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Abstract

When considering a graphical Gaussian model NG Markov with respect to a decom-

posable graph G, the parameter space of interest for the precision parameter is the cone

PG of positive definite matrices with fixed zeros corresponding to the missing edges of

G. The parameter space for the scale parameter of NG is the cone QG, dual to PG, of

incomplete matrices with submatrices corresponding to the cliques of G being positive

definite. In this paper we construct on the cones QG and PG two families of Wishart

distributions, namely the type I and type II Wisharts. They can be viewed as a gener-

alization of the hyper Wishart and the inverse of the hyper inverse Wishart as defined

by Dawid and Lauritzen (1993). We will show that the type I and II Wisharts have

properties similar to those of the hyper and hyper inverse Wishart. Indeed, the inverse

of the type II Wishart forms a conjugate family of priors for the covariance parameter of

the graphical Gaussian model and is strong directed hyper Markov for every direction

given to the graph by a perfect order of its cliques, while the type I Wishart is weak

hyper Markov. Moreover, the inverse type II Wishart as a conjugate family presents

the advantage of having a multi-dimensional shape parameter, thus offering flexibility

for the choice of a prior.

Both types I and II Wishart distributions depend on multivariate shape parameters.

A shape parameter is acceptable if and only if it satisfies a certain eigenvalue property.

We show that the sets of acceptable shape parameters for a non complete G have

dimension at least equal to one plus the number of cliques in G. These families, as

conjugate families, are richer than the traditional Diaconis-Ylvisaker conjugate families

which all have a shape parameter set of dimension one. A decomposable graph which

does not contain a three-link chain as an induced subgraph is said to be homogeneous.

In this case, our Wisharts are particular cases of the Wisharts on homogeneous cones

as defined by Andersson and Wojnar (2004) and the dimension of the shape parameter

set is even larger than in the non homogeneous case: it is indeed equal to the number

of cliques plus the number of distinct minimal separators. Using the model where G is

a three-link chain, we show by computing a 7-uple integral that in general we cannot
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expect the shape parameter sets to have dimension larger than the number of cliques

plus one.
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1 Introduction

The primary aim of this paper is to develop a new family of conjugate prior distributions

with attractive Markov properties for the covariance parameter, or equivalently the precision

parameter, of graphical Gaussian models Markov with respect to a decomposable graph G.

While doing so, we are led to define two new classes of Wishart distributions and their

inverses and to study their properties.

Let us recall that an undirected graph is a pair (V, E) where V = {1, . . . , r} and E is a

family of subsets {i, j} of V , of size 2. It will be convenient to consider the set E ⊂ V × V
of (i, j) such that either i = j or {i, j} is in E , rather than E and, since E and E carry the

same information, to speak about the graph G = (V,E). Any (i, j) such that i 6= j will

be called an edge. An r-dimensional Gaussian model is said to be Markov with respect to

G if for any edge (i, j) not in E, the i-th and j-th variables are conditionally independent

given all the other variables. Such models are known as covariance selection models (see

Dempster (1972)) or graphical Gaussian models (see Whittaker (1990) or Lauritzen (1996)).

Without loss of generality, we can assume that these models are centered Nr(0,Σ) and it is

well known that they are characterized by the parameter set PG of the precision matrices

which is the set of positive definite matrices K = Σ−1 such that Kij = 0 whenever the edge

(i, j) is not in E. Equivalently, if we denote by M the linear space of symmetric matrices

of order r, by M+
r ⊂M the cone of positive definite (abbreviated > 0) matrices, by IG the

linear space of symmetric incomplete matrices x with missing entries xij , (i, j) 6∈ E and by

π : M 7→ IG the projection of M into IG, the parameter set of the Gaussian model can be

described as the set of incomplete matrices ΣG = π(Σ) with Σ = K−1 and K ∈ PG. Indeed

it is easy to verify that the entries Σij , (i, j) 6∈ E are such that

Σij = Σi,V \{i,j}Σ
−1
V \{i,j},V \{i,j}ΣV \{i,j},j ,

and are therefore not free parameters of the Gaussian models. One can prove that the

correspondence between K and the incomplete matrix ΣG = π(Σ) is one to one. We write

ΣG = ϕ(K) = π(K−1). We note that ϕ is not explicit when G is not decomposable.

Henceforth in this paper, we will assume that G is decomposable. The reader is referred

to Lauritzen (1996) for all the common notions of graphical models used in this paper. We

will now simply recall some basic facts and traditional notations, we will use throughout this

paper. Every decomposable graph admits a perfect order of its cliques. Let (C1, . . . , Ck) be

such an order. We use the notation H1 = R1 = C1 while for j = 2, . . . , k we write

Hj = C1 ∪ . . . ∪ Cj , Rj = Cj \Hj−1, Sj = Hj−1 ∩ Cj .
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The Sj , j = 2, . . . , k are the minimal separators of G. Some of these separators can be

identical. We let k′ ≤ k − 1 denote the number of distinct separators and ν(S) denote the

multiplicity of S that is the number of j such that Sj = S. Lauritzen (1996) has proven

that the multiplicity ν(S) of a given minimal separator S is positive and independent of the

perfect order of the cliques considered.

For G given decomposable with the set of cliques {C1, . . . , Ck} and Σ−1 ∈ PG, the

incomplete matrix ΣG is completely determined by its submatrices {ΣCi , i = 1, . . . , k}
where, of course, for each i = 1, . . . , k, ΣCi is positive definite. When considering the

parameter space of the graphical Gaussian model corresponding to G decomposable, we are

therefore led to consider the two cones

PG = {y ∈M+
r | yij = 0, (i, j) 6∈ E} (1.1)

QG = {x ∈ IG| xCi > 0, i = 1, . . . , k}. (1.2)

Dawid and Lauritzen (1993, Section 7) defined two distributions on QG, namely, the hyper

Wishart distribution as the distribution of the maximum likelihood estimator of ΣG, and the

hyper inverse Wishart distribution as the Diaconis-Ylvisaker conjugate prior distribution

for ΣG. Subsequently Roverato (2000) gave the distribution of K = Σ−1 = ϕ−1(ΣG) when

ΣG follows the hyper inverse Wishart distribution. We will call this distribution of K on

PG the G-Wishart. The search for a rich and flexible class of conjugate prior distributions

for ΣG, or equivalently for K = Σ−1 remains a topic of high interest to statisticians.

When G is complete, PG = QG = M+
r and we define the regular Wishart distribution

on the cone of positive definite matrices of dimension r = |V | by

1
2rpΓr(p)|Σ|p

e−
1
2

tr xΣ−1 |x|p|x|−
r+1

2 1M+
r

(x)dx

where p > r−1
2 is the one-dimensional shape parameter and Σ ∈M+

r is the scale parameter.

