Wishart distributions for decomposable graphs

Gérard Letac*, Hélene Massam!

Abstract

When considering a graphical Gaussian model Ng Markov with respect to a decom-
posable graph G, the parameter space of interest for the precision parameter is the cone
Pg of positive definite matrices with fixed zeros corresponding to the missing edges of
G. The parameter space for the scale parameter of Ng is the cone Qg, dual to Pg, of
incomplete matrices with submatrices corresponding to the cliques of G being positive
definite. In this paper we construct on the cones Q¢ and Pg two families of Wishart
distributions, namely the type I and type II Wisharts. They can be viewed as a gener-
alization of the hyper Wishart and the inverse of the hyper inverse Wishart as defined
by Dawid and Lauritzen (1993). We will show that the type I and II Wisharts have
properties similar to those of the hyper and hyper inverse Wishart. Indeed, the inverse
of the type II Wishart forms a conjugate family of priors for the covariance parameter of
the graphical Gaussian model and is strong directed hyper Markov for every direction
given to the graph by a perfect order of its cliques, while the type I Wishart is weak
hyper Markov. Moreover, the inverse type II Wishart as a conjugate family presents
the advantage of having a multi-dimensional shape parameter, thus offering flexibility
for the choice of a prior.

Both types I and IT Wishart distributions depend on multivariate shape parameters.
A shape parameter is acceptable if and only if it satisfies a certain eigenvalue property.
We show that the sets of acceptable shape parameters for a non complete G have
dimension at least equal to one plus the number of cliques in GG. These families, as
conjugate families, are richer than the traditional Diaconis-Ylvisaker conjugate families
which all have a shape parameter set of dimension one. A decomposable graph which
does not contain a three-link chain as an induced subgraph is said to be homogeneous.
In this case, our Wisharts are particular cases of the Wisharts on homogeneous cones
as defined by Andersson and Wojnar (2004) and the dimension of the shape parameter
set is even larger than in the non homogeneous case: it is indeed equal to the number
of cliques plus the number of distinct minimal separators. Using the model where G is

a three-link chain, we show by computing a 7-uple integral that in general we cannot
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expect the shape parameter sets to have dimension larger than the number of cliques

plus one.
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1 Introduction

The primary aim of this paper is to develop a new family of conjugate prior distributions
with attractive Markov properties for the covariance parameter, or equivalently the precision
parameter, of graphical Gaussian models Markov with respect to a decomposable graph G.
While doing so, we are led to define two new classes of Wishart distributions and their

inverses and to study their properties.

Let us recall that an undirected graph is a pair (V,€) where V. ={1,...,7} and £ is a
family of subsets {i, 7} of V, of size 2. It will be convenient to consider the set £ C V x V
of (i,j) such that either i = j or {i,7} is in &, rather than £ and, since E and & carry the
same information, to speak about the graph G = (V, E). Any (i,7) such that ¢ # j will
be called an edge. An r-dimensional Gaussian model is said to be Markov with respect to
G if for any edge (4,7) not in E, the i-th and j-th variables are conditionally independent
given all the other variables. Such models are known as covariance selection models (see
Dempster (1972)) or graphical Gaussian models (see Whittaker (1990) or Lauritzen (1996)).
Without loss of generality, we can assume that these models are centered N, (0,X) and it is
well known that they are characterized by the parameter set Pg of the precision matrices
which is the set of positive definite matrices K = ¥ ~! such that K;; = 0 whenever the edge
(i,7) is not in E. Equivalently, if we denote by M the linear space of symmetric matrices
of order r, by M,;" C M the cone of positive definite (abbreviated > 0) matrices, by I the
linear space of symmetric incomplete matrices « with missing entries x5, (,7) ¢ E and by
w: M +— Ig the projection of M into Ig, the parameter set of the Gaussian model can be
described as the set of incomplete matrices Xg = m(3) with ¥ = K ~land K € Pg. Indeed
it is easy to verify that the entries ¥;;, (4, j) ¢ E are such that

-1
Nij = Zi,V\{m}EV\{i,j},V\{i,j}EV\{M},J”

and are therefore not free parameters of the Gaussian models. One can prove that the
correspondence between K and the incomplete matrix X = 7(X) is one to one. We write
Y = ¢(K) = m(K~1). We note that ¢ is not explicit when G is not decomposable.
Henceforth in this paper, we will assume that G is decomposable. The reader is referred
to Lauritzen (1996) for all the common notions of graphical models used in this paper. We
will now simply recall some basic facts and traditional notations, we will use throughout this
paper. Every decomposable graph admits a perfect order of its cliques. Let (C1,...,Ck) be

such an order. We use the notation H; = Ry = C} while for j = 2,...,k we write

Hj=C1U...UCj, RjICj\Hj_l, SjZHj_lﬂCj.



The S;, j = 2,...,k are the minimal separators of G. Some of these separators can be
identical. We let k¥’ < k — 1 denote the number of distinct separators and v(S) denote the
multiplicity of S that is the number of j such that S; = S. Lauritzen (1996) has proven
that the multiplicity v(S) of a given minimal separator S is positive and independent of the
perfect order of the cliques considered.

For G given decomposable with the set of cliques {Ci,...,Cx} and ¥~! € Pg, the
incomplete matrix g is completely determined by its submatrices {E¢,,i = 1,...,k}
where, of course, for each ¢ = 1,...,k, Y, is positive definite. When considering the
parameter space of the graphical Gaussian model corresponding to G decomposable, we are

therefore led to consider the two cones

Pe = {yeM|y;=0,10(j) ¢ E} (1.1)
Qa = {zelg|zc, >0,i=1,...,k}. (1.2)

Dawid and Lauritzen (1993, Section 7) defined two distributions on Q¢, namely, the hyper
Wishart distribution as the distribution of the maximum likelihood estimator of ¥, and the
hyper inverse Wishart distribution as the Diaconis-Ylvisaker conjugate prior distribution
for Y. Subsequently Roverato (2000) gave the distribution of K = ¥~ = ¢~1(X5) when
Yq follows the hyper inverse Wishart distribution. We will call this distribution of K on
P the G-Wishart. The search for a rich and flexible class of conjugate prior distributions
for Y, or equivalently for K = X! remains a topic of high interest to statisticians.

When G is complete, Ps = Q¢ = M," and we define the regular Wishart distribution
on the cone of positive definite matrices of dimension r = |V'| by

1 —Ltrax—! -4l
T, ()P’ Pz~ 2 1)+ (2)d

where p > % is the one-dimensional shape parameter and ¥ € M,' is the scale parameter.

When G is decomposable, the hyper and hyper inverse Wisharts have been constructed
as Markov combination (with respect to ) of the Wishart and its inverse respectively, and
so, like the Wishart, they have a one-dimensional shape parameter and a scale parameter
in Q¢. Dawid and Lauritzen (1993) have shown that these distributions have Markov
properties: the hyper Wishart is weak hyper Markov while the hyper inverse Wishart is
strong hyper Markov.

In this paper, we will construct a family of distributions, called type I Wisharts, defined
on Q¢ and another family, called type II Wisharts, defined on Pg. We shall see in §4 that
the inverse of the type II distributions, like the hyper inverse Wishart, form a family of

conjugate prior distributions for the scale parameter of the graphical Gaussian model. We



will also show that they are strong directed hyper Markov in the direction given to the
graph G by any choice of a perfect numbering of its vertices. This property is parallel to
the strong hyper Markov property of the hyper inverse Wishart. We will also show that
the type I Wishart is weak hyper Markov, a property parallel to the weak hyper Markov
property of the hyper Wishart. The attractive feature of the inverse type II Wishart family
of conjugate distributions is that, except in the trivial case where GG is complete, the set of
shape parameters is of dimension strictly bigger than the number k of cliques in G, thus
offering a flexible class of conjugate prior distributions for . We shall also note in §4 that
it forms a class of enriched conjugate priors for 3 in the sense of Consonni and Veronese
(2001).

To construct these two families, we define two natural exponential families of distribu-
tions affiliated to the Wishart, one on Q¢ and one on Pg. Let (C1,...,Ck) denote a perfect
order of the cliques of G and let (Sa,...,Sk) be its corresponding sequence of minimal

separators, some of them being possibly identical. We consider functions of the type

I e, |
HG(avﬁ;x):Zk#l‘ﬁj erG)
i=2 |Ts, |

where o and 3 are two real-valued functions on the collection C and S of cliques and
separators respectively such that a(C;) = a4, B(S;) = B with §; = §; if S; = Sj. These
functions play a very special role in the definition of the two families of distributions that
we define. Indeed, if we let ¢; = |C;| and s; = |S;| denote the cardinality of C; and S;
respectively and if we denote

[ oc, |~

s+l Qa
H?:Z |:L‘S'L| 12

the family of distributions we define on Qg is, for a given (a, 3), the natural exponential

e (de) = (x) da,

family generated by

He(o, B 2) i (de) = He(o — %(c 1), 8- %(s + 1) 2)10, (x) dr. (1.3)

The measure (1.3) can be seen as a Markov combination generalisation of the measure
|x|p\az|7%1Mr+ (z)dz generating the Wishart distribution, for a given p > 1.
In §3, we will introduce the set A of («, 3) such that the following integral converges

and satisfies
[ e Ho(on B awe(dr) = (e ) Ha o 5:6(0) (14

where I';(c, ) is some function of («, ) independent of y € Pg. When («, ) is in A we
say that Hg(a, 8;z) has the eigenvalue property with corresponding eigenvalue I'z(«, (3)



and we define the type I Wishart distribution on Q)¢ as the distribution with density

1
F[(Oé, ﬁ)HG(O‘v ﬂ; cp(y))

and with parameters (o, 3,y). In a parallel way, we define a set B of (o, 3) for which an

e~ T @ Ho(a, 8; 2)ug (dz),

eigenvalue property similar to (1.4) holds for the type II Wishart distribution defined on
Pa.

In order to fully describe the type I and II Wishart distributions, it is then necessary
to know the sets A and B. In §3.2, we show that, for any G, the hyper Wishart and the
G-Wishart are particular cases of type I and II distributions, respectively. More precisely,
we describe the sets A; C A and By C B such that for («, ) € Ay, the type I Wishart is
the hyper Wishart and for (a, 3) € By, the type II Wishart is the G-Wishart. In §3.3, we
consider the particular class of decomposable graphs G which do not contain the three-link
chain, which we call A4, as an induced subgraph. Such graphs are called homogeneous.
When G is homogeneous, we describe the sets A and B completely and show that they are
open sets of dimension k + k', the number of cliques plus the number of distinct separators
in G. For G homogeneous, the cones )¢ and Pg are homogeneous and we see that the
type I and II Wisharts then belong to the class of Wisharts on homogeneous cones defined
by Andersson and Wojnar (2004). In §3.4, we consider nonhomogeneous graphs. In that
case, we have, so far, only a partial knowledge of A and B. For each perfect order P of
the cliques, we define a (k + 1)-dimensional subset Ap of A such that, for (a,3) € Ap,
(1.4) holds. We therefore know the subset UAp of A, but not all of A. Similarly we define
a (k + 1)-dimensional subset Bp of B such that we know the subset UBp of B, but not
all of B. We conjecture that the equalities A = UAp and B = UBp hold in general for
nonhomogeneous graphs and that, thus, the dimension of the manifolds A and B is generally
k+1 < k+k. In §3.4, we verify that these two equalities hold when G' = A4 by computing,
in this case, the 7-uple integral corresponding to (1.4).

In §4, we give the conjugacy and hyper Markov properties mentioned above. We also
give the Laplace transforms of the type I and II Wisharts and the expected values of the
type I, type II and inverse type II Wisharts. The necessary preliminaries for understanding
the cones Pg and Q¢ and the measures we define on them are given in §2.1. In §2.2, we
give the results needed to work with homogeneous graphs. Most proofs are deferred to the

appendix.



