased genome-wide approach
to the genetic basis of drug response. To facilitate pharmacogenetics research, a panel of 60
cancer cell lines has been used extensively by the Development Therapeutics Program of the
National Cancer Institute (http://dtp.nci.nih.gov). These cell lines have been analyzed for
their sensitivity and resistance to a broad range of chemical compounds and thus offer an
extensive source of information for testing prediction models of chemotherapy response.

Jarjanazi et al. (2008) focused on the chemosensitivity and resistance to estrogen response
(one of the several compounds), which is extremely important in the treatment of breast can-
cer by hormonal therapy. Determining a genetic signature of estrogen response could help
to tailor treatment programs based on patient’s genetic background and thus reduce consid-
erably the chance of treatment failure. Each cell line was exposed to estrogen for 48 hours,
and the concentration of estrogen required for 50% growth inhibition (GI50 henceforth) was
scored. The log10 of the GI50 values were retrieved and normalized to obtain a mean of zero
and standard deviation of one across the different cell lines. Using a density estimation of
the GI50 values (Wand and Jones (1995)), we labeled 25 cell lines as resistant and 17 cell
lines as sensitive. Drug sensitivity tests for estrogen were performed. Genotypes of SNPs in
these 42 cell lines were obtained from the Affymetrix 125K chip data – see Garraway et al.
(2005) for more details. We retained only 25530 SNPs that were genotyped in at least 90%
of the cell lines and had a minimum allele frequency (MAF) of at least 10%.

We employed MOSS with c = 0.5, c′ = 0.0001, a pruning probability of 0.1 and a max-
imum number of predictors equal to three. We run MOSS one hundred times starting from
random regressions. The mean number of models evaluated by MOSS was 2407299, while the
minimum and maximum number of models evaluated were 255288 and 9853813, respectively.
These counts are very small compared to 2.77 ·1012 – the total number of regressions with at
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Figure 5: Fitted prediction probabilities for the SNP data when regressions with at most
three variables are considered. The control samples are blue, while treatment samples are
red. The horizontal lines represent 80% confidence intervals. The right panel shows the ROC
curve associated with this classifier.

most three variables. Seven regressions were identified in S(0.5). These regressions involve
17 SNPs as follows: 1596 (0.39), 8823 (0.33), 5545 (0.33), 7357 (0.33), 14912 (0.25), 14303
(0.25), 7459 (0.18), 11684 (0.13), 23629 (0.12), 4062 (0.12), 9571 (0.12), 394 (0.11), 19083
(0.11), 19132 (0.06), 11103 (0.06), 17403 (0.06), 11775 (0.06). The first SNP is indexed with
1, while the last SNP is indexed with 25530.

Figure 5 shows the fitted values of the model-averaged classifier. The area below the
ROC curve is one, the Brier score is 0.993 with a standard error of 0.35. No samples were
incorrectly predicted. Figure 6 shows the two-fold cross-validation results of this classifier.
The Brier score is 2.41 with a standard error of 1.67 and all samples are correctly predicted.

The description of the interesting SNPs found by MOSS and their physical distance to
known genes are summarized in Table 1. Three of these SNPs are located within a known
gene, whereas nine were very close to a known gene locus (<150Kb). We also studied the
extent of linkage disequilibrium (LD) for the three SNPs that were located within less than
30kb from a known candidate gene region using the software Haploview – see Barrett et al.
(2005). In these three cases, we found evidence for LD, suggesting that the associated gene
could be implicated in estrogen response. Details about the LD results are given in Tables
2, 3 and 4.

Among the genes identified by MOSS, Thrombospondin-1 (THBS1) (also referred to
as THBS, TSP, TSP1) has been the most studied in terms of function and association to dis-
ease. THBS1 is a glycoprotein that is involved in various biological processes including the
cell motility, cell adhesion, inflammatory response and multicellular organismal development
(Go ontology). THBS1 regulates the activity of the estrogen in the cell – see Sarkar et al.
(2007); Sengupta et al. (2004); Slater et al. (1995). THBS1 is also extensively implicated
in cancer and metastasis in several reviews. Although functionally characterized, the asso-
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Figure 6: Two-fold cross-validation prediction probabilities for the SNP data when regressions
with at most three variables are considered. The control samples are blue, while treatment
samples are red. The horizontal lines represent 80% confidence intervals. The right panel
shows the ROC curve associated with this classifier.

ciation of the two other candidate genes (BLNK and NSF) with estrogen response is not
well studied. The B cell linker protein BLNK at 10q24.1 is a SH2/SH3 containing adaptor
protein which serves as a scaffold to assemble downstream targets of antigen activation. It
is involved in the regulation of B cell receptor signaling during inflammatory and humoral
immune response of the cell. It has been shown to be associated with leukemia, lymphoma
and solid tumors. N-ethylmaleimide-sensitive factor (NSF) at 17q21 is required for
vesicle-mediated transport, from the endoplasmic reticulum to the Golgi stack. It is also in-
volved in proteolysis. The functions of the transmembrane protein 26 (TMEM26) at 10q21.2
and other candidate genes in our study are not well studied.