When G is decomposable, the hyper and hyper inverse Wisharts have been constructed

as Markov combination (with respect to G) of the Wishart and its inverse respectively, and

so, like the Wishart, they have a one-dimensional shape parameter and a scale parameter

in QG. Dawid and Lauritzen (1993) have shown that these distributions have Markov

properties: the hyper Wishart is weak hyper Markov while the hyper inverse Wishart is

strong hyper Markov.

In this paper, we will construct a family of distributions, called type I Wisharts, defined

on QG and another family, called type II Wisharts, defined on PG. We shall see in §4 that

the inverse of the type II distributions, like the hyper inverse Wishart, form a family of

conjugate prior distributions for the scale parameter of the graphical Gaussian model. We

4



will also show that they are strong directed hyper Markov in the direction given to the

graph G by any choice of a perfect numbering of its vertices. This property is parallel to

the strong hyper Markov property of the hyper inverse Wishart. We will also show that

the type I Wishart is weak hyper Markov, a property parallel to the weak hyper Markov

property of the hyper Wishart. The attractive feature of the inverse type II Wishart family

of conjugate distributions is that, except in the trivial case where G is complete, the set of

shape parameters is of dimension strictly bigger than the number k of cliques in G, thus

offering a flexible class of conjugate prior distributions for ΣG. We shall also note in §4 that

it forms a class of enriched conjugate priors for ΣG in the sense of Consonni and Veronese

(2001).

To construct these two families, we define two natural exponential families of distribu-

tions affiliated to the Wishart, one on QG and one on PG. Let (C1, . . . , Ck) denote a perfect

order of the cliques of G and let (S2, . . . , Sk) be its corresponding sequence of minimal

separators, some of them being possibly identical. We consider functions of the type

HG(α, β;x) =
∏k
i=1 |xCi |αi∏k
i=2 |xSi |βi

, x ∈ QG,

where α and β are two real-valued functions on the collection C and S of cliques and

separators respectively such that α(Ci) = αi, β(Sj) = βj with βi = βj if Si = Sj . These

functions play a very special role in the definition of the two families of distributions that

we define. Indeed, if we let ci = |Ci| and si = |Si| denote the cardinality of Ci and Si

respectively and if we denote

µG(dx) =
∏k
i=1 |xCi |−

ci+1

2∏k
i=2 |xSi |−

si+1

2

1QG(x) dx,

the family of distributions we define on QG is, for a given (α, β), the natural exponential

family generated by

HG(α, β;x)µG(dx) = HG(α− 1
2

(c+ 1), β − 1
2

(s+ 1);x)1QG(x) dx. (1.3)

The measure (1.3) can be seen as a Markov combination generalisation of the measure

|x|p|x|−
r+1

2 1M+
r

(x)dx generating the Wishart distribution, for a given p > r−1
2 .

In §3, we will introduce the set A of (α, β) such that the following integral converges

and satisfies ∫
QG

e− tr (xy)HG(α, β;x)µG(dx) = ΓI(α, β)HG(α, β;ϕ(y)) (1.4)

where ΓI(α, β) is some function of (α, β) independent of y ∈ PG. When (α, β) is in A we

say that HG(α, β;x) has the eigenvalue property with corresponding eigenvalue ΓI(α, β)
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and we define the type I Wishart distribution on QG as the distribution with density

1
ΓI(α, β)HG(α, β;ϕ(y))

e− tr (xy)HG(α, β;x)µG(dx),

and with parameters (α, β, y). In a parallel way, we define a set B of (α, β) for which an

eigenvalue property similar to (1.4) holds for the type II Wishart distribution defined on

PG.

In order to fully describe the type I and II Wishart distributions, it is then necessary

to know the sets A and B. In §3.2, we show that, for any G, the hyper Wishart and the

G-Wishart are particular cases of type I and II distributions, respectively. More precisely,

we describe the sets A1 ⊂ A and B1 ⊂ B such that for (α, β) ∈ A1, the type I Wishart is

the hyper Wishart and for (α, β) ∈ B1, the type II Wishart is the G-Wishart. In §3.3, we

consider the particular class of decomposable graphs G which do not contain the three-link

chain, which we call A4, as an induced subgraph. Such graphs are called homogeneous.

When G is homogeneous, we describe the sets A and B completely and show that they are

open sets of dimension k+ k′, the number of cliques plus the number of distinct separators

in G. For G homogeneous, the cones QG and PG are homogeneous and we see that the

type I and II Wisharts then belong to the class of Wisharts on homogeneous cones defined

by Andersson and Wojnar (2004). In §3.4, we consider nonhomogeneous graphs. In that

case, we have, so far, only a partial knowledge of A and B. For each perfect order P of

the cliques, we define a (k + 1)-dimensional subset AP of A such that, for (α, β) ∈ AP ,

(1.4) holds. We therefore know the subset ∪AP of A, but not all of A. Similarly we define

a (k + 1)-dimensional subset BP of B such that we know the subset ∪BP of B, but not

all of B. We conjecture that the equalities A = ∪AP and B = ∪BP hold in general for

nonhomogeneous graphs and that, thus, the dimension of the manifolds A and B is generally

k+1 < k+k′. In §3.4, we verify that these two equalities hold when G = A4 by computing,

in this case, the 7-uple integral corresponding to (1.4).

In §4, we give the conjugacy and hyper Markov properties mentioned above. We also

give the Laplace transforms of the type I and II Wisharts and the expected values of the

type I, type II and inverse type II Wisharts. The necessary preliminaries for understanding

the cones PG and QG and the measures we define on them are given in §2.1. In §2.2, we

give the results needed to work with homogeneous graphs. Most proofs are deferred to the

appendix.
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2 Preliminaries

2.1 Measures on PG and QG

For the graph G = (V,E), V = {1, . . . , r}, we write i ∼ j to indicate that the edge {i, j}
is in E . An undirected graph G is said to be decomposable if it does not contain a cycle

of length greater than or equal to four as an induced subgraph and if it is connected. For

all the notions related to decomposable graphs that we will introduce below, the reader is

referred to Lauritzen (1996, Ch. 2). We denote by ZG the real linear space of symmetric

matrices y of order r such that yij = 0 if (i, j) /∈ E. We denote by IG the real linear space

of functions (i, j) 7→ xij from E to IR such that xij = xji. The elements of IG are called

G-incomplete symmetric matrices. For a decomposable graph, we have defined the cones

PG ⊂ ZG and QG ⊂ IG in (1.1) and (1.2). Recall that M+
r denotes the cone of positive

definite symmetric matrices of order r. Grőne et al. (1984) proved the following.

Proposition 2.1 When G is decomposable, for any x in QG there exists a unique x̂ in M+
r

such that for all (i, j) in E we have xij = x̂ij and such that x̂−1 is in PG.