2 Preliminaries

2.1 Measures on P; and (g

For the graph G = (V,E), V = {1,...,r}, we write i ~ j to indicate that the edge {i,j}
is in £. An undirected graph G is said to be decomposable if it does not contain a cycle
of length greater than or equal to four as an induced subgraph and if it is connected. For
all the notions related to decomposable graphs that we will introduce below, the reader is
referred to Lauritzen (1996, Ch. 2). We denote by Z the real linear space of symmetric
matrices y of order r such that y;; = 0 if (7, j) ¢ E. We denote by I the real linear space
of functions (4, j) — x;; from E to IR such that z;; = xj. The elements of I are called
G-incomplete symmetric matrices. For a decomposable graph, we have defined the cones
Pg C Zg and Q¢ C Ig in (1.1) and (1.2). Recall that M;" denotes the cone of positive

definite symmetric matrices of order r. Gréne et al. (1984) proved the following.

Proposition 2.1 When G is decomposable, for any x in Q¢ there exists a unique & in M,"

such that for all (i,7) in E we have x;; = %;; and such that £~ is in Pg.

This defines a bijection between Pg and Qg¢:

g y=@) ePs—a=0y) =1y")EQs,

where 7 denotes the projection of M onto Ig. The explicit expression of 27! is given in (2.3)
below. For (z,y) € Ig X Zg, we write tr (zy) = (x,y) = > (ij)eE Tij¥ij - By Proposition
2.1, we have for x € Q¢ (x,y) = tr (Zy) , where tr (2y) is defined in the classical way.
Thus although zy does not make sense, the notation tr (zy) is quite convenient. We also
use the following notation: if C' is a complete subset of vertices and if ¢ = (245)ijec is a
matrix, we denote by (z¢)? = () jey the matrix such that z;; = 0 for (i,5) & C x C.

The following theorem gathers some basic results on decomposable graphs: Part 1 is
due to Andersson (private communication), Parts 2 and 3 can be found in Lauritzen (1996,
Ch. 5) et Part 4 is due to Roverato (2000).

Theorem 2.1 Let G be a decomposable graph. Then
1. The convex open cones Pg and Qg are dual to each other in the sense that
P = {y € Zg; tr(zy) >0Vr e Qg {0}} (2.1)
Qc = {x €lg; tr(ay) >0Vye Pg\ {0}} (2.2)

2. For x € Qg we have that y = 27! is in Pg and

y= (xc")’ = > v(S)(zz")". (2.3)
ceC

SeS



3. For x € Qg we have
det 7 — —Llcec(detze)
[Tses(det z5) S

4. The absolute value of the Jacobian of the bijection x — y = 2~ from Qg to Pg is

[T (det )19 TT (det wg)(ISIHDM(S), (2.4)
ceC Ses

The proof of Part 1 is given in the Appendix. For G complete, Part 4 above becomes the

following.

Lemma 2.1 (Muirhead, 1982)
The Jacobian of the change of variable x € Mt — y=x"' € M+ is |y|~+D,

We now introduce the measures which will be the generating measures of the new
Wishart exponential families on Pg and Q)¢ that we are going to define in the next section.
Let a and 8 be two real valued functions on C and S respectively. An example of such

functions « and  is
CelCralC)=]C| and Se€ S+ 3(S)=19|.
We denote these examples o = ¢ and # = s. Another example is, for a constant p given,
CeC—alC)=pand SeS—F(S)=p.

simply denoted o = p and § = p. For = € Q¢ we adopt the following notation

oy eec(detac)* @
HG<0575’ iL') - HSGS(det xs)’/(S)ﬂ(s) . (2'5)

The functions He for the particular case & = —%(c+ 1) and 3 = —3(s + 1) will play an
important role. Indeed, we will use the following as reference measures to generate the
exponential families of distributions which are the central object of our study in this paper.

These reference measures are

pe(dr) = HG(_%(C'f’1)v_%(5+1)§93)1QG(33)d$a (2.6)
valdy) = Halg(e+ 1), 5(s + 1) () Lr (y)dy (27)

Applying (2.4), we see that vg is the image of jug by the mapping  +— y = 27! and that
conversely ug is the image of vg by y — = = ¢(y).
Let M, denote the cone of positive definite matrices of order d and L(IR?,IR?) denote

the space of linear transformations from R” to R?. For = € Q¢, z¢;,j = 1,...,k are well



defined and it will be convenient to use the following standard notation for various block

submatrices:
TS, = T<j>, X =5 =21, =2 Tp = T — LTt T (2.8)
S = 4<g>sy ARyS; T > T <) Ll T ARy gl T A >t <j>"<ij] :

where x> € M;;, Ty € MF rpj> € L(R“™%,R%). It is understood here that

Cj—5j7
xp = xp). = T, whereas both x<1> and z;» vanish. With this notation, we have, for
example, |z| = H?Zl |z(;1.]- In the proof of our main theorems, we will need to split the

trace (x,y) for z € Qg and y € Py following a perfect order of the cliques as given in the

following lemma.

Lemma 2.2 Let G be a decomposable graph and let Cy,...,Cy be a perfect order of its
cliques. For x € Qg andy € Pg withy = 6! and 0 € Qg, we have

k
(2.y) = (2,671 = 3 (@ o5 + (@a’h - opoch) o)

(ol — oo )rais)).

(2.9)

This is a direct consequence of (2.3) and the following standard splitting of the trace for

.- . . uyp u12 V1 V12
two positive definite matrices u = and v =
u21 U2 V21 U2

<u,v> = <U1,1)1.2> + <U2.1,’02> + <(UQ1U1_1 + v;lvgl),vg(uzlufl + 1)2_11)21)11,1) N (2.10)
and its corresponding expression if we write v = 6! with & also positive definite.
(u,67Y) = (w1, 07%) + (g1, 057) + ((uaruy - — 09107 1), 051 (ugruy ! — o107 ur) . (2.11)
We also recall the following basic results that will be used throughout our proofs.
Lemma 2.3 (Massamé Neher, 1997, Lemma 7) The Jacobian of the change of variables
rEQe—y= (J"C17$[ﬂ~’x[i>$zil>vi =2,... vk) (212)
18
dy k o
’d— = H ‘x<j>|cj_sj . (213)
x "
7=2
The following lemma gives a Gaussian distribution we shall use later.

Lemma 2.4 For xz and o in Q¢, and for L = L(R“~ % R%) we have

-1

i
/ o (@l o Tl )0 e~ ok ecin) g iz o]
L

1 -
x[i>x<i>) =T c;—s;

|=T<z'>’ 2
(2.14)




The proof follows immediately from Theorem 3.1.1 in Muirhead (1982) by replacing C, D, Y
and M in that theorem by oy;., x;é, x[i>x;}> and 0[i>a;i1> respectively.
Let us finally recall the definition of the multivariate Gamma function. For p > %, the

r-multivariate Gamma function is

-
1
Io(p) =D [T~ 5G - 1) - (2.15)
j=1
In the sequel we will need the following two formulas which link multivariate gamma func-
tions of different dimensions. For ¢ and s two positive integers with s < ¢ and for o > %

a real number, we have

(c=s)s s, Tea)
T2 FC,S(a—i) = Ta(a) (2.16)
W(CES)SFC_S(OZ) = ]‘_‘(I‘C(_Oéz;s) (217)
s 2

2.2 Tools for homogeneous graphs.

In this subsection, we study some properties of homogeneous graphs.

Definition 2.1 A graph G is said to be homogeneous if it is decomposable and does not

. 1 2 3 4 ‘
contain the graph e — e — e — e | called A4, as an induced subgraph.

We will see in Theorem 2.2 below why such a graph is called homogeneous. We now need

to introduce a number of concepts about undirected graphs.

Definition 2.2 Given an undirected graph G = (V, E), the associated digraph is the directed
graph G' = (V, E') with E' derived from £ by the following process. If i,j € V, then the
directed edge (i,7) is in E' if and only if

{1y Unb(i) 2 {7} Und(j) (2.18)
where nb(i) = {j; 7 # 1,1~ j}.

Note that E' contains all (i,i) for i € V. We write ¢ — j if and only if (i,j) € E'. An
edge in G can either disappear in G’ or become directed or become bi-directed. Note that
if i ~ 7 in G then i 4 j if and only if there exists k, k # i, k # j such that the subgraph of
G induced by {i,j, k} is e — 4 — & . Note also that if k o i, then it is impossible to have
both ¢ — j and k£ — j. In other words, the configuration i—%}—ﬁ in G’ is forbidden. Here
are two simple examples of digraphs associated to given graphs. For the sake of clarity, the

loops 7 — 7 are not drawn on the digraph G’.

10



Examples. The graph e — & becomes the graph G’ e>s . The graph A4 becomes
s e—e.

It is easy to see from (2.18) that if G is an undirected graph and G’ its associated
digraph, then the relation ¢ — j defined on V is a preorder relation, that is ¢ — j and

j — k implies ¢ — k. Denote by R the induced equivalence relation defined on V' by
iRj & i—jand j—i < {i}Unb(i)={j}Unb(j).

Denote by i the equivalence class in V/R containing i € V and denote i < j the partial
order relation on V/R induced by the preorder i — j. As usual when dealing with partial
order, the notation i < j means 7 < j and 7 # j. We now introduce the Hasse diagram of
V/R.

Definition 2.3 The Hasse diagram of G is the digraph with vertex set Vi = V/R and with
edge set Ey such that an edge (i,7) is in Eg if

i#j, i3],

and

i =<k=j implies either k=1 or k=j.

If (i,7) € Ey, we write i — j. The knowledge of the Hasse diagram of G is equivalent to
the knowledge of the partial order relation on V/R. If i — j then j is a child of 7 and i is a
parent of j. If i and j are in V it will be convenient to write i — j when the corresponding
equivalence classes satisfy i — 7. Let us give an example of construction of a Hasse diagram.

In Figure 1 below, we give a graph G, its associated digraph G’ and the corresponding
Hasse diagram. In G’, the loops (i,i) are omitted. Since 3 — 7 and 7 — 3, {3,7} is

. : :
XX, XX L

Figure 1: G, G’ and the Hasse diagram

an equivalence class denoted by 3 while the 5 other vertices are alone in their equivalence

class, which we denote by 4 rather than ¢ for simplicity. On this particular example, the

11



Hasse diagram is a rooted tree associated to a partial order such that the root 1 is the
minimum. The four cliques correspond to the end points of the tree: C5 = {1,2,3,7}, Cy =
{1,2,4} ,C5 = {1,2,5}, Cs = {1,6}. The two separators S; = {1,2} with multiplicity 2
and So = {1} with multiplicity 1 correspond to the other vertices of the diagram. Note that
the graph G is homogeneous since it does not contain any A4 as an induced subgraph. The
fact that, in this example, the Hasse diagram is a rooted tree and the graph is homogeneous

is not a coincidence since we have the following characterization theorem:

Theorem 2.2 Let G = (V, E) be a connected graph and let G' = (V, E’) be its associated

digraph. The following properties are equivalent
1. G is homogeneous.
2. If i ~ j then eitheri — j or j — i in G'.

3. The Hasse diagram of the partially ordered set (V/R, <) is a rooted tree such that its
root 1 is the minimal point of V/R and such that the number of children of a vertex

is never equal to one.
4. Pg is a homogeneous cone (that is, its automorphism group acts on it transitively).
5. Qg is a homogeneous cone.

We shall only use equivalences between 1, 2 and 3, which are easy to prove. The
equivalence with 4 and 5 is stated for the curiosity of the reader. The homogeneous graphs
are specially simple to handle. We call T the set of vertices of the corresponding Hasse tree,
so T'=V/R. Consider the following subset of V'

N

=Uj < J-
We gather the properties of the Hasse tree of G in the following proposition:

Proposition 2.2 If T is the Hasse rooted tree of a homogeneous graph G with k cliques
and k' minimal separators, we have that

1. The mapping i — V;, where i € T, gives a one to one correspondence between the cliques
and minimal separators of G and, respectively, the end points and non end points of T. In
particular, if k > 1 the root 1 is a minimal separator which is contained in all minimal
separators and cliques of G and the total number of vertices in T is equal to k + k.

2. All orders of the cliques are perfect. The multiplicity v(Vs) of a separator V is equal to

the number of children of s minus one.