While the identification of THBS1 has demonstrated that our method is capable of
identifying a gene that is extensively involved in estrogen response and cancer development,
the remaining genes with limited knowledge represent novel candidates to be further studied.
Several important remarks about the application of MOSS to this study are worth noting.
First, THBS1, the most functionally relevant SNP identified here, would not have been
detected using an exhaustive testing of all single markers. Indeed, the associated p-value
after correction for multiple testing is clearly non significant (p=0.35). Second, the propor-
tion of markers that are biological relevant (i.e. within or close to known genes) is relatively
large. This is somewhat unusual compared to other GWAS that have found a substantial
fraction of associations in regions that do not contain annotated genes or that are outside
of transcriptional units of the genome – see Altshuler and Daly (2007). Third, the predic-
tive ability of the selected subset of SNPs on estrogen response is almost perfect, which
implies very promising applications of MOSS in predictive genetic testing. Finally, MOSS
provides a unique and comprehensive statistical framework for analyzing GWAS, filling an
important gap in the search for combinations of SNPs that have high predictive values in
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Table 2: Linkage Analysis of rs4923835 (marker 932558) with THBS1 and FSIP1. LD was
mapped using HapMap Caucasian Data (HapMap Data Release 22, NCBI B36 assembly,
dbSNP build 126). The LD of rs4923835 was constructed with 7 markers within the THBS1
and FSIP1. All the markers have shown strong LD (r2 ≥ 0.9) indicating the linkage of the
significant marker to both THBs1 and FSIP1. The distance between the rs4923835 and the
other SNPs ranged between 59-85Kb.

Significant Markers Marker Location D′∗ LOD∗ r2∗ CI† Distance

Marker within Genes (Kb)

rs4923835 rs2228263 exon 18 - THBS1 1 15.31 0.92 (0.84, 1) 59232

rs4923835 rs1051442 3′-UTR - THBS1 1 16.27 0.925 (0.85, 1) 61580

rs4923835 rs17633107 3′-UTR - THBS1 1 16.27 0.925 (0.85, 1) 62212

rs4923835 rs6492905 3′-UTR - FSIP1 1 16.06 0.924 (0.85, 1) 66333

rs4923835 rs17633210 intron 1 - FSIP1 1 15.61 0.92 (0.84, 1) 74497

rs4923835 rs17705806 intron 1 - FSIP1 1 16.27 0.925 (0.85, 1) 74402

rs4923835 rs17706083 intron 1 - FSIP1 1 16.27 0.925 (0.85, 1) 85005

∗ Measures of linkage disequilibrium (Devlin and Risch, 1995)
† Confidence interval of r2

Table 3: Linkage Analysis of rs7861199 with SNPs in HSDL2, EPF5 and ROD1.

Significant Markers Marker Location D′∗ LOD∗ r2∗ CI† Distance

Marker within Genes (Kb)

rs7861999 rs3813855 5′ UTR - HSDL2 0.918 13.05 0.844 (0.75, 0.98) 18973

rs7861999 rs7852741 intron 1 - HSDL2 1 12.72 0.79 (0.81, 1) 33384

rs7861999 rs10759544 intron 6 - ROD1/EPF5 0.771 5.9 0.534 (0.51, 0.91) 100518

∗ Measures of linkage disequilibrium (Devlin and Risch, 1995)
† Confidence interval of r2

Table 4: Linkage Analysis of rs1037182 with UGCG (linked to 5′ sequences).

Significant Markers Marker Location D′∗ LOD∗ r2∗ CI† Distance

Marker within Genes (Kb)

rs1037182 rs10817244 ∼10Kb 5′-end of UGCG 1 18.75 0.718 (0.88, 1) 1022

rs1037182 rs7028129 ∼20Kb 5′-end of UGCG 1 19.1 0.799 (0.88, 1) 286

∗ Measures of linkage disequilibrium (Devlin and Risch, 1995)
† Confidence interval of r2
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high-dimensional data problems.

9 Discussion

We summarize the key steps of our proposed methodology. The use of the conjugate priors
for log-linear parameters of Massam et al. (2009) make the variable selection step and the
log-linear model selection step coherent. The variable selection step is needed to allow us to
focus on the most important covariates, while the model selection step is crucial to determine
the most parsimonious representation of the underlying interactions. The efficiency of MOSS
in identifying regions of high-posterior probability in the models space allow our method to
scale to genomewide studies with data on ≥ 500K assayed SNPs as well as gene expression
and clinical information. Bayesian model averaging is crucial to produce classifiers based on
the most relevant small subsets of regressors. These subsets embody complex interactions
among covariates of any type.

We allowed any combination of covariates as a possible candidate in our variable selec-
tion step. The accuracy of our method can be improved by incorporating prior knowledge
related to spatial dependencies among markers or genes. Our methodology does not allow
for the presence of missing data, hence the individuals for whom complete information is not
available would have to be discarded. This could potentially lead to a significant decrease in
the total sample size, hence our ability to detect higher-order associations or more complex
combinations of covariates might be severely diminished. One alternative would be to use one
time imputation methods such as the PHASE software of Stephens et al. (2001); Stephens
and Donnelly (2003) for missing genotype/haplotype data. Another alternative that also
takes into account the uncertainty related to missing genotype data is the Bayesian model
selection and model averaging method proposed by Lunn et al. (2006). Unfortunately their
MCMC approach does not seem to scale to whole genome scans.

C++ and Matlab code implementing the methods described in this chapter can be down-
loaded from

http://www.stat.washington.edu/adobra/software/largetables/
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