This defines a bijection between PG and QG:

ϕ : y = (x̂)−1 ∈ PG 7→ x = ϕ(y) = π(y−1) ∈ QG ,

where π denotes the projection of M onto IG. The explicit expression of x̂−1 is given in (2.3)

below. For (x, y) ∈ IG × ZG, we write tr (xy) = 〈x, y〉 =
∑

(i,j)∈E xijyij . By Proposition

2.1, we have for x ∈ QG 〈x, y〉 = tr (x̂y) , where tr (x̂y) is defined in the classical way.

Thus although xy does not make sense, the notation tr (xy) is quite convenient. We also

use the following notation: if C is a complete subset of vertices and if xC = (xij)i,j∈C is a

matrix, we denote by (xC)0 = (xij)i,j∈V the matrix such that xij = 0 for (i, j) /∈ C × C.
The following theorem gathers some basic results on decomposable graphs: Part 1 is

due to Andersson (private communication), Parts 2 and 3 can be found in Lauritzen (1996,

Ch. 5) et Part 4 is due to Roverato (2000).

Theorem 2.1 Let G be a decomposable graph. Then

1. The convex open cones PG and QG are dual to each other in the sense that

PG =
{
y ∈ ZG; tr (xy) > 0 ∀x ∈ QG \ {0}

}
(2.1)

QG =
{
x ∈ IG; tr (xy) > 0 ∀y ∈ PG \ {0}

}
(2.2)

2. For x ∈ QG we have that y = x̂−1 is in PG and

y =
∑
C∈C

(x−1
C )0 −

∑
S∈S

ν(S)(x−1
S )0. (2.3)
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3. For x ∈ QG we have

det x̂ =
∏
C∈C(detxC)∏

S∈S(detxS)ν(S)
.

4. The absolute value of the Jacobian of the bijection x 7→ y = x̂−1 from QG to PG is∏
C∈C

(detxC)−|C|−1
∏
S∈S

(detxS)(|S|+1)ν(S). (2.4)

The proof of Part 1 is given in the Appendix. For G complete, Part 4 above becomes the

following.

Lemma 2.1 (Muirhead, 1982)

The Jacobian of the change of variable x ∈M+
r 7→ y = x−1 ∈M+

r is |y|−(r+1).

We now introduce the measures which will be the generating measures of the new

Wishart exponential families on PG and QG that we are going to define in the next section.

Let α and β be two real valued functions on C and S respectively. An example of such

functions α and β is

C ∈ C 7→ α(C) = |C| and S ∈ S 7→ β(S) = |S| .

We denote these examples α = c and β = s. Another example is, for a constant p given,

C ∈ C 7→ α(C) = p and S ∈ S 7→ β(S) = p .

simply denoted α = p and β = p. For x ∈ QG we adopt the following notation

HG(α, β;x) =
∏
C∈C(detxC)α(C)∏

S∈S(detxS)ν(S)β(S)
. (2.5)

The functions HG for the particular case α = −1
2(c + 1) and β = −1

2(s + 1) will play an

important role. Indeed, we will use the following as reference measures to generate the

exponential families of distributions which are the central object of our study in this paper.

These reference measures are

µG(dx) = HG(−1
2

(c+ 1),−1
2

(s+ 1);x)1QG(x)dx, (2.6)

νG(dy) = HG(
1
2

(c+ 1),
1
2

(s+ 1);ϕ(y))1PG(y)dy . (2.7)

Applying (2.4), we see that νG is the image of µG by the mapping x 7→ y = x̂−1 and that

conversely µG is the image of νG by y 7→ x = ϕ(y).

Let M+
d denote the cone of positive definite matrices of order d and L(IRp, IRq) denote

the space of linear transformations from IRp to IRq. For x ∈ QG, xCj , j = 1, . . . , k are well
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defined and it will be convenient to use the following standard notation for various block

submatrices:

xSj = x<j>, xRj ,Sj = x[j> = xt<j], x[j] = xRj , x[j]· = x[j] − x[j>x
−1
<j>x<j], (2.8)

where x<j> ∈ M+
sj , x[j]· ∈ M+

cj−sj , x[j> ∈ L(IRci−sj , IRsj ). It is understood here that

x[1] = x[1]· = xC1 whereas both x<1> and x[1> vanish. With this notation, we have, for

example, |x̂| =
∏k
j=1 |x[j]·|. In the proof of our main theorems, we will need to split the

trace 〈x, y〉 for x ∈ QG and y ∈ PG following a perfect order of the cliques as given in the

following lemma.

Lemma 2.2 Let G be a decomposable graph and let C1, . . . , Ck be a perfect order of its

cliques. For x ∈ QG and y ∈ PG with y = σ̂−1 and σ ∈ QG, we have

〈x, y〉 = 〈x, σ̂−1〉 =
k∑
i=1

[
〈x[i]·, σ

−1
[i]· 〉+ 〈(x[i〉x

−1
<i> − σ[i〉σ

−1
<i>), σ−1

[i]· (x[i〉x
−1
<i> − σ[i〉σ

−1
<i>)x<i>〉

]
.

(2.9)

This is a direct consequence of (2.3) and the following standard splitting of the trace for

two positive definite matrices u =

(
u1 u12

u21 u2

)
and v =

(
v1 v12

v21 v2

)

〈u, v〉 = 〈u1, v1·2〉+ 〈u2·1, v2〉+ 〈(u21u
−1
1 + v−1

2 v21), v2(u21u
−1
1 + v−1

2 v21)u1〉 , (2.10)

and its corresponding expression if we write v = σ̂−1 with σ̂ also positive definite.

〈u, σ̂−1〉 = 〈u1, σ
−1
1 〉+ 〈u2·1, σ

−1
2·1〉+ 〈(u21u

−1
1 − σ21σ

−1
1 ), σ−1

2·1(u21u
−1
1 − σ21σ

−1
1 )u1〉 . (2.11)

We also recall the following basic results that will be used throughout our proofs.

Lemma 2.3 (Massam& Neher, 1997, Lemma 7) The Jacobian of the change of variables

x ∈ QG 7→ y = (xC1 , x[i]·, x[i>x
−1
<i>, i = 2, . . . , k) (2.12)

is

|dy
dx
| =

k∏
j=2

|x<j>|cj−sj . (2.13)

The following lemma gives a Gaussian distribution we shall use later.

Lemma 2.4 For x and σ in QG, and for L = L(Rci−si , Rsi) we have

∫
L
e
−〈(x[i>x

−1
<i>−σ[i>σ

−1
<i>),σ−1

[i]· (x[i〉x
−1
<i>−σ[i〉σ

−1
<i>)x<i>〉d(x[i>x

−1
<i>) = π

(ci−si)si
2

|σ[i]·|
si
2

|x<i>|
ci−si

2

.

(2.14)
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The proof follows immediately from Theorem 3.1.1 in Muirhead (1982) by replacing C,D, Y

and M in that theorem by σ[i]·, x
−1
<i>, x[i>x

−1
<i> and σ[i>σ

−1
<i> respectively.