12



Proof: 1. If i € T then we observe that V= is complete since if j and [ are in V; then
either j <1 <7 orl =3 <4i. In both cases j ~ . Conversely, if C C V is complete then
C =U{j eT; je C}is contained in some V5. If not there exist j and [ in C' which are
not comparable in the poset T and therefore j » [ which contradicts the fact that C' is
complete. Thus the maximal cliques are the V’s where 1 € T has no children, that is 7 is an
end point. Finally, if 7 € T has children j and [ then V5 is a minimal separator of j and [ as
can easily be seen. Conversely, if j and [ are in V' with j o [ there exists a unique minimal
separator between them which is Vs where i = max{s € T ; s < j, s <[}

2. Consider any order (¢(1),...,t(k)) of the endpoints of the tree and the corresponding
order (Vt(l), ceey Vt(k)) of the cliques. For j =2, ..., kandforl=1,...,5j—1

s(l) =max{s €T ; s <t(j), s<t()}.

Since 1T < s(l) < t(j) for all I =1,...,5 — 1 then s(I;) = max{s(l) ; [ =1,...,7 — 1} exists
and

Vaay = (Vi U+ UVigon) N Vi)

is a minimal separator contained in the clique Vj,) with [; < j. Thus the order is perfect.

Now, given a minimal separator Vy, we show that the number v(Vj) of j such that there
exists [; with 1 <1; < j < k and s = s(l;), where (I;,5(l;)) is as defined above, is equal
to ¢(s) — 1 where ¢ = ¢(s) is the number of children of s. Suppose first that v(V;) > c.
Then there exists endpoints t(j1),...,t(jc) of T such that j; < ... < j. and such that
s=s(l,) =...=s(,). Thus s < t(j1), -, s < t(jc). Furthermore {;, < j; and s < t(l},).
This implies that s has at least ¢ + 1 children, a contradiction. Thus v(Vy) < ¢(s) — 1.
Finally, one sees by induction that the number of edges of an undirected tree is the number
of vertices minus one. Since > ¢(s) is equal to the number of edges in the graph, this
implies that > (c(s) — 1) = k — 1, where the sum is taken over the non end points s of 7.
To conclude the proof, we use the fact that by definition of the multiplicity of a minimal
separator, the sum of the v(V;) is also k—1. Thus Y [c(s) —1—v(Vs)] = (k—1)—(k—1) = 0.
Since we have a null sum of non negative terms we get v(Vs) = ¢(s) — 1 for all minimal

separators. |

It follows from the proposition above that there is a one to one correspondence between
the set of homogeneous graphs and the set of rooted trees with vertices weighted by positive
integers and such that no vertex has exactly one child. Note that a complete graph is
homogeneous. It is characterized by the fact that its Hasse diagram is just a point. A
decomposable graph with only one separator is homogeneous. Its Hasse tree looks like a

daisy. An undirected tree is decomposable but is not homogeneous in general. Finally it
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is possible to prove that if all orders of the cliques of a decomposable graph G are perfect

then G is homogeneous.

3 The Wishart families of type I and 11

In this section, we define two families of Wishart distributions. We will study special cases

in §3.2, the homogeneous case in §3.3 and the non homogeneous case in §3.4.

3.1 Definitions

Consider the two integrals
i) = | eV Halo apualda) - fory € P (31)
G
JaBiw) = [ e Hola,Biom)ve(dy)  for o € Qa. (3.2)
G

We define A to be the set of («, 3) such that I(a, 3;y) converges for all y € P and such

that y — HolaBip(y)) 1S & constant on Pg. This constant is a function on A that we denote

by I'7(«, 3). Similarly we define B to be the set of («, 3) such that J(a, 3;x) converges for
all € Q¢ and such that x — %
on B that we denote by I'rr(a, 3). The sets A and B will be studied in §3.3, §3.4 and §3.5.

We note here that since pug(du) is the image of the measure vg(dy) under the mapping

is a constant on ()i. This constant is a function

y— u=@(y) (see §2.1), (3.2) can be written
J(a, Byx) = / €7<‘”’ﬁ_l>Hg(a,ﬂ; w)pg(du) for z € Qq.
Qc

This expression of (3.2) and the passage from y € Pg to u = ¢(y) € Qg will be used several
times in the remainder of the paper for defining the inverse type II Wishart and to perform
various computations. The Wishart distributions of type I will be the probabilities
1
T (o, B)Ha (o, B ()

defined on Q¢ and indexed by the parameters (o, 3;y) in A x Pg. To follow the standard

eV Hg(a, B; 2) pa(de),

notation for distributions related to the Wishart, when y € Pg is the parameter of the type
I Wishart, we often write y = ! with ¢ € Qg so that, for o € Qg, (o, ) € A, the type I
Wishart distribution can be written

He(a, B; )
Lr(e, B)Ha(a, Bio
The Wishart distributions of type II will be the probabilities

Hg(o, B;0(y))
Lri(a, B)Hg (o, 5 0)

Woe(a, B,0;dr) = e @) )uc(da:). (3.3)

Wpg(a, 8,0;dy) = e @Y va(dy). (3.4)

14



defined on Pg and indexed by the parameters («, 3;6) in B x Qg. We therefore consider

the following two natural exponential families.

Definition 3.1 For («,f3) € A, the type I Wishart family of distributions is defined by
Fap)r = {Wag(a. B,05dz), 0 € Qa} (3.5)

Definition 3.2 For («a, 3) € B, the type II Wishart family of distributions is defined by
Flap)ir = {Weg(a, 8,0;dy), 0 € Qc}- (3.6)

Following the pattern of what is done for the Wishart distribution, we now define Type
I and II inverse Wishart and F' distributions.

Definition 3.3 Let G be given. If X ~ Wg,(a, 3,0) where (o, 5) € A and 0 € Qg, then
Y = X1 is said to follow the inverse type I Wishart, defined on Pg, and its distribution is

e~ W) Ha(a, B; 0(y))
F[(Oé, ﬁ)HG(OZ, /87 U)

The distribution (3.7) is clearly immediately derived from the distribution (3.3) by recalling

that 2 = o(y) and that vg(dy) is the image of ug(dz) by the mapping z +— y = 271

IWQG(Oé,ﬁ,O'; dy) = VG(dy) (37)

Definition 3.4 Let G be given. If Y ~ Wp, (e, 3,0) where (o, 3) € B and 0 € Qg, then
X = p(Y) is said to follow the inverse type II Wishart, defined on Qg, and its distribution
: eV Hg (o, B )
IWeg(a, 3,05 dx) = T 1(o B) Holo, e)ﬂc(dw) (3.8)
Here too, density (3.8) is immediately derived from (3.4).
Let B— A ={(d/ —a,p'—p): (¢,0) € B,(a,3) € A}. Since B— A C B and

A — B C A are false in general as will be seen, for example, when G = A4, to give the

following definition of the F' distributions, we will have to insure that the parameters o/ — «a

and (3’ — (3 are in the correct sets.

Definition 3.5 Let 6 and o be in Pg and Qg, and let (o, B) € A and (¢/, ') € B. Then
1. for (¢/ —a,0 —B) € B, 0 € Qq, the F distribution of the first kind with parameters
(o, B,a/, 8, 0) is the following distribution on Qg
Lr(e — o, 8 = B)
Lr(a, B)Lrr(ed, 87)
2. for (a =o', B—0") €A, 0€ Qqg, the F distribution of the second kind with parameters
(o, 8,0/, 3',0) is the following distribution on Pg
I'i(a—ao,-p)
Lr(a, B)Trr(e, 3')

Hg(—o!,=p50)Hg(o! — o, 3" — B0 + ) Hg (o, B; 2) pe(da);

He(—o, —B;9(0))Ha(a— o, B — 8500 + y))Ha(o, 35 0(y))va(dy).
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Note here again that the lack of multiplicative structure on Pz and ()¢ when G is not
complete prevents us from relating these distributions to some form of quotient X/X’ of
independent random variables with distributions Wy, (v, 3;0) and Wq, (¢, #';0), respec-
tively. A study of the multivariate F' distribution when G is complete can be found in
Olkin & Rubin (1964). We could also define rather explicitly Beta distributions of type
I by introducing the conditional distributions X|X + X’ where X ~ Wy, (o, 3,0) and
X' ~ Wg,(d/,(,0) are independent such that (a + o/, 5 + ') is still in A. Again, since
the cone Q¢ has no special multiplicative structure, these beta distributions unfortunately
do not seem to enjoy properties linking them to some ratio analogous to X /(X + X') as it
happens when the graph is complete. The same problem arises with Beta distributions of

type II. Finally, we could also consider the distribution

e” " Hg(a, B; )
I(a, B5y)
where we only require that (a, 3) be such that I(«, 3;y) defined by (3.1) converges. Under

p(d)

such generality, these distributions have no interesting properties: their Laplace transforms
are not explicit, their family is not stable by convolution as our Wishart distributions of
type I are (see Proposition 3.2) and they have no hyper Markov property. A similar remark
holds for J defined by (3.2) and type II Wisharts.

3.2 The hyper and inverse hyper inverse Wishart distributions

We first observe that when G is complete, both type I and type II Wishart distributions
coincide with the ordinary Wishart distribution. We will see now that for special values of
(a, ), the type I and 1T Wisharts are, respectively, the hyper Wishart as defined by Dawid
and Lauritzen (1993) and the G-Wishart first identified by Roverato (2000) as the inverse
of the hyper inverse Wishart defined also by Dawid and Lauritzen (1993). To describe these

distributions, it is convenient to fix a perfect order of the cliques.

The hyper Wishart on Q. Let G be given and let p be a scalar. Let A; be the

one-dimensional subset of IRFT™* defined as
1
Ar={(e.f)| a(C) =p, C€C, B(S) =p, § € Swith p>max(|C] -1},
For (a, #) € A; we then have

H?:l We; (pv 0C;) :Bci)

Wo, (o, B,0;dx) o
1=2 wsi (pa O—Si 7 [ESl.)

1g, (z)dx (3.9)

with 58
[wei P ~we,05))
W, or.. T, ) = ——¢€ e ’

(P, 0CiTe) = T
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We note that the expression of Wy, (o, 8,0;dx) in (3.9) does not depend on the chosen
perfect order of the cliques. The expression in the right-hand side of (3.9) is a Markov
combination of Wishart distributions with shape parameter p and scale parameter o¢, and
os, on the cliques and separators of G respectively. By Theorem 2.6 of Dawid and Lauritzen
(1993), it is a distribution. It is in fact the hyper Wishart distribution, as defined in that
same paper. Therefore both sides of (3.9) are equal and equal to the density of the hyper
Wishart distribution and it follows immediately that A; C A for any given G and

I Lo, (p)

F[(OJ,,@): k T (p) :
1=2 " Si

The G-Wishart on Pg. Let G be given and let § > 0 be a scalar.

Let By be the one-dimensional subset of RFH* defined as
1 1

For (o, 8) € By and for = ¢(y)

[T e |- 2257 s

1= CUCi 2 2

He(a, By o(y))va(dy) = Zk : RTINS 1pg(y)dy
[Ti=2 |'1;S'L| 2 2

5—2
Hk: mCi KR 6;2
_ %1%@)@ = |y| = 1p;(y)dy,

[l lzs, ™2
where, as before, the expression of Hg(«, 5;¢(y))va(dy) does not depend on any chosen
perfect order of the cliques. Therefore, Wp, («, 3, 6; dy) |y|6%26*<9’y>dy is the G-Wishart
distribution first identified by Roverato (2000) as the inverse of the hyper inverse Wishart.
It follows immediately that B; C B, that
N e )

Pl B) = g, (7T
and that the type II Wishart is the G-Wishart defined on Pg for 6 > 0, 8 € Qg. The
distribution of this special type II Wishart is

S+4c;—1 k 5 L
15 10c,) 2 Mo T, (P51

k Stci— Fsi—
ITi Pe (5570 T8, 160,75

5—2
Wi (0, 5,0) = 11522 e 0901, ().

3.3 The homogeneous case

We now consider the type I and IT Wishart distributions when the graph G is homogeneous

as defined in §2.2. Our aim is to identify the sets A and B and the value of the normalising
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constants I'7(«, §) and T'jr(a, B). It is convenient to introduce the following notation,

consistent with the notation introduced in (2.8). For u € V/R, we define

— ()= = — () - — () - — _ -1
Llu) = (Q:Z])i:jzuﬂ Llu> = (xw)i:u,j<u’ Tcu> = (xlj)i<u,j<u7 Llu) = Llu] — Lu>T<u>L<u]

We also adopt the convention that a vertex of the Hasse tree (T, ) will be denoted by ¢
if it is an end point of the tree and by ¢ if it is not an end point. From Proposition 2.2,
to each ¢ corresponds a unique clique C; = Uyery<¢[u] and therefore a number a; = a(Ch).
And, to each ¢ corresponds a unique minimal separator S; = Uyer,u<q|u] and therefore a
number [, = B(S;). The positive integer v(g) is the number of children of ¢ minus one.
From Proposition 2.2, this is also the multiplicity of S;. With these conventions, for each

u €T, we write

pu—pu Zat Z q

u=t u=q
We define n,, to be the cardinality of the vertex u of the Hasse tree, that is the number of
vertices in V' that are in the vertex u of the Hasse tree of G. We also define
mu:nu—l—ZnU: va. (3.10)
v<u v=Uu

The following two theorems give A, B and the corresponding normalising constants for the

Wisharts of type I and II in the homogeneous case.

Theorem 3.1 Let G be a homogeneous gmph. Then
A={(a,8) | pu> va— ,u € T}
v=u
More specifically for (o, 3) € A and o € Qg, the integral (3.1) converges and
—(x,6~ s Ny
/Q eV He(a, ia)uc(dr) = [T w5 oy [P Ta(pu = - 5 (3.11)
G

ueT v=<u

= Hg(a,B;50) H FZ”<“ =N L, (pu — Z %)

ueT v=<u

Theorem 3.2 Let G be a homogeneous gmph. Then

B={(a,8)] —pu> va— ,u€ T}

VU
More specifically for (o, B) € B and 0 € Qq, the integral (3.2) converges and
Ty

[ Hao B waln) = T] e 0 (= ) (312)

ueT v>=U

= HG(auﬁ; 9) H 7'('21;<u %Fnu(_pu . Z %)

ueT v-U
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We note that the parameter sets A and B in the homogeneous case are k + k’-dimensional.
The proof of Theorem 3.1 follows the same line as that of the proof of Theorem 3.3 given
in the Appendix. It is based on Proposition 3.1 given below and on the following analog of
formula (2.9) for the traces: for z and o in Qg¢,

(2,671) = 3 (@ 0 ) H (B T2t =0 02is ) O} (@) 2 his — 0 02is JTcus) | (3.13)

ueT

where it is understood that, as in (2.8) and (2.9), for u = 1, the root of T', the summand
reduces to (x1,07'). Then, using Proposition 3.1 and formula (3.13), the integral in (3.11)
is obtained by a series of standard integrations. The proof of (3.13) is parallel to the proof
of (2.9) and will not be given here. The proof of Proposition 3.1 is given in the Appendix.

Proposition 3.1 For G homogeneous, the image of Hg(«, ;) uc(dx) under the mapping
T = (x[u}7 Tly>, U € T) = (x[u}-vx[u>xzzlt>>u S T) (314)
18

* * - o nutl —
HE (o, B @) pg(dapy)., dopsasys, u € T) = ] |lopg ™72 dopy dzps22is) ,
u€eT

where

n n

VU v<u
The proof of Theorem 3.2 also follows the general lines of the proof of Theorem 3.4

given in the appendix. We first observe that the image of Hg (o, 5; ¢(y))va(dy) under the

change of variable y — = = ¢(y) is Hg(«, ;) ug(dz) so that
stt
—d
s;i+1 :U7
H?:2 ’x5j|/8j_ E

where, as usual, the integral on the right hand side of the equation above does not depend

k o
—oe-y 1=t 2oy

| e eta, 8oty = [
Pg Qa

upon the chosen perfect order of the cliques. We then use (3.14) and (3.13) applied to

(6,271) to obtain the expression of the integral in (3.12) by a series of standard integrations.
Using Proposition 3.1, (3.13) and (3.11) it is fairly straightforward to show that the

image of the type I Wishart by the change of variable (3.14) is the following distribution

Woe (o, 8,05 dagy., d(zyo2ys) u e T) (3.15)
H |:|$[u] |)\u_ nu2+1 €7<x[u]-70@]1A>67<(2[u)x;111,> 7‘7[u>0211,,>)a0'[;]1‘ (x[u>m2i>7g[u>ozi>)x<u>>
1
uel w3 Qs ™o [0 T, (s = § o 0)

1D, (@) (T T2us)) dp). d(x[u>w2i>)} :
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where D,, = (M,;f x L(IR™,R™=~"™)). This distribution is exactly the distribution of the
Wisharts defined by Andersson and Wojnar (2004) on homogeneous cones. Therefore when
G is a homogeneous graph the type I Wisharts coincide with the Wisharts of Andersson
and Wojnar (2004) for the homogeneous cone ¢ corresponding to G. Since the dual Py
of Q¢ is also homogeneous, we could also show that the type II Wisharts correspond to
the Wisharts as defined by Andersson and Wojnar on Pg. However, there are many other
homogeneous cones not of the form Pg and Qg. Our calculations are simpler and self
contained in the particular cases that we investigate here.

Using (3.15), Proposition 3.1, (3.13) and (3.12), we obtain the image of the inverse
type II Wishart by the change of variable (3.14). The image of the distribution of X ~
IWp, (e, 8,0), the inverse of the type II Wishart when G is homogeneous is given by

IWp (o, B,0; dp., dopsaZys,u€T) (3.16)

-1 [|$[u1~l“‘ g

_<(5E[u)rz71¢> _e[u>€271¢>)79<u> (lell.>x<u] _02111>9<u])$[u]4>
1
zn n _
wr w3 2™ |Gy | 0D, (=P = T %)

lDu(x[u].,(x[u>xzb>)) dzpy). d(:):[u>x2i>)} .

" =1 g1
nyt1l (:p[u]'ﬂ[u])

2 € (&

Example: Consider the following graph Gy .

o4

o2

X

ol

o3

o6

5

Figure 2: Graph Gy

We index each clique according to the vertex of the Hasse tree of Gy which represents it.
Thus C5 = {1,2,3}, Cy = {1,2,4}, C5 = {1,2,5}, Cs = {1,6}. Minimal separators are
S1 = {1} and Sy = {1,2} with v(S2) = 2 and v(S;) = 1. We set

a(C3) = a3, a(Cy) = a4, a(Cs) = a5, a(Cs) = ag, B(S1) = B1, B(S2) = Ba.

The Hasse tree corresponding to Gy is identical to the Hasse diagram of Figure 1, with 3
replaced by 3. Since the cardinality of all the vertices of the Hasse tree is 1, for the sake of
simplicity we will denote the vertices of the tree by 1, 2, 3, 4, 5 and 6 so that we have

nj=1,4=1,....,6 and 1 <6, 1 <2, 2<3, 2=<4,2<5,
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p1 = aztagtost+ag—LF1—202, p2 = azt+oustas—202, p3 = a3, pa = o4, p5s = a5, P = O,
5 3 1 2 2 2 1
and M1 =prto, e=pto-g, AM=pog, M=p— 5, =55, Ae=pe— 5
Therefore,
1 . 1
A = {(aﬂﬁ)’p1>oap2>§7Pi>171:374757p6>§}

1
= {(a,ﬁ)]ai>l,i:3,4,5, Qg > 5, az+ag+ a5+ ag — 202 — 81 > 0, (3.17)
1
043+044+045—252>§}

5 3 .
B = {(O‘aﬁ)’ p1 < *57/02 < 75,'01' < 07223747576}

5!
= {(a,0)] a; <0,i=3,4,5,6 g+ g+ as+asg—202 — 1 < —3 (3.18)

3
a3+a4+a5—262<—§}

3.4 The nonhomogeneous case

We now consider a nonhomogeneous graph G, i.e. a graph containing A4 as an induced
subgraph. As in the case of homogeneous graphs, our aim is to identify A, and the
corresponding eigenvalues. We will see that we are, in fact, only able to identify a subset of
A and B and the corresponding eigenvalues I'(«, 3). The results are given in Theorem 3.3
and Theorem 3.4 below. For G a noncomplete decomposable graph, let P = (C4,...,Cyk)
be a perfect order of the family C of its cliques and (Ss, ..., Sk) be the associated sequence
of minimal separators. Recall that ¢; = |C;| and s; = |S;| denote the cardinality of C}
and S; respectively. For given a and § we write a; = a(C}) and 3; = ((S;). For a given

minimal separator S we write
JP,S)={j=2,....,k| S =5},
and for a given perfect order P of the cliques, we define Ap to be the set of («, 3) such that

1. ZjeJ(P,S) a; —v(S)B(S) =0, for all S different of Sy;

2. aj—cj2_1>0foralle€C;

3. aj + 0y > 522_1 where 02 = 3 c j(psy,) @ — V(52)Ba.

Recall also that I';,(p) is defined in (2.15). To avoid trivialities, in the following state-
ments we assume that G is not complete in order to have at least one minimal separator.
Theorems 3.3 and 3.4 are useful only for non homogeneous graphs, since stronger results,

Theorems 3.1 and 3.2, are available for homogeneous graphs.
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Theorem 3.3 Let G be a non complete decomposable graph and let P be a perfect order
of its cliques. Then Ap C A. More specifically for y € Pg and for (o, 3) € Ap the integral
(8.1) converges and

/Q e~ He (o, B 2)ua(dr) = Tr(a, B) Ho(a, B; (y)) (3.19)

where

k
F[(Oé, ﬂ) = FSQ (Oél + 52 H (320)

Equivalently, if we write y = 6! with o € Qg, (3.19) can be rewritten as
/Q e*(ﬂﬁ,&—l)HG(a, B;2)pe(dr) =Ty (a, B)Ha(a, B3;0) (3.21)
G

To study B for a nonhomogeneous graph and give the normalizing constant of the type II

Wishart, we now need to define, for a given P, the set Bp to be the set of («, 3) such that
L Y enps (o) + $(cj —s5)) —v(S)B(S) =0, forall S different from Sy;
2. —ag— 5(cg—sq—1)>0forallg=2,....,kand —a; — 3(c1 —s2—1) >0
3. —a1— 3(c1 —so+ 1) — 92 > 271 where v, = 2 icI(P,Ss) (aj — B2 + %)

Theorem 3.4 Let G be a noncomplete decomposable graph and let P be a perfect order of
its cliques. Then Bp C B. More specifically for 0 € Qg and («, 3) € Bp the integral (3.2)

converges and

|, e e Brpw)valdy) = Do B) Hala 550) (3.22)
where
. o ca—sy e (—aq) k ch(—ozj)
Fll(a’ﬁ) = Lo [ “ 2 ” FSQ(_al - ¥) ]1;[2 st(_aj B @)(323)

It is interesting to reexpress (3.22) in a slightly different way. Writing y = 27! with = € Q¢
and recalling that the image of vg(dy) under y — (y) = z is pg(dz), we see that (3.22)

can be rewritten
e Ho (o B e (dx) = Tir(o, B)Holo 5:0) (3:24)
From the two theorems above, it follows immediately that
ADUpAp and B D UpBp
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where the union of all Ap and all Bp is taken over all possible perfect order of the cliques

of GG. Before making some important remarks, let us give an example.

Example: Consider the graph G = Ay : c—s_s_4¢

Let C; = {1,2}, Cy = {2,3}, C3 = {3,4}, Sy = {2}, S3 = {3}, and let
a(Cy) = a, 1=1,2,3, [(S;) =i, i =2,3.Then P, = (C1,Ca,C3) and Py = (Cy,C1,Cs)
are perfect orders of the cliques. The orders P| = (C3,C5,C1) and Py = (Cy,C3,C4) are

also perfect orders analog respectively to P; and P,. On the other hand the only other

possible orders (C1,Cs,C2) and its analog (C3,Cy,Cy) are not perfect. Let us therefore
identify Ap and Bp for Py, P and Py, Pj:

Ap, = {(a1,a2,03,82,03) | a; > %, i=1,2,3, a; +az — [ >0, az = (3}

Apr = {la1,02,03,0,03) | o > %, i=1,2,3, ag+az— B3>0, g = fa}
while Ap, = Ap, and A P = A p-Ina parallel way, we have
Bp, = {(an,a2,a3,82,83) | —a; >0, 1=1,2,3,—a1 —ag+ B2—1>0, az + % = 33}
Bpr = {(a1,a9,a3,02,03) | —c; >0,i=1,2,3,—ag—az+3—1>0, a1+ % = o}

while Bp2 = Bp1 and BpQ/ = BP{

Remarks.