Let us finally recall the definition of the multivariate Gamma function. For p > r−1
2 , the

r-multivariate Gamma function is

Γr(p) = π
1
4
r(r−1)

r∏
j=1

Γ(p− 1
2

(j − 1)) . (2.15)

In the sequel we will need the following two formulas which link multivariate gamma func-

tions of different dimensions. For c and s two positive integers with s < c and for α > c−1
2

a real number, we have

π
(c−s)s

2 Γc−s(α−
s

2
) =

Γc(α)
Γs(α)

(2.16)

π
(c−s)s

2 Γc−s(α) =
Γc(α)

Γs(α− c−s
2 )

(2.17)

2.2 Tools for homogeneous graphs.

In this subsection, we study some properties of homogeneous graphs.

Definition 2.1 A graph G is said to be homogeneous if it is decomposable and does not

contain the graph
1• − 2• − 3• − 4• , called A4, as an induced subgraph.

We will see in Theorem 2.2 below why such a graph is called homogeneous. We now need

to introduce a number of concepts about undirected graphs.

Definition 2.2 Given an undirected graph G = (V,E), the associated digraph is the directed

graph G′ = (V,E′) with E′ derived from E by the following process. If i, j ∈ V , then the

directed edge (i, j) is in E′ if and only if

{i} ∪ nb(i) ⊇ {j} ∪ nb(j) (2.18)

where nb(i) = {j; j 6= i, i ∼ j}.

Note that E′ contains all (i, i) for i ∈ V. We write i → j if and only if (i, j) ∈ E′. An

edge in G can either disappear in G′ or become directed or become bi-directed. Note that

if i ∼ j in G then i 6→ j if and only if there exists k, k 6= i, k 6= j such that the subgraph of

G induced by {i, j, k} is
k• −

j
• − i• . Note also that if k 6∼ i, then it is impossible to have

both i → j and k → j. In other words, the configuration
i•→

j
•←k• in G′ is forbidden. Here

are two simple examples of digraphs associated to given graphs. For the sake of clarity, the

loops i→ i are not drawn on the digraph G′.
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Examples. The graph
1• − 2• becomes the graph G′

1•↔2• . The graph A4 becomes
1•←2• 3•→4• .

It is easy to see from (2.18) that if G is an undirected graph and G′ its associated

digraph, then the relation i → j defined on V is a preorder relation, that is i → j and

j → k implies i→ k. Denote by R the induced equivalence relation defined on V by

iRj ⇔ i→ j and j → i ⇔ {i} ∪ nb(i) = {j} ∪ nb(j).

Denote by ī the equivalence class in V/R containing i ∈ V and denote ī � j̄ the partial

order relation on V/R induced by the preorder i → j. As usual when dealing with partial

order, the notation ī ≺ j̄ means ī � j̄ and ī 6= j̄. We now introduce the Hasse diagram of

V/R.

Definition 2.3 The Hasse diagram of G is the digraph with vertex set VH = V/R and with

edge set EH such that an edge (̄i, j̄) is in EH if

ī 6= j̄, ī � j̄,

and

ī � k̄ � j̄ implies either k̄ = ī or k̄ = j̄.

If (̄i, j̄) ∈ EH , we write ī → j̄. The knowledge of the Hasse diagram of G is equivalent to

the knowledge of the partial order relation on V/R. If ī→ j̄ then j is a child of i and i is a

parent of j. If i and j are in V it will be convenient to write i→ j when the corresponding

equivalence classes satisfy ī→ j̄. Let us give an example of construction of a Hasse diagram.

In Figure 1 below, we give a graph G, its associated digraph G′ and the corresponding

Hasse diagram. In G′, the loops (i, i) are omitted. Since 3 → 7 and 7 → 3, {3, 7} is

•6

•7

BBBBBBBB •1

BBBBBBBB

||||||||
•4

||||||||

•3 •2 •5

•6

•7

��

•1oo

OO

//

!!BBBBBBBB

��}}||||||||
•4

•3

OO

•2

==||||||||

aaBBBBBBBB
oo // •5

•6

•1

OO

��

•4

•3 •2oo //

>>}}}}}}}}
•5

Figure 1: G, G′ and the Hasse diagram

an equivalence class denoted by 3̄ while the 5 other vertices are alone in their equivalence

class, which we denote by i rather than ī for simplicity. On this particular example, the
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Hasse diagram is a rooted tree associated to a partial order such that the root 1 is the

minimum. The four cliques correspond to the end points of the tree: C3̄ = {1, 2, 3, 7}, C4 =

{1, 2, 4} , C5 = {1, 2, 5}, C6 = {1, 6}. The two separators S1 = {1, 2} with multiplicity 2

and S2 = {1} with multiplicity 1 correspond to the other vertices of the diagram. Note that

the graph G is homogeneous since it does not contain any A4 as an induced subgraph. The

fact that, in this example, the Hasse diagram is a rooted tree and the graph is homogeneous

is not a coincidence since we have the following characterization theorem:

Theorem 2.2 Let G = (V,E) be a connected graph and let G′ = (V,E′) be its associated

digraph. The following properties are equivalent

1. G is homogeneous.

2. If i ∼ j then either i→ j or j → i in G′.

3. The Hasse diagram of the partially ordered set (V/R, �) is a rooted tree such that its

root 1̄ is the minimal point of V/R and such that the number of children of a vertex

is never equal to one.

4. PG is a homogeneous cone (that is, its automorphism group acts on it transitively).

5. QG is a homogeneous cone.

We shall only use equivalences between 1, 2 and 3, which are easy to prove. The

equivalence with 4 and 5 is stated for the curiosity of the reader. The homogeneous graphs

are specially simple to handle. We call T the set of vertices of the corresponding Hasse tree,

so T = V/R. Consider the following subset of V

Vī = ∪j̄ � īj̄.

We gather the properties of the Hasse tree of G in the following proposition:

Proposition 2.2 If T is the Hasse rooted tree of a homogeneous graph G with k cliques

and k′ minimal separators, we have that

1. The mapping ī 7→ Vī, where ī ∈ T , gives a one to one correspondence between the cliques

and minimal separators of G and, respectively, the end points and non end points of T . In

particular, if k > 1 the root 1̄ is a minimal separator which is contained in all minimal

separators and cliques of G and the total number of vertices in T is equal to k + k′.

2. All orders of the cliques are perfect. The multiplicity ν(Vs) of a separator Vs is equal to

the number of children of s minus one.