1. The domains Ap and Bp on which (3.19) and (3.22) respectively or equivalently (3.21)
and (3.24) hold, depend upon the chosen perfect order P of the cliques. Since the functions
H¢ do not depend upon P, it is clear that, even though the expression of I'; and I';; depend

upon P, their values do not.

2. Since Assumption 1 of Theorems 3.3 and 3.4 represents k' — 1 constraints on the set of

(a, B)’s, we see that in general each set Ap is of dimension k + 1.

3. From Theorem 3.3 and 3.4, the integrals (3.1) and (3.2) are finite and constant multiples
of Hg(a, B;0) and Hg(a, ;0) for (o, 8) in UpAp and UpBp respectively. Using Holder’s
inequality it is immediate to prove that these integrals are also finite on the convex hull of
UpAp and UpBp. So the question naturally arises as to whether A and B are larger than
UpAp and UpBp. We only have a partial answer to this. We have seen in the previous
section that, when G is homogeneous, A and B are completely known, and of full dimension
k + k. However, if we consider the homogeneous example given in §3.3 and treat it using
the methods given in this section, we will find that the 24 possible orders are all perfect
with P, = (C,Cq,C3,Cy) and Py = (C1, Cy, Co, C3) being the only perfect orders yielding
distinct Ap’s. We have
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) 1 1
APl = {(a,ﬁ)|ai>1,z:1,2,3,a4>§,a1+a2+a372ﬁ2>7, a4:ﬂ1}a

2
5 1
BP1 - {(auﬁ)‘ai<07i:17273747 _al_a2_a3+252>§, 014_514‘5:0},
1
Ap, = {(,B)] ;i >1,i=1,2,3, ag> o, ar+ag— 1 >0, az+ az — 26, =0},
Bp, = {(a,0)] @i <0,i=1,2,3,4, —a1 —as+ 1 > 2, ag +az — 20 +1=0}.

Clearly, Ap, UAp, is included in, but not equal to, A as given in (3.17). Similarly, Bp, UBp,
is included in, but not equal to, B as given in (3.18). The question is therefore whether in
the nonhomogeneous case it is possible to identify A and B. In the next section, we find A
and B for G = A4 and we see that they are of dimension strictly less than k + k. Thus
G = A4 is a counterexample to the hypothesis that in the nonhomogeneous case, we could
also define a set of dimension k + &’ on which (3.21) and (3.22) hold.

3.5 The case G = Ay

Let G be A4 as in the previous example. Then we write

01 012
021 02 023
032 03 034

043 04

for 0 € Qq, with 0y = 0j;, 055 = 05 — aijaj_laji and similarly for 6 € Qg.
Proposition 3.2 Consider the graph G = A4 with cliques and separators
Cr={1,2}, Gy ={2,3}, O3 ={3,4}, 52 = {2}, S35 = {3}.
Let a; = a(Cy),i=1,2,3 3; = B(S;),i = 2,3. Define
Ay ={(a, B) | o > %, i=1,2,3, a1 +ay > P2,as + a3z > (3}

Then the following integral converges for all o € Qa, if and only if («, B) is in Ay. Under

these conditions, it is equal to

[, e gl g ) (8.25)
G
S ) (a2 — )T (as — )T (a1 + az — B)T(az + a3 — f3)
['(az)
2
oihog TR Rag B0 By (o0 + an — B2, a2 + as — B3, 4, —002?3)
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where oF) denotes the hypergeometric function. Similarly we define
1 1 3
By ={(c,8) | 1 < 0,03 <0, Pr—a1—az—5 >0, f3—az—az—5 >0, fotfs—a1—ap—as—g > 0}.

Then the following integral converges for all for 6 € Qg if and only if (o, ) € By. Under

these conditions, it is equal to

[, e O Ha(a. g o) voldy) (3.26)
G
R

D(—a)l(Bs —a1 —ag — DT (Bo+ B3 — a1 —ag —ag — )I(Bs — g — a3 — 1) (—ag)
LB+ p3—a1 —az —az—1)

2
. 923

1 1
oFi(fe—a1—as— -, f3—as—ag3— =0+ —ag —ag—az — 1; ) -
2 2 0203

The results above are obtained by a non trivial and long computation. A central part of

this computation is the following lemma.

X1 X2

with the
X192 Xo

Lemma 3.1 Consider the following 2 X 2 random matrix X = [

Wishart distribution

1 (det C)p 7<x C) 9 p7§
wo(p, ¢ ";dx) = e U xix9 — 21, +(x)dx1dzodrio
(preda) = e s — 2 E L ()
. €1 C12 . ) .
with p > 1/2 and ¢ = positive definite. For a1 > —p and as > —p, the Mellin
12 €2

transform of (X1, X2) is

(detc)? T'(a1 +p)T'(az +p) 2y )

a a e
E(XllXQQ) c‘f1+p632+p F(p)Q 2F1(CL1 +p> a2 +p7p7

C1C9

The proofs of Proposition 3.2 and Lemma 3.1 are omitted.

We now derive from Proposition 3.2 the sets A and B when G = Ay.

Corollary 3.1 Let G = A4. Then A = UAp and B = UBp, where the unions are taken
over the two possible Ap and Bp. The dimension of A and B is therefore strictly less than
k+ k.

Proof: Since the two statements are quite similar, we prove the second one only. We use the

equality (see Abramowitz and Stegun, formula 15.3.3)
(1—2)"¢ 3R (a,b;c;2) = oFi(c—a,c—b;e; 2). (3.27)
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2

Using (3.27) in the right hand side of (3.26) above with z = 0%“; and

1 1
(aab,C):(ﬁz—al—042—5753—042—043—5;52-1-53—041—042—043—1)

we see that

1
HG(CV?ﬁ; 9)

where C is a constant which does not depend on z. Now clearly from its Taylor expansion

/Q e~ He(a, B; 0(y)va (dy) = C 2Fi(c — a, ¢ — b;c; 2)
G

the hypergeometric function z +— oFi(c — a,c — b;c; 2) is a constant if and only if either
c— a or ¢ — b is zero, which together with B4 proves that constancy occurs if and only if

(a, B) belongs to one of the two possible Bp as given in the example of §3.4 above. O

Remark. One can prove that the convex hulls in IR® of A and B are respectively strictly

included in A4 and By as defined in Proposition 3.2.

4 Properties of the type I and II Wisharts

Let us recall that for a given decomposable graph G, the r-dimensional graphical Gaussian

model Markov with respect to G is the family of distributions
N ={N,(0,Y%), ¥ € Qg}-

Dawid and Lauritzen (1993, p. 1306) have shown that this model is strong meta Markov.
This can also be shown directly since, using the notation of (2.8), for a given perfect order
of the cliques and with the convention that zpy. = z¢y, Xp1). = Xy, 2<1> = 0,71 = ¢1, the

density of X € IR” with distribution N, (0,X) € Ng can be written as

& 1 1 -1 -1 -1
f(:c) — - efﬁ<(x[i]7x[i>z<i>2<i])vz[i]4(x[i]*x[i>2<i>2<i])> (4'1)
i=1 (2@%2%.

The parameters

Fi =3¢, (Li =SS, Ni=2),i =2,k (4.2)

<is
of the distributions of X¢,, X m|x H, % = 2,...,k respectively are clearly variation inde-
pendent in the sense that any parameter (Z[DE;L, ¥[;).) of the distribution of X ;| Xp,_, is
compatible with any parameter {1, (L;, N;),j < i} of Xg, |, and any parameter {L;, Nj, j >
i} of X| Xp,. It then follows that for a decomposition (A, B) of G the parameter > 4 of the
distribution of X4 is variation independent of the parameter X g 4 of the conditional distri-

bution of Xp given X 4. This, according to Definition 4.3 of Dawid and Lauritzen (1993),
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means that the model Ng is strong meta-Markov. For this model, Dawid and Lauritzen
(1993, p. 1306 and p. 1308) have shown that the distribution of the maximum likelihood
estimator of X, that is the hyper Wishart, is weak hyper Markov and that the hyper inverse
Wishart, the inverse of the G-Wishart, is a conjugate prior on ¥ which is strong hyper
Markov.

We are now going to show parallel results for the type I and II Wishart: the type I
Wishart is weak hyper Markov, the inverse of the type II Wishart forms a conjugate family
for the scale parameter of the Az model and for any direction given to the graph by a
perfect order of its cliques, the inverse type II Wishart is strong directed hyper Markov.
Since we have seen in §3.2 that the hyper Wishart is a particular case of the type I Wishart
and the hyper inverse Wishart is a particular case of the inverse type II, it is not surprising
that their generalizations hold parallel Markov properties.

One might wonder whether the term “hyper” is adequate when talking about the weak
Markov property of the type I Wishart since this distribution has been identified so far
neither as the distribution of an estimator nor as a prior distribution for the parameter of
a Gaussian model. It is certainly adequate for the inverse of the type II Wishart since, as
we are going to prove right away in §4.1, it forms a conjugate family of prior distributions
for the scale parameter of the Nig model, with a shape parameter set of dimension at least
k4 1. We will then prove the hyper Markov properties in §4.2. Our main results below are
Corollary 4.1 and Theorem 4.4.

4.1 Conjugate prior distributions

The family of inverse type I Wishart distributions has several properties that make it useful
as a rich family of conjugate prior distributions for the scale parameter X of the graphical
Gaussian model Markov with respect to a decomposable graph G. Recall that, following
the notation used in the introduction, if ¥ is the positive definite covariance matrix for
N,(0,%) € Ng, then g = 7(X) € Q¢ is the scale parameter for the N,.(0,Y) distribution.

We have the following general result.

Theorem 4.1 Let G be a decomposable graph and let P be a perfect order of its cliques. Let
D be in Qg, let (o, 8) be in Ap and (¢, 3") be in Bp. If the joint distribution of (X,X¢) on
Qc x Q¢ is Wy, (a, B,0; dx)IWp, (o, 5, D; do), then the conditional distribution of Y.
knowing X = x is IWp, (' — o, ' — 8, D+ x; do) and the marginal distribution of X is an
F distribution of the first kind with parameter (o, 8,0/, 3, D).

Proof: The joint distribution of (X, X¢) is

Wou(a, B, 0; da;)IWpG(a/, B, D;do)
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e~ ) He (o, 5; ) e~ P V(o B50)

= dx do
(e B e, 50) ", 3y o, 57 D))
Hg(a, B;x) _ 51
ks dz)| e PV He (ol — a, B — Bio do
T (@ AT (o, #) Hatel, 35 D) ™) oler == Fionaldo)
from which the result follows immediately. O

Theorem 4.1 shows that the family of IWp, distributions is a conjugate family for
the scale parameter o of the Wy, (e, 8,0;dz). Consider now a sample Z1,...,Z, from
a Gaussian distribution Markov with respect to G, let S = 237 | Z;Z!. Then n(5),
the maximum likelihood estimator of ¥ is such that nw(S) is hyper Wishart with shape
parameter p = 4 and scale parameter ¥, that is, Wishart of Type I with shape parameter

ol -1
2

a(C):pv CGC’ ﬂ(S):p, SGS, p> maXC€C|

and scale parameter 2X;. Applying Theorem 4.1 to X = nw(S), we obtain the following

corollary

Corollary 4.1 Let G be decomposable and let P be a perfect order of its cliques. Let
(Z1,...,2Zy) be a sample from the N,(0,X) distribution with ¢ € Qg. If the prior distri-
bution on 25 is IWp, (d/, 8, D) with (¢/,5") € Bp and D € Qg, the posterior distribution
of 25¢, gwen nS = Y1t Z;Z! is IWp,(o/ — 5,8 — 5,D + w(nS)), where o/ — 4 =
(a1 —%,...,o— %) and ' =5 = (81— %,..., 3, —5) are such that (o/ — 5,3 — %) € Bp

and D+ 7(nS) € Qq.

This means that the family {IWp, (o, 8,D), (o,8) € A, D € Qg} is a conjugate family
for the scale parameter X of the Gaussian model Markov with respect to G. We note this
family has its shape parameter set of dimension at least k£ + 1 and is therefore much richer
than the traditional Diaconis-Ylvisaker family with shape parameter set of dimension equal

to 1.

Theorem 4.1 can also be immediately transcribed to the homogeneous case using the

variables ()., x[u>x25>, u € T') and we obtain the following result.

Theorem 4.2 Let G be a homogeneous graph. Let D be in Qg, let (o, 8) be in A and (o, 3")

bein B. If (X,Xq) € QaxQg and the joint distribution of (X[). X[u>X;}L>, ). E[U>Ezi>, u €
T) is W (a, B,0)IWp (o, B, D), then the conditional distribution of ¥ knowing X = x

is IWp () —a, — 3,D + ).

We now have the following result dual to Theorem 4.1.
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Theorem 4.3 Let P be a perfect order of the cliques of G. Let o be in Qg. Let (o, 3) be
in Bp and (¢/,3") be in Ap. If the joint distribution of (Y,©) on Pg x Pg is

Wp, (o, 3,0)IWg, (¢!, 3, 0), then the conditional distribution of © knowingY =y is
IWqg (o —a,f = B,y +671).

Theorem 4.3 shows that the family of IWg,, distributions is a conjugate family for the scale
parameter 6 of the Wp, (c, 3,0).

4.2 Markov properties

We now want to show that the type II inverse Wishart IWp, is strong directed hyper
Markov and the type I Wishart weak hyper Markov. Let M(G) denote the set of all
Markov probabilities over G. Let the distribution P, € M(G) be parametrized by p. Now
we randomize p according to a law £(p). For any subset A of V', let p4 denote the parameter
of the marginal distribution of X 4 (more specifically we should write p ~ 4 p’ if the marginal
distributions of X 4 under P, and P, coincide and call p4 the equivalence class of p for the
equivalence relation ~ 4.) The parameter p 4B of the conditional distribution of X4 knowing
Xp could be defined in a similar way. We say that £(p) is weak hyper Markov over G if
under L(p), for any decomposition (A4, B) of V,

pa AL pplpans. (4.3)

We say that L(p) is strong hyper Markov over G if, under L(p), for any decomposition
(A,B) of V,
pa 1L pB. (4.4)

Let P be any perfect order of the cliques and consider a perfect numbering of the vertices
compatible with P (see Lauritzen (1996), p. 18). Let D be the directed graph obtained
from G by directing all edges in G from the vertex with the smallest number to the vertex
with the highest number. We say that a law L£(p) is weak directed hyper Markov over D if
for allv € V,

pv AL Ppr(v) | Ppa(v)> (45)
where pa(v) denotes the sets of parents of v in D and pr(v) denotes the sets of predecessors,

i.e. the vertices with a lower number than v.

We say that L£(p) is strong directed hyper Markov over D if for all v € V,
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Let us also recall that a random variable on M, is said to follow the Wishart w,(p, o)

distribution if its density with respect to the Lebesgue measure is

_r1
"T‘p 2 —(mo )

— e

’U’prr (p) ’
in which case its inverse U = X ! is said to follow the inverse Wishart distribution iw,(p, 6),
where § = 0!, with density with respect to the Lebesgue measure, equal to

e |
w7 ey

(&
|o[PT(p)

Finally, we will use the notation x5 and zy). for

—1
T[12> = TC1\S2,5: L5, and T[1]. = TCO1\Sy-So-

Theorem 4.4 Let G be a decomposable graph G and let P be a perfect order of its cliques.
Then, for (o, 3) € Bp and for the direction given by P, the inverse type II Wishart is strong
directed hyper Markov. More precisely, if X ~ IWp,(c, 3,6) with (o, 5) € Bp and 6 € Qq¢,
then

T~ W s, (—o, O, i=1,...k

Taos T~ Niey—sy)xss (2552 0255 @ 1))

Toas ~  iwg,(—(a1 + a ; 2 4 Y2), 0<2>)
> log ~ Niggmsyws, O>005552 055 @), J =2,k
and
{(zn2s> 7))y o>, (T=22js, 7)), 5 = 2,0, k} (4.7)

are mutually independent.

<i>)

Proof: From (4.1), we know that (E[i>2_1 ¥[;).) is the parameter of the distribution of Zp;

given Z.;~ when Z ~ N,(0,X) € Ng. Therefore it follows from the remark following
Theorem 2.6 and Proposition 3.8 of Dawid and Lauritzen (1993) that to construct a weak
hyper Markov distribution for p = ¥ € Qg, it is sufficient to build a weak directed hyper
Markov distribution for a given direction of the vertices compatible with a given perfect

order of the cliques, that is a distribution with density of the form

k
p(Ea) = poy(Sey) [[pi S-S0, 2 | S<js)
i=2
k
= p1(Sa2ss Spp | Seos)prs (Beos) [[ (S22 S | Bays) - (4.8)
=2
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If we want to show that, for the given direction, this distribution is in fact strong directed
hyper Markov, by Proposition 3.13 of Dawid and Lauritzen (1993) it is sufficient to show
that

{(Cpas» 2y <o, (Cps2jsr Ty )y d = 2,0, k) (4.9)
are mutually independent. Let us now show that the Inverse type II Wishart satisfies both
(4.8) and (4.9). Let X ~ IWp, (o, 3,0) with (o, ) € Bp and 0 € Qg. Combining (7.9)
and (7.11) of the appendix, we show that the image of the IWp,(«, 3,6;dx) distribution
by the change of variables (2.12) and (7.5) is

IW;Z(O‘aﬁa 0; d(x[1]7 d($[12>, d(l'SQ)a d(l'[j>$2}>), dx[j]~a J=2... k)

-1 c1—s s -1
o e T gy =TT g | F (s Oize) ). (P ~Puze)be2) (g )
-1 c1—s9 _52+1
e <$<2>,9<2>>|$<2>|061+ 2 +72 2 d:L‘<2> (4.11)
k
'_cjvfsijl _ —.1 0. _ﬁ

H |-73[j]~|aj 5 e (z0 [J]->|:L,[ﬂ.| : (4.12)
j=2
k ~1 _p g1 1 ~1 _p =1 9
H €_<($[J'>$<j>_ li> <j>)’m[j]<(x[j>x<j>_ [i>0<55)0<i>) (4'13)
Jj=2

k

-1

depiosdapy. ][ dlagsaljs )dog).

Jj=2

We see that the densities (4.10), (4.11), (4.12) and (4.13) with x replaced by ¥ are exactly
of the form required for the respective factors of (4.8). It follows that the IWp,(«, 3,0) is
weak directed hyper Markov but we also see from (4.10) - (4.13) above that the independence
in (4.9) is satisfied and therefore IWp,(a, 3,6) is strong directed hyper Markov. The

densities of

($[1]~7x[12>7$<2>7$[j}-7x[j>x2]1'>,j =2,...,k)

are also clearly as indicated in the theorem. O

This strong directed hyper Markov property of the type II inverse Wishart corresponds
to the strong hyper Markov property for the inverse G-Wishart, i.e. the hyper inverse
Wishart. We do not quite have the strong hyper-Markov property because the parameters
(a, ) € Bp are linked to the perfect order P. The property analog to the weak hyper
Markov property of the hyper Wishart is given in the following theorem.

Theorem 4.5 Let G be a decomposable graph and let P be a perfect order of its cliques.
Then, for (a,3) € Ap, the type I Wishart is weak hyper Markov. More precisely, if X ~
Woe (o, 8,0) with (o, 3) € Ap and 0 € Qg , then

52
T~ Wa-s(0n = o o))
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Tos|Tazs ~ Nioy—sp)xss (01125, 2 T2hs ® 071.)
Toos ~ Wsy(ar +02,0<25)
st gslvcgs ~ Nigyoay)xs, (050555522555 @ o))
T~ We—s; (g — %,U[j].),j =2,...,k
Proof: Using (7.4) and (7.6) of the Appendix, we see that the image of the Wy, («, 3, 0; dz)
distribution by the change of variables (2.12) and (7.5) is

Wég(aa B, o; d$[1],,d$’[12>, dr<o, dx[j]’ d([lf[]>l'2}>),] =2,..., k)

s c1—s -1
52 _c1=sptl (@)

oc fapyMTETTT e dzyyj. (4.14)
v |x<2>|61582 6—(($[12>—0’[12>)$<2>(90<2,1]—0<2,1])U[_1]1A>dx[12> (4.15)
><|$<2>|a1+62_822+1€_<I<2>’Uz;>>dffﬂ<2> (4.16)

k 5 _STSH (g ool
) T o272 e 00 dayy, (4.17)
j=2

L Al o> 02 )< (00 a1 =0 L o)) -1 (418
><|-77<j>’ € (x[j>x<j>)( . )

From the expression of the density W' (., 3,0) above, we see that, for z = X¢, (4.14)
and (4.15) give p1(Sjc)\ 85,855 S5, > Bci\8s-85 | Bs,) of (4.8) while (4.16) gives pg,(Xg,) and
(4.17) and (4.18) give pi(z[i>223>7 Y. | ¥<j>). Therefore the W, (, 3, 0) type I Wishart
is weak directed hyper Markov and, by Proposition 3.8 of Dawid and Lauritzen (1993), weak
hyper Markov. O

We note that in the proof above, the density p1(2[01\52752>2§21, Yei\Se-s | £5,) depends
upon Xg, and the density pi(Z[DE;L, Y. | ¥<j>) depends upon ¥ ;> and therefore the
Woe (o, 8,0) type I Wishart is not strong directed hyper Markov.

4.3 Laplace transforms and expected values

For (o, 8) € A, Flap) 1 = {Woe(a, B,0;dr), 0 € Qg} is the natural exponential family

generated by the measure

He(o, B;2)
L'r(a, 8)

For —y € Pg, the Laplace transform of i, gy g is

Ha,8),c(dT) = pa(dz) .

L.U‘(a,ﬁ),G (y) = /Q e (xy):u(a,ﬁ),G(dx) = HG(a7 ﬁ; _(P(y))'
G
This is a reformulation of (3.19). It implies that, for —y+ ! € Pg, the Laplace transform
of W, (a, 8,0) is defined by

HG(av ﬁﬂ 90(&71 - y))
HG(awB; 0) .