12



Proof: 1. If i ∈ T then we observe that Vi is complete since if j and l are in Vi then

either j � l � i or l � j � i. In both cases j ∼ l. Conversely, if C ⊂ V is complete then

C = ∪{j ∈ T ; j ∈ C} is contained in some Vi. If not there exist j and l in C which are

not comparable in the poset T and therefore j 6∼ l which contradicts the fact that C is

complete. Thus the maximal cliques are the Vi’s where i ∈ T has no children, that is i is an

end point. Finally, if i ∈ T has children j and l then Vi is a minimal separator of j and l as

can easily be seen. Conversely, if j and l are in V with j 6∼ l there exists a unique minimal

separator between them which is Vi where i = max{s ∈ T ; s � j, s � l}.
2. Consider any order (t(1), . . . , t(k)) of the endpoints of the tree and the corresponding

order (Vt(1), . . . , Vt(k)) of the cliques. For j = 2, . . . , k and for l = 1, . . . , j − 1

s(l) = max{s ∈ T ; s ≺ t(j), s ≺ t(l)}.

Since 1 � s(l) ≺ t(j) for all l = 1, . . . , j − 1 then s(lj) = max{s(l) ; l = 1, . . . , j − 1} exists

and

Vs(lj) =
(
Vt(1) ∪ . . . ∪ Vt(j−1)

)
∩ Vt(j)

is a minimal separator contained in the clique Vt(lj) with lj < j. Thus the order is perfect.

Now, given a minimal separator Vs, we show that the number ν(Vs) of j such that there

exists lj with 1 ≤ lj < j ≤ k and s = s(lj), where (lj , s(lj)) is as defined above, is equal

to c(s) − 1 where c = c(s) is the number of children of s. Suppose first that ν(Vs) ≥ c.

Then there exists endpoints t(j1), . . . , t(jc) of T such that j1 < . . . < jc and such that

s = s(lj1) = . . . = s(ljc). Thus s ≺ t(j1), · · · , s ≺ t(jc). Furthermore lj1 < j1 and s ≺ t(lj1).

This implies that s has at least c + 1 children, a contradiction. Thus ν(Vs) ≤ c(s) − 1.

Finally, one sees by induction that the number of edges of an undirected tree is the number

of vertices minus one. Since
∑
s c(s) is equal to the number of edges in the graph, this

implies that
∑
s(c(s)− 1) = k − 1, where the sum is taken over the non end points s of T.

To conclude the proof, we use the fact that by definition of the multiplicity of a minimal

separator, the sum of the ν(Vs) is also k−1. Thus
∑
s[c(s)−1−ν(Vs)] = (k−1)−(k−1) = 0.

Since we have a null sum of non negative terms we get ν(Vs) = c(s) − 1 for all minimal

separators. 2

It follows from the proposition above that there is a one to one correspondence between

the set of homogeneous graphs and the set of rooted trees with vertices weighted by positive

integers and such that no vertex has exactly one child. Note that a complete graph is

homogeneous. It is characterized by the fact that its Hasse diagram is just a point. A

decomposable graph with only one separator is homogeneous. Its Hasse tree looks like a

daisy. An undirected tree is decomposable but is not homogeneous in general. Finally it
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is possible to prove that if all orders of the cliques of a decomposable graph G are perfect

then G is homogeneous.

3 The Wishart families of type I and II

In this section, we define two families of Wishart distributions. We will study special cases

in §3.2, the homogeneous case in §3.3 and the non homogeneous case in §3.4.

3.1 Definitions

Consider the two integrals

I(α, β; y) =
∫
QG

e−〈x,y〉HG(α, β;x)µG(dx) for y ∈ PG (3.1)

J(α, β;x) =
∫
PG

e−〈x,y〉HG(α, β;ϕ(y))νG(dy) for x ∈ QG. (3.2)

We define A to be the set of (α, β) such that I(α, β; y) converges for all y ∈ PG and such

that y 7→ I(α,β;y)
HG(α,β;ϕ(y)) is a constant on PG. This constant is a function on A that we denote

by ΓI(α, β). Similarly we define B to be the set of (α, β) such that J(α, β;x) converges for

all x ∈ QG and such that x 7→ J(α,β;x)
HG(α,β;x) is a constant on QG. This constant is a function

on B that we denote by ΓII(α, β). The sets A and B will be studied in §3.3, §3.4 and §3.5.

We note here that since µG(du) is the image of the measure νG(dy) under the mapping

y 7→ u = ϕ(y) (see §2.1), (3.2) can be written

J(α, β;x) =
∫
QG

e−〈x,û
−1〉HG(α, β;u)µG(du) for x ∈ QG.

This expression of (3.2) and the passage from y ∈ PG to u = ϕ(y) ∈ QG will be used several

times in the remainder of the paper for defining the inverse type II Wishart and to perform

various computations. The Wishart distributions of type I will be the probabilities

1
ΓI(α, β)HG(α, β;ϕ(y))

e−〈x,y〉HG(α, β;x)µG(dx),

defined on QG and indexed by the parameters (α, β; y) in A× PG. To follow the standard

notation for distributions related to the Wishart, when y ∈ PG is the parameter of the type

I Wishart, we often write y = σ̂−1 with σ ∈ QG so that, for σ ∈ QG, (α, β) ∈ A, the type I

Wishart distribution can be written

WQG(α, β, σ; dx) = e−〈x,σ̂
−1〉 HG(α, β;x)

ΓI(α, β)HG(α, β;σ)
µG(dx). (3.3)

The Wishart distributions of type II will be the probabilities

WPG(α, β, θ; dy) = e−〈θ,y〉
HG(α, β;ϕ(y))

ΓII(α, β)HG(α, β; θ)
νG(dy). (3.4)
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defined on PG and indexed by the parameters (α, β; θ) in B × QG. We therefore consider

the following two natural exponential families.

Definition 3.1 For (α, β) ∈ A, the type I Wishart family of distributions is defined by

F(α,β),I = {WQG(α, β, σ; dx), σ ∈ QG}. (3.5)

Definition 3.2 For (α, β) ∈ B, the type II Wishart family of distributions is defined by

F(α,β),II = {WPG(α, β, θ; dy), θ ∈ QG}. (3.6)

Following the pattern of what is done for the Wishart distribution, we now define Type

I and II inverse Wishart and F distributions.

Definition 3.3 Let G be given. If X ∼ WQG(α, β, σ) where (α, β) ∈ A and σ ∈ QG, then

Y = X̂−1 is said to follow the inverse type I Wishart, defined on PG, and its distribution is

IWQG(α, β, σ; dy) =
e−〈ϕ(y),σ̂−1〉HG(α, β;ϕ(y))

ΓI(α, β)HG(α, β;σ)
νG(dy) (3.7)

The distribution (3.7) is clearly immediately derived from the distribution (3.3) by recalling

that x = ϕ(y) and that νG(dy) is the image of µG(dx) by the mapping x 7→ y = x̂−1.

Definition 3.4 Let G be given. If Y ∼ WPG(α, β, θ) where (α, β) ∈ B and θ ∈ QG, then

X = ϕ(Y ) is said to follow the inverse type II Wishart, defined on QG, and its distribution

is

IWPG(α, β, θ; dx) =
e−〈θ,x̂

−1〉HG(α, β;x)
ΓII(α, β)HG(α, β; θ)

µG(dx) (3.8)

Here too, density (3.8) is immediately derived from (3.4).

Let B − A = {(α′ − α, β′ − β) : (α′, β′) ∈ B, (α, β) ∈ A}. Since B − A ⊂ B and

A − B ⊂ A are false in general as will be seen, for example, when G = A4, to give the

following definition of the F distributions, we will have to insure that the parameters α′−α
and β′ − β are in the correct sets.

Definition 3.5 Let θ and σ be in PG and QG, and let (α, β) ∈ A and (α′, β′) ∈ B. Then

1. for (α′ − α, β′ − β) ∈ B, σ ∈ QG, the F distribution of the first kind with parameters

(α, β, α′, β′, σ) is the following distribution on QG

ΓII(α′ − α, β′ − β)
ΓI(α, β)ΓII(α′, β′)

HG(−α′,−β′;σ)HG(α′ − α, β′ − β;σ + x)HG(α, β;x)µG(dx);

2. for (α− α′, β − β′) ∈ A, θ ∈ QG, the F distribution of the second kind with parameters

(α, β, α′, β′, θ) is the following distribution on PG

ΓI(α− α′, β − β′)
ΓI(α, β)ΓII(α′, β′)

HG(−α,−β;ϕ(θ))HG(α− α′, β − β′;ϕ(θ + y))HG(α′, β′;ϕ(y))νG(dy).
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Note here again that the lack of multiplicative structure on PG and QG when G is not

complete prevents us from relating these distributions to some form of quotient X/X ′ of

independent random variables with distributions WQG(α, β;σ) and WQG(α′, β′;σ), respec-

tively. A study of the multivariate F distribution when G is complete can be found in

Olkin & Rubin (1964). We could also define rather explicitly Beta distributions of type

I by introducing the conditional distributions X|X + X ′ where X ∼ WQG(α, β, σ) and

X ′ ∼ WQG(α′, β′, σ) are independent such that (α + α′, β + β′) is still in A. Again, since

the cone QG has no special multiplicative structure, these beta distributions unfortunately

do not seem to enjoy properties linking them to some ratio analogous to X/(X +X ′) as it

happens when the graph is complete. The same problem arises with Beta distributions of

type II. Finally, we could also consider the distribution

e−〈x,y〉HG(α, β;x)
I(α, β; y)

µG(dx)

where we only require that (α, β) be such that I(α, β; y) defined by (3.1) converges. Under

such generality, these distributions have no interesting properties: their Laplace transforms

are not explicit, their family is not stable by convolution as our Wishart distributions of

type I are (see Proposition 3.2) and they have no hyper Markov property. A similar remark

holds for J defined by (3.2) and type II Wisharts.

3.2 The hyper and inverse hyper inverse Wishart distributions

We first observe that when G is complete, both type I and type II Wishart distributions

coincide with the ordinary Wishart distribution. We will see now that for special values of

(α, β), the type I and II Wisharts are, respectively, the hyper Wishart as defined by Dawid

and Lauritzen (1993) and the G-Wishart first identified by Roverato (2000) as the inverse

of the hyper inverse Wishart defined also by Dawid and Lauritzen (1993). To describe these

distributions, it is convenient to fix a perfect order of the cliques.

The hyper Wishart on QG. Let G be given and let p be a scalar. Let A1 be the

one-dimensional subset of IRk+k′ defined as

A1 = {(α, β)| α(C) = p, C ∈ C, β(S) = p, S ∈ S with p > max
C∈C

1
2

(|C| − 1)},

For (α, β) ∈ A1 we then have

WQG(α, β, σ; dx) ∝
∏k
i=1wci(p, σCi ;xCi)∏k
i=2wsi(p, σSi ;xSi)

1QG(x)dx (3.9)

with

wci(p, σCi ;xCi) =
|xCi |p−

ci+1

2

Γci(p)|σCi |p
e
−〈xCi ,σ

−1
Ci
〉
.
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We note that the expression of WQG(α, β, σ; dx) in (3.9) does not depend on the chosen

perfect order of the cliques. The expression in the right-hand side of (3.9) is a Markov

combination of Wishart distributions with shape parameter p and scale parameter σCi and

σSi on the cliques and separators of G respectively. By Theorem 2.6 of Dawid and Lauritzen

(1993), it is a distribution. It is in fact the hyper Wishart distribution, as defined in that

same paper. Therefore both sides of (3.9) are equal and equal to the density of the hyper

Wishart distribution and it follows immediately that A1 ⊂ A for any given G and

ΓI(α, β) =
∏k
i=1 Γci(p)∏k
i=2 Γsi(p)

.

The G-Wishart on PG. Let G be given and let δ > 0 be a scalar.

Let B1 be the one-dimensional subset of IRk+k′ defined as

B1 = {(α, β)| α(C) = −1
2

(δ + |C| − 1), C ∈ C, β(S) = −1
2

(δ + |S| − 1), S ∈ S, δ > 0}.

For (α, β) ∈ B1 and for x = ϕ(y)

HG(α, β;ϕ(y))νG(dy) =
∏k
i=1 |xCi |−

δ+ci−1

2
+
ci+1

2∏k
i=2 |xSi |−

δ+si−1

2
+
si+1

2

1PG(y)dy

=
∏k
i=1 |xCi |−

δ−2
2∏k

i=2 |xSi |−
δ−2

2

1PG(y)dy = |y|
δ−2

2 1PG(y)dy,

where, as before, the expression of HG(α, β;ϕ(y))νG(dy) does not depend on any chosen

perfect order of the cliques. Therefore, WPG(α, β, θ; dy) ∝ |y|
δ−2

2 e−〈θ,y〉dy is the G-Wishart

distribution first identified by Roverato (2000) as the inverse of the hyper inverse Wishart.

It follows immediately that B1 ⊂ B, that

ΓII(α, β) =
∏k
i=1 Γci(

δ+ci−1
2 )∏k

i=2 Γsi(
δ+si−1

2 )

and that the type II Wishart is the G-Wishart defined on PG for δ > 0, θ ∈ QG. The

distribution of this special type II Wishart is

WPG(α, β, θ) =
∏k
i=1 |θCi |

δ+ci−1

2∏k
i=1 Γci(

δ+ci−1
2 )

∏k
i=2 Γsi(

δ+si−1
2 )∏k

i=2 |θSi |
δ+si−1

2

|y|
δ−2

2 e−〈θ,y〉1PG(y)dy.

3.3 The homogeneous case

We now consider the type I and II Wishart distributions when the graph G is homogeneous

as defined in §2.2. Our aim is to identify the sets A and B and the value of the normalising
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constants ΓI(α, β) and ΓII(α, β). It is convenient to introduce the following notation,

consistent with the notation introduced in (2.8). For u ∈ V/R, we define

x[u] = (xij )̄i=j̄=u, x[u> = (xij )̄i=u,j̄≺u, x<u> = (xij )̄i≺u,j̄≺u, x[u]· = x[u] − x[u>x
−1
<u>x<u] .

We also adopt the convention that a vertex of the Hasse tree (T,EH) will be denoted by t

if it is an end point of the tree and by q if it is not an end point. From Proposition 2.2,

to each t corresponds a unique clique Ct = ∪u∈T,u�t[u] and therefore a number αt = α(Ct).

And, to each q corresponds a unique minimal separator Sq = ∪u∈T,u�q[u] and therefore a

number βq = β(Sq). The positive integer ν(q) is the number of children of q minus one.

From Proposition 2.2, this is also the multiplicity of Sq. With these conventions, for each

u ∈ T , we write

ρu = ρu(α, β) =
∑
u�t

αt −
∑
u�q

ν(q)βq.

We define nu to be the cardinality of the vertex u of the Hasse tree, that is the number of

vertices in V that are in the vertex u of the Hasse tree of G. We also define

mu = nu +
∑
v≺u

nv =
∑
v�u

nv. (3.10)

The following two theorems give A, B and the corresponding normalising constants for the

Wisharts of type I and II in the homogeneous case.

Theorem 3.1 Let G be a homogeneous graph. Then

A = {(α, β) | ρu >
1
2

(
∑
v�u

nv − 1) , u ∈ T}.

More specifically for (α, β) ∈ A and σ ∈ QG, the integral (3.1) converges and∫
QG

e−〈x,σ̂
−1〉HG(α, β;x)µG(dx) =

∏
u∈T

π
∑

v≺u
nunv

2 |σ[u]·|ρuΓnu(ρu −
∑
v≺u

nv
2

) (3.11)

= HG(α, β;σ)
∏
u∈T

π
∑

v≺u
nunv

2 Γnu(ρu −
∑
v≺u

nv
2

)

Theorem 3.2 Let G be a homogeneous graph. Then

B = {(α, β) | − ρu >
1
2

(
∑
v�u

nv − 1) , u ∈ T}.

More specifically for (α, β) ∈ B and θ ∈ QG, the integral (3.2) converges and∫
PG

e−〈y,θ〉HG(α, β;ϕ(y))νG(dy) =
∏
u∈T

π
∑

v≺u
nunv

2 |θ[u]·|−ρuΓnu(−ρu −
∑
v�u

nv
2

) (3.12)

= HG(α, β; θ)
∏
u∈T

π
∑

v≺u
nunv

2 Γnu(−ρu −
∑
v�u

nv
2

).
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We note that the parameter sets A and B in the homogeneous case are k+ k′-dimensional.

The proof of Theorem 3.1 follows the same line as that of the proof of Theorem 3.3 given

in the Appendix. It is based on Proposition 3.1 given below and on the following analog of

formula (2.9) for the traces: for x and σ in QG,

〈x, σ̂−1〉 =
∑
u∈T

[
〈x[u]·, σ

−1
[u]·〉+〈(x[u>x

−1
<u>−σ[u〉σ

−1
<u>), σ−1

[u]·(x[u〉x
−1
<u>−σ[u>σ

−1
<u>)x<u>〉

]
(3.13)

where it is understood that, as in (2.8) and (2.9), for u = 1, the root of T , the summand

reduces to 〈x1, σ
−1
1 〉. Then, using Proposition 3.1 and formula (3.13), the integral in (3.11)

is obtained by a series of standard integrations. The proof of (3.13) is parallel to the proof

of (2.9) and will not be given here. The proof of Proposition 3.1 is given in the Appendix.

Proposition 3.1 For G homogeneous, the image of HG(α, β;x)µG(dx) under the mapping

x = (x[u], x[u>, u ∈ T ) 7→ (x[u]·, x[u>x
−1
<u>, u ∈ T ) (3.14)

is

H∗G(α, β;x)µ∗G(dx[u]·, dx[u>x
−1
<u>, u ∈ T ) =

∏
u∈T
|x[u]·|λu−

nu+1
2 dx[u]· d(x[u>x

−1
<u>) ,

where

λu = ρu +
∑
v�u

nv
2
−
∑
v≺u

nv
2
.

The proof of Theorem 3.2 also follows the general lines of the proof of Theorem 3.4

given in the appendix. We first observe that the image of HG(α, β;ϕ(y))νG(dy) under the

change of variable y 7→ x = ϕ(y) is HG(α, β;x)µG(dx) so that

∫
PG

e−〈y,θ〉HG(α, β;ϕ(y))νG(dy) =
∫
QG

e−〈θ,x̂
−1〉
∏k
j=1 |xCj |αj−

cj+1

2∏k
j=2 |xSj |βj−

sj+1

2

dx,

where, as usual, the integral on the right hand side of the equation above does not depend

upon the chosen perfect order of the cliques. We then use (3.14) and (3.13) applied to

〈θ, x̂−1〉 to obtain the expression of the integral in (3.12) by a series of standard integrations.

Using Proposition 3.1, (3.13) and (3.11) it is fairly straightforward to show that the

image of the type I Wishart by the change of variable (3.14) is the following distribution

W ∗QG(α, β, σ; dx[u]·, d(x[u〉x
−1
<u>), u ∈ T ) (3.15)

=
∏
u∈T

[ |x[u]·|λu−
nu+1

2 e
−〈x[u]·,σ

−1
[u]·〉e

−〈(x[u〉x
−1
<u>−σ[u>σ

−1
<u>),σ−1

[u]·(x[u>x
−1
<u>−σ[u>σ

−1
<u>)x<u>〉

π
1
2
nu(
∑

v�u nv)|σ[u]·|ρuΓnu(λu − 1
2

∑
v≺u nv)

1Du(x[u]·, (x[u〉x
−1
<u>)) dx[u]· d(x[u〉x

−1
<u>)

]
.
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where Du = (M+
nu × L(IRnu , IRmu−nu)). This distribution is exactly the distribution of the

Wisharts defined by Andersson and Wojnar (2004) on homogeneous cones. Therefore when

G is a homogeneous graph the type I Wisharts coincide with the Wisharts of Andersson

and Wojnar (2004) for the homogeneous cone QG corresponding to G. Since the dual PG
of QG is also homogeneous, we could also show that the type II Wisharts correspond to

the Wisharts as defined by Andersson and Wojnar on PG. However, there are many other

homogeneous cones not of the form PG and QG. Our calculations are simpler and self

contained in the particular cases that we investigate here.

Using (3.15), Proposition 3.1, (3.13) and (3.12), we obtain the image of the inverse

type II Wishart by the change of variable (3.14). The image of the distribution of X ∼
IWPG(α, β, θ), the inverse of the type II Wishart when G is homogeneous is given by

IW ∗PG(α, β, θ; dx[u]·, dx[u>x
−1
<u>, u ∈ T ) (3.16)

=
∏
u∈T

[ |x[u]·|λu−
nu+1

2 e
−〈x−1

[u]·,θ
−1
[u]·〉e

−〈(x[u〉x
−1
<u>−θ[u>θ

−1
<u>),θ<u>(x−1

<u>x<u]−θ−1
<u>θ<u])x

−1
[u]·〉

π
1
2
nu
∑

v≺u nv |θ[u]·|−ρuΓnu(−ρu −
∑
v�u

nv
2 )

1Du(x[u]·, (x[u>x
−1
<u>)) dx[u]· d(x[u>x

−1
<u>)

]
.

Example: Consider the following graph G0 .

•4

BBBBBBBB •2

BBBBBBBB •3

•6 •1

||||||||
•5

Figure 2: Graph G0

We index each clique according to the vertex of the Hasse tree of G0 which represents it.

Thus C3 = {1, 2, 3}, C4 = {1, 2, 4}, C5 = {1, 2, 5}, C6 = {1, 6}. Minimal separators are

S1 = {1} and S2 = {1, 2} with ν(S2) = 2 and ν(S1) = 1. We set

α(C3) = α3, α(C4) = α4, α(C5) = α5, α(C6) = α6, β(S1) = β1, β(S2) = β2.

The Hasse tree corresponding to G0 is identical to the Hasse diagram of Figure 1, with 3

replaced by 3. Since the cardinality of all the vertices of the Hasse tree is 1, for the sake of

simplicity we will denote the vertices of the tree by 1, 2, 3, 4, 5 and 6 so that we have

ni = 1, i = 1, . . . , 6 and 1 � 6, 1 � 2, 2 � 3, 2 � 4, 2 � 5,
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ρ1 = α3+α4+α5+α6−β1−2β2, ρ2 = α3+α4+α5−2β2, ρ3 = α3, ρ4 = α4, ρ5 = α5, ρ6 = α6,

and λ1 = ρ1 +
5
2
, λ2 = ρ2 +

3
2
− 1

2
, λ3 = ρ3 −

2
2
, λ4 = ρ4 −

2
2
, λ5 = ρ5 −

2
2
, λ6 = ρ6 −

1
2
.

Therefore,

A = {(α, β)| ρ1 > 0, ρ2 >
1
2
, ρi > 1, i = 3, 4, 5, ρ6 >

1
2
}

= {(α, β)| αi > 1, i = 3, 4, 5, α6 >
1
2
, α3 + α4 + α5 + α6 − 2β2 − β1 > 0, (3.17)

α3 + α4 + α5 − 2β2 >
1
2
}

B = {(α, β)| ρ1 < −
5
2
, ρ2 < −

3
2
, ρi < 0, i = 3, 4, 5, 6}

= {(α, β)| αi < 0, i = 3, 4, 5, 6 α3 + α4 + α5 + α6 − 2β2 − β1 < −
5
2
, (3.18)

α3 + α4 + α5 − 2β2 < −
3
2
}

3.4 The nonhomogeneous case

We now consider a nonhomogeneous graph G, i.e. a graph containing A4 as an induced

subgraph. As in the case of homogeneous graphs, our aim is to identify A,B and the

corresponding eigenvalues. We will see that we are, in fact, only able to identify a subset of

A and B and the corresponding eigenvalues Γ(α, β). The results are given in Theorem 3.3

and Theorem 3.4 below. For G a noncomplete decomposable graph, let P = (C1, . . . , Ck)

be a perfect order of the family C of its cliques and (S2, . . . , Sk) be the associated sequence

of minimal separators. Recall that cj = |Cj | and sj = |Sj | denote the cardinality of Cj
and Sj respectively. For given α and β we write αj = α(Cj) and βj = β(Sj). For a given

minimal separator S we write

J(P, S) = {j = 2, . . . , k| Sj = S},

and for a given perfect order P of the cliques, we define AP to be the set of (α, β) such that

1.
∑
j∈J(P,S) αj − ν(S)β(S) = 0, for all S different of S2;

2. αj − cj−1
2 > 0 for all Cj ∈ C;

3. α1 + δ2 >
s2−1

2 where δ2 =
∑
j∈J(P,S2) αj − ν(S2)β2.

Recall also that Γn(p) is defined in (2.15). To avoid trivialities, in the following state-

ments we assume that G is not complete in order to have at least one minimal separator.

Theorems 3.3 and 3.4 are useful only for non homogeneous graphs, since stronger results,

Theorems 3.1 and 3.2, are available for homogeneous graphs.
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Theorem 3.3 Let G be a non complete decomposable graph and let P be a perfect order

of its cliques. Then AP ⊂ A. More specifically for y ∈ PG and for (α, β) ∈ AP the integral

(3.1) converges and∫
QG

e−〈x,y〉HG(α, β;x)µG(dx) = ΓI(α, β)HG(α, β;ϕ(y)) (3.19)

where

ΓI(α, β) = Γs2 (α1 + δ2)
Γc1(α1)
Γs2(α1)

k∏
q=2

Γcq(αq)
Γsq(αq)

. (3.20)

Equivalently, if we write y = σ̂−1 with σ ∈ QG, (3.19) can be rewritten as∫
QG

e−〈x,σ̂
−1〉HG(α, β;x)µG(dx) = Γ1(α, β)HG(α, β;σ) (3.21)

To study B for a nonhomogeneous graph and give the normalizing constant of the type II

Wishart, we now need to define, for a given P , the set BP to be the set of (α, β) such that

1.
∑
j∈J(P,S)(αj + 1

2(cj − sj))− ν(S)β(S) = 0, for all S different from S2;

2. −αq − 1
2(cq − sq − 1) > 0 for all q = 2, . . . , k and −α1 − 1

2(c1 − s2 − 1) > 0

3. −α1 − 1
2(c1 − s2 + 1)− γ2 >

s2−1
2 where γ2 =

∑
j∈J(P,S2)

(
αj − β2 + cj−s2

2

)
.

Theorem 3.4 Let G be a noncomplete decomposable graph and let P be a perfect order of

its cliques. Then BP ⊂ B. More specifically for θ ∈ QG and (α, β) ∈ BP the integral (3.2)

converges and ∫
PG

e−〈θ,y〉HG(α, β;ϕ(y))νG(dy) = ΓII(α, β)HG(α, β; θ) (3.22)

where

ΓII(α, β) = Γs2

[
−α1 −

c1 − s2

2
− γ2

]
Γc1(−α1)

Γs2(−α1 − c1−s2
2 )

k∏
j=2

Γcj (−αj)
Γsj (−αj −

cj−