/Q et (“Uy)WQG (o, B,0;dx) = (4.19)
G
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Suppose that (o, 8) and (¢/,3') in A are such that (a+ o/, 8+ ') is still in A. This is, for
example, true for any G if (a, 8) and (o/, 3’) are in the same Ap and it is always true if G

is homogeneous. We then have the convolution formula

Woe (o, B,0) « Woi (o, f',0) = Woe(a+ o, 84+ 5, 0),

a result which would be difficult to prove using densities alone, i.e. without Theorem 3.3.
Let us also mention some properties of the NEF F(,, gy ;. From Theorem 2.1 (1), we deduce
that L, 4 o
Letac and Massam, 2006), F(, ), is a regular family in the sense of Barndorff Nielsen (1978)

(y) is finite if and only if —y € Pg. Since —Pg is an open subset of Zg (see

and the domain of the means Mg, , , of the family F(, g) ; coincides with the interior of
the closed convex support of the family. Thus M Flapys = Q. The cumulant function of
f(a,p).G 18

k

k
Koo (¥) = Zaj log det((—y_l)cj) - Zﬁj log det((—y_l)sj). (4.20)
Jj=1 j=2

The computation of its differential requires some care and it is done in the Appendix in

Propositions 7.1 and 7.2. We give the result here. If X ~ Wq(a,8,0), for y =671 € Pg,

d
EWQG(OC,B,O')(X) = d—yk#(&,m,c(y)
k k
= Y a;7(6w\0;0,9¢,)0c; — Y B T(6v\s,5,05,)0s;,  (4.21)
j=1 =2
where
-1
T(6w\0;.0,90, )00, = ‘o ’ 7a 0 (1o e Trene
AR RO owno.c,00  Tne, 0 0 0 Iy,

_ < o¢; GCyV\C; >
TV\C;.C; 6V\Cj0(j“jl‘701,V\Cj

= §-6nq,0 (4.22)

with a similar expression for 7(oy\s; s, agjl)asj. This implies that if X ~ Wq, (o, 5,0),
then

K ! k k
Ewg.(a8.0)(X) = (Z = Bj)é' + Y aioveyc, — D Bidvs,s,
j=1 j=2 j=1 j=2

We have parallel results for the type IT Wishart. We note that for («, 3) € B

Flap) i1 = {Wrg (o, 8,0;dy), 0 € Qa}

33



is the natural exponential family generated by the measure

_ Hg(a, B50(y))

V(a,8),c(dy) = T7r(. ) vg(dy) -

Here the Laplace transform L, , .(z) is finite if and only if z is in —Q¢ (Theorem 2.1
part 1.) which is an open subset of I (see Letac and Massam, 2006), and the domain of the
means of F, g 11 is Pg. We have L,,(a’ﬁ)ﬁ(w) = Hg(a, 3, —x). This implies that the Laplace
transform of Wp, («, 3;6) is defined for —x + 6 € Q¢ by

[, Wi (o ,0.) = Pl (4.23)
The cumulant transform is
k k
Kviopy.c (@) = Z ajlogdet((—z)c,;) — Zﬁj log det((—x)s;)-
i=1 J=2

and its differential is given by the following element of Pg

k k
k(@) =3 aj(=ag)" = 3 Bj(—wg))". (4.24)

<
I
—_

<
I
N

This implies that if Y ~ Wp, (e, 3, 6), then

k k
Ewpap0)(Y) =D a;j(0c,)" = B;(05))°" (4.25)
j=1 j=2

To conclude this section, let us make a few remarks. Formula (4.25) with Y replaced by
f]g;l, (a, B) replaced by (o — «, 8/ — 3) and 6 replaced by D + x gives the posterior mean
E(§51|X = ) of the inverse of the natural canonical parameter g for Wg,, (o, 3,Xq) in
Theorem 4.1 when the prior distribution on ¢ is the IWp, (¢, 5/, D). It is, of course, also
of interest to compute the posterior mean of the natural canonical parameter . In other

words, we need EWPG (a'—a,3'—B,D+x)(P(Y)) when YV = i&l We have the general formula

k k
cj+1 s;+1
-0 = (Xl + 25 = 2B+ 5 By apn (0(Y)) (426)
j=1 =2
k
ci +1
+> (aj+ -~ 5 VEWp (0,80 (Y )nc;.c;)

.
Il
R

s;+1
. 5 VEWp, (.80 (9(Y)1\s;.5;) -

|
™=
=)
+

.
||
N

The proof is not straightforward. To derive (4.26), we use Stokes formula and obtain
0= [ ()ew) + ulw)v'()dy
G
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with u(y) = He(a + <L 8+ =L o(y)), v(y) = e®¥ and where (a, 3) € B satisfy some
restrictions similar to the restrictions for the existence of the expected value of the inverse
Wishart, that is p > % for the w,(p,o) distribution. Using the same substitutions for
a, 3,60 in (4.26) as we did in (4.25), we see that (4.26) implies that in Theorem 4.1, the
posterior mean of X is not linear in z; this is in accordance with Theorem 3 of Diaconis-
Ylvisaker (1979). We also see from Corollary 4.1 that when X = 7(S5) € Q¢ follows the
hyper Wishart distribution with (a, 3) = (5, §) and the shape parameter of the prior on
Y are (o', 3'), then the shape parameters of the posterior are (o/ — %, 3" — %). That is, as
for the inverse Wishart or the hyper inverse Wishart, the parameters (o, 5’) of the IWp,
are added to half of the sample size and from (4.26) and the choice of (¢, 5’) has the same
kind of impact on the posterior mean as the choice of the shape parameters for the inverse
or hyper inverse Wishart.

Let us also mention here that the IW3" (a, 3,6) distribution as given by equations (4.10)-
(4.12) is conditionally (k + 1)-reducible and is an enriched conjugate family of prior distri-
butions, in the sense of Consonni and Veronese (2001), for the parameter Y = 7(X) of a
Gaussian distribution Markov with respect to G. This follows immediately from Theorem
4.4. The IWp (a, 3,0) is also closely linked to the enriched standard conjugate Wishart
family of priors for K = X ~! in the standard Gaussian distribution, that is when G is a
complete graph, built by Consonni and Veronese (2003). Theorem 2 and Corollary 1 in that
paper correspond to Theorem 4.4 here. However we should note that it is the Wp, («, 3, 6)
family that is an exponential family, not the IW5" (o, 3, 0) family and therefore the analog
of the enriched Wishart, for G decomposable, is the Wp,, (e, 3, 6).

5 Open problems

We will now raise some natural questions related to the paper.

SINGULARITY. The well known Gyndikin theorem states that the mapping 6 +— (det(—6))™?
from —M," to (0,00) is the Laplace transform of some positive measure p, on symmetric

real matrices of order n if and only if p is in the set

1 2 r—1 r—1

A:{§,§,..., 5 FU( 5 , 00).

A very readable proof of this theorem can be found in Shanbhag (1988). The natural expo-
nential family generated by u, is the set of Wishart distributions with shape parameter p.
If p=j/2withj=1,...,n—1 then p, is concentrated on the singular semipositive definite
matrices of rank j. For a decomposable graph G on V = {1,...,r} and for («, 3) € A, the
mapping y — Hg(a, B; —¢(y)) from —Pg to (0,00) is the Laplace transform of a positive
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measure on Qg which generates the natural exponential family of Wishart distributions of

type 1. Natural questions are

e For which values of a, Bis y — Hg(a, B; —¢(y)) the Laplace transform of some positive

measure on Ig?
e How do we describe these measures?

Similar questions arise with the Wishart distributions of type II: for which values of a, 3 is
the mapping = — Hg(a, 3; —x) from —Q¢ to (0, 00) the Laplace transform of some positive

measure on Zg?

COMPLEX AND QUATERNIONIC NUMBERS. Wishart matrices with complex and quaternionic
entries are well defined. Thus many concepts of the present paper are extendable to complex

or quaternionic matrices in a rather mechanical way.

THE SETS A AND B. Is it true that A = UAp and that B = UBp for any non homogeneous
graph? Calculations are terrifying for the graph As; : ¢ — e — e — @ —e. On the other hand,
this conjecture is easily proved for the tree represented in Figure 3 below, with n + m + 2
vertices denoted a1, ..., a,,b1,...,bm,2,3 with edges a; ~ 2, bj ~ 3 for all 4,5 and 2 ~ 3 :

to prove it, we need only extend the calculations of Proposition 3.2 and Corollary 3.1.

1

o o)
L 105} 2 3 obg
ea3 ob3

Figure 3: The case n =m =3
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7 Appendix

7.1 Proofs of §2

Proof of Theorem 2.1 (1). The dual of Pg is P}, = {z € Ig; tr (zy) > 0 for ally € P\{0}}
where Pg is the closure of Pg, that is, the cone of semi positive definite matrices of Zg.
To show that Qg = P& we will first show that Q¢ C P75 and then that Q¢ D FP5. If
z € Qg then by Theorem 2.1 there exists a symmetric positive definite matrix & which is
the completion of z. Thus tr (zy) = tr (2y) for all y € Zg. Furthermore, if y € Pg \ {0}
then tr (Zy) = tr ((&)Y2y(£)"/?). Since the matrix (&)'/?y(2)"/?) is semi positive definite
and non zero, its trace is positive. Thus x € P} and Q¢ C P is proved.

Conversely, take x € Ig such that x € Pf. Fix a clique C' and consider a vector v of
IR” such that the components of v which are not in C are 0. Denote by v¢c and by z¢ the
restrictions of v to C' and to C' x C respectively and assume that v # 0 and thus ve # 0.
Since vo' is in Pg \ {0} and since z € P%, 0 < tr (zvov') = v'zv = vhazcve. Moreover, this
is true for any vo # 0 and therefore x¢ is positive definite. Since this is true for all cliques,
we deduce that x is in Q¢ and Qg D P is also proved. We thank S. Andersson for this
result and this proof. Our former proof was longer and was relying on the description of

the extremal lines of the cones Py and Q¢ given in Letac and Massam (2006). O

7.2 Proofs of §3.3

Proof of Proposition 3.1. For convenience, we will agree to write ¢ for a vertex of T
corresponding to a clique C' while we write ¢ for a vertex of T corresponding to a separator

S. As defined in (3.10), my = 3, <,y and for any v € T, we have

wel = [T |zl losl =[] lepgl, 1Cl=c=me, [S]=s=m,.

u=t u=q
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This means that |z(,).| will appear in [z¢| for any C such that v <t and in any |zg| for any

S such that u < g. Therefore

I |zc|™

1 |as] @50 (7.1)
1 |x[u].|zujt<at—mf7“)—zujqu(q)(ﬁq—"@ﬂ
ueT
= ]I |x[u]-\<2“<tatZ““V(q)ﬂq) Ix[u]-|<zu<t mt2+1*2u5q”(q>m%+l)
ueT
Sl |;,;[u]_\<2u<t°“Z“q”(q)ﬂq) |x[u]_\—(2u<t7;—t+%“)
ueT
= 1T Iz <Z“jtat_z“5qy(q)ﬁq> yg;[u]_r(zm Y B SE)
ueT

where the third equality above follows from the definition of m, and the fact that for any
vertex ¢ of the tree, v(q) is equal to the number of children of ¢ minus 1 (see Part 2 of
Proposition 2.2). We now make the change of variables (3.14). The Jacobian of this change
of variables is
Uz
7= T oeosl™ = T (Tl ) = T b o™ 72
veT veT \u=<v ueT

Therefore we obtain the image of Hg(«, 3, x)uc(dz) as

HE (o, B, 2)pg ([ dep. d(@psa2,2)) (7.3)
ueT

m — ny _ ny |\ _ ny+l
— H |$[t]-|at_ z2+1 H |$[u}|(zuﬁt at Zujq U(q)5q+zu<v 5 Zv<u 5 ) nutl
teT u€T ut
dxp,). da:[u>x;2>
H |$[U]| (Zujz atiZ“f‘l U(q)ﬁq+zu<v %7Zv<u %
ueT

_nu+1 _
= I lo@ 7% dapy. dopsazys
ueT

)*”“TH 1
d:::[u], d:c[u>xzu>

where

)\uzzat_zy(Q)ﬂq_FZ%_ %

u=t u=q u<v v=<u

7.3 Proofs of §3.4

In the sequel, in order to avoid numbering difficulties for separators with multiplicity greater

than one, we sometimes use the generic notation S for a separator and v(S) for its multi-
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plicity. However, when it is important to list the separators as they appear from a perfect
order of the cliques, we denote the separator S; by (j). The double notation should not
cause any difficulty.

Proof of Theorem 3.3. To avoid any ambiguity in the notation in the proof below and
all the other proofs in the reminder of the paper, let us recall that the set S of distinct
separators contains k' < k — 1 elements. For convenience, let us write A for the left hand
side of (3.19) and y = 6! for ¢ € Qg. Using the Jacobian (2.13) and formula (2.9), we

then have

ci+1

A = / o—(@o™) 2?:1 |.’Ecj|aj*]T .
Qc ses lzsSES=5
= /|$Cl|0‘17617+16—(mcl70511>
citl N _1
H|$[j]'|aj_JT 2[5 ’U[J] H J>9E<J> ”[J>”<J>)‘7J] (Z[J>$<g> [j>‘7<j>)w<j>>

ety I8+ o k

SeS Ses j=2

Now, since the cardinality of J(P,S) is equal to v(S) and, by assumption 1 of the theorem,

all |zg;| = |r<j>|,j # 2 appear with exponent equal to 9% while |zg,| = |r<2>| appears

with exponent equal to >, j(p.s,) @i — ¥(q)Bg + ZZ'GJ(P7S2) 5% we have

_atl _(zo o5t 5
A = [loe e bara) g, (74)
d SN (> 0502 )0 (B> s 0502 )T
T frajs |27 o020 ) oy ety o
=2
k
V_ﬁ_cjf‘sj‘kl < I
g |1 2 e dfCC1 [ d(wyysajs)day..
7j=2
S N 1 .
Clearly ()., T[k>T s ) 18 mdependent of xeyu..ucy_y = (TCys TsTjus Ty J= 2,000 k—

1) and z). is independent of z,-x_; . Therefore holding all other variables fixed, we first

<k>
integrate with respect to (., [k>a;<k>) Since < k> C C1 U...,Ck_1, then -~ is fixed

and by Lemma 2.4 we obtain

1
x[k>x<k>)'

S Cp—sptl 1, -1
N |5E[k]~|ak I T <m["]'g[k]'>d1’[k},
M
Cp—Sk
Sk Sk —((z [k>171 *‘T[k>‘771 )7071(90[109371 *U[k>‘771 )T<k>) -1
X ’$<k>‘ e <k> <k>7%1k]- <k> <k> d(x[k>$<k>)
L(R®k Rk ~%k)
Sk o
= Losi(an = 5 )lop.[**
- (@ > T e =TT )1 (B> T s = Ok o )T <> )
X ’U[k]| 2 e <k> <k>/17[k] <k> <k> d(
L(R®k ,R°k k)

40



sk(Ck—5k) Sk
= 7w 2 T¢os (ap— ?)|O—[k].|ak

Repeating this process successively for j =k —1,...,2, we obtain

k
](C —s; S c1+1 -1
J o al— (xcy,04,) 1

H Cj—Sj(aj - _)‘O—[]]’ J/|xc1‘ e e |x<2>‘ decl'

In this last integral, setting, as in §4.2,
T] = TO1\S2 ~ LC1\S2,5:T 5, T52,01\820 (12> = TCO1\S2,9:T s, >
we make the change of variable
rey = (x[l}-7$[12>7$<2>) (7.5)

with Jacobian equal to |x<9~ |72, Then, by (2.11)

+ -1
/’3701’&1_176 Weroey) ’$<2>|62d3701
= /]xm.\0‘1_872_01%2“6_@[”"U[_111'>dx[1}, (7.6)
X / n |Tcos |2 2 2+52_—e (w<2>.05,)
52
« (/ e—((x[12>—0[12>)70[71]1.($[1,2>—0[1,2>)$<2>>dx[12>)dx<2>
L(R®2,R¢1-52)
so(c1—s9) s c1—sg+1 c1—s _ -1
= Fc1—52(a1 o %)‘U[IHIMW%/ ‘$<2>’ -3 TR ey 2+626 <x<2>’os2>d$<2>
32
s2(c1—s2) S9 _ oot
= 1 2 Dol — §)|0[1}'|a1/ |z<2> € o<z 052>d$<2>
i,
s2(c1—s2) S9
= 7 7 Teg(ar— —)Iam-!al\052!a1\052|52F52(a1 + d2)
S2(81 52) S9
= 7 |Jcl|a1|052| FCI,S2 (Oél - 5)1—‘52 (041 + 52) (77)
Now, let us observe that using the multiplicity of Sy and Assumption 1 of the theorem, we
obtain
) k )
- [ ‘0—02‘042 b ’UCj|aJ _ ‘0.02‘012 HJ 3|O-C |aj
H |U[j]'| - ‘ as H aj S $)B(S) (7.8)
) 0| j=3 \US | los, | icap.sy @ lses ,S %o |5V

Combining (7.5), (7.7) and (7.8), we obtain (3.19) with

k
L — Licj—sj)s; S
T, ) = T, (oq +02) x rala 82)S2F01 s — 2 I I 2 2(¢ SJ)SJchfsj(aj _ Ej)
To obtain (3.20), we use (2.16). O

Proof of Theorem 3.4. For convenience let us denote by B the left hand side of (3.22).
Using first o(y) = « € Q¢ and Jacobian (2.4) and then, making the change of variable
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(2.12) with Jacobian (2.13) and using (2.9), we have

k o«fﬂ
B = / 6_<9,i_1> Hj:l |$Cj| j 5 N
Qa HSES |:CS|V(S)(6(S)7‘S|T+1)

_atl _(x=lg
— /’x01’a1 3 e < cy? Cl>

k
ci+1 —1 —1 -1
H |x[ﬂ"aj_]T 9[1] H J>m<g> O >9<g>) o) @2 js =005 )0<5>)

ety _ s+ oy K
H |$S|ZieJ<P,s>(% 5—)—v(9)(B(S)—5—) H |$S|ZieJ<P,s> i (S)|S|dl’cl Hd($[j>x;}>)dm[j]..
Ses Ses Jj=2

By Assumption 1 of the theorem, this is equal to

o+l
B = [loc e ety 2 (7.9)
11 |xm,aj—#e—%iﬂm->e—<<x[j>wz;>—9[j>02§>>7rgﬁ<wu>wz;>—9[j>62§>>9<j>>
=2
k
-1
dxc, H d(x[j>a:<j>)d:n[j]..
i=2
Clearly z¢, (ZL‘[j>SL'2}>, T(j).,J = 2,...,k) are mutually independent and
k
B =B x [[ B;,
=2
where
B = [ lac, =5 e sy, Prda,

and, using Lemma 2.1 in the third equality below, we have

—1 —1 —1 —1 -1
B; = / </ e_<(z[j>x<j>_9[j>9<1’>)’$[j]'(x[j>$<j>_6[j>0<j>)9<j>>d($[J>ﬂU<1>))
M} (R%3,R%™57) J

cj—8j

c;i+1 —1
aj— S (@)
Wﬂfﬂeh“ﬂ

dl’[j]

c;—s

5 i )
= 7 O
/M+ | <J)>

Ci—S.

J 77

c;+1 EN —1

S]'<Cjis‘7’) Ci—s, ci—s;+1
2 —_J —1|—a; 4L
=7 O 2 |z, J 2
/M+ | <J>| | m.|

cj—8;

J

_(cj_Sj“)e_<xﬂ]1~’9“]‘>d(:ng]1_)

Sj(Cj—Sj)
= 7 0<j>

j -’ajFCj—Sj<_aj) .

Therefore

k C;—S,
B = [[n 7 |02 10|40, —s,(~a;) x By. (7.10)
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To compute Bj, let us make the change of variable (7.5). Then
/‘x ol |a1 —(55[1] ) —(($[12>—9[12>)7X[_1]1A($[12>—9[12>)9<2>) (7'11)
%527%+72+(01782)d$[1]_d1’

0<2 1—
¢~ (wezs 0<2) |z <o |* 12>dr<o>

Integrating with respect with z12- and using Lemma 2.1, we obtain

_c1—sy (e1—s2)s2 ,<x*1,9 ) cp— 52+1
By = |0cos|” T o 2 / e -t |x[1]'|041 d:L‘[l]
M+

€182

(g1 _c1—-52 _s2t+l1 _
% /+ e <x<2>79<2>>‘x<2>‘a1 7 otre—"5—+(a 82)d{13<2>
M

_c1—s3 52 (c1—s2)s2 St ST SR BN ks o _1
= |0<2>‘ T 2 - e <$[1]4 (1] >|‘r[1]| (e %1 —d(x[l])
c1—s2

-1
% e_<x<2>’9<2>>\x_1 ‘_041_
M+ <2>

(c1— 52)82
=

c]1—s89 so+1
T TR d($<%>)

C1 — 52
2

c1—s2
) +72F$2(_a1 _

—72)

— ’)/2). (712)

—2)

(1]- ‘alrcl—sz (_041)‘9<2> |a1+

(e1— 32) 2 C1 — 82
=7 [0<25 721011 [ Doy —p (—01) Ty (—o1 = —

€1 — 82

2

(c1— 32)82
= 7 ‘901

’al ‘9<2> |OL1 FCl_SQ (_al)FS2 (—041 -

Let us now observe that

k J
H 0<j>]"
=2

S)B(S)

e

15—y 10c, 1% 0>
[lses |95\” (5)8(S)

k Qa;
s |90j5| : 5 11 05| Zseaps) (s (S)AS)
[Tses |0s]v (9B )SeS

= = | ]!ﬂ 710<2s |7 (7.13)

[Tses [0s]*(58S
Combining (7.10), (7.12) and (7.13), we obtain

1 _
FII(avﬁ) = 5((01 82)S2+27 2 cjisj)s])r —Qa1 — = 2 = - 72] c1— sz —Q H 1—‘0]73.7

To obtain (3.23), we use (2.17). O

7.4 Proofs of §4.3

Proposition 7.1 For —y € M,F and C C {1,...,r} denote oc(y) = ((—y) Y. We write

y by blocks corresponding to C and its complement
Y1 Y12

Yy = .
Y21 Y2
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We denote for simplicity y,5 = y12y5 - With these notations the differential of y — oc(y)

hi  hio hi  hio oc
h— — [ o0 —ooys } / . (7.14)
ha1  ho ha1  ha —Y210C

Furthermore the differential of y — ko (y) = —logdet oo (y) est

hi  hio oc —00Yh2 hi  hio oc Gov\c
hi— tr / / / = tr A - —1; ’
hor  ha —Y510C  Y310CY12 hor ho dv\c,c OV\o,coc v\

(7.15)

18

where the last equality is due to the fact that yio = —aalc}cy\c.

Proof: We know that

oo(y) = (y 1 = —(y1 — y12ys 'y21)

Let M and M denote the restrictions of M and M, to the clique C. Then o¢(y) = aob(y)
where a : —M} — M is defined by a(x) = —2z~! and has differential h +— d/(z)(h) =
27 haz™! (a linear application from M¢ to M¢) and where b: —M™* — — M is defined by
b(y) =y1 — ylng_Iygl. The differential of b is the following linear mapping from M to M¢ :

[ hi  hia

hi h 1
" " ] > ha—R12Ys Y21 —Y12y5 “hor+yi2ys thayy tyar = [ 1 —yly } [ e ] [ ]
21 ho

ha1  ho —Y
(7716)

Finally we apply the composition of differentials to obtain

oo(y)(h) = (aod) (y)(h) = d'(b(y) (V' (y)(h)) = oc(y) (¥ (y)(R)oc(y)

which gives (7.14) when combined with (7.16). Now consider the real function [ defined
on MJ, by l(z) = logdetx. Then its differential is the linear form on Mc defined by
h v I'(x)(h) = tr (x~'h). Thus the differential of the real function on M.’ defined by loo¢c

is the following linear form on M

hi (Looe) (y)(h) = trog'op(y)(h)
which gives (7.15) when combined with (7.14). O

We will now use the previous proposition to compute m = k;,(y). We need to introduce
the notation h¢ for the restriction of h € Zg to C' x C when C' C V the notation C' = V' \C

and the notations h¢o ¢ and her ¢ for the restrictions of h to C' x C”" and C” x C respectively.
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Proposition 7.2 The differential of the real function y — ku(y) defined on Pg by (4.20)
1s the linear form on Zg defined by

k
/ / /
h — Zlaj[ tr (he,00;) =2 tr (hero,0059c,,01) + 0 (heyyor c,96,9c;,01)]
J:

k

_ Zzﬁj[ tr (thO'Sj) —21tr (hS;7SjO'Sjy:c;j7S]/_) + tr (hS;y’S;’Sjagjy%ﬁS;)]
J:

— ¢ by Ry [Zk: 9¢; 00, V\C;
- ha1  hs £ o o ols
j=1 VAC;,C;5 VAC;,C59¢; 9C;,VACy
k- A
_ Zﬂj ( 75 95;,V\S; > }
“ N 1A
j=2 OV\S;,S;  OV\S;,5;98; 95;,V\S;

Proof: We apply (7.15) to each term of the sum k,. The proposition has been established for
the cone M, and we apply it here to the restriction Pg = M,;" N Zg of M,". Therefore the
formulas for the differentials of functions restricted to this subspace are still in force when

interpreted as linear applications defined on Zg. O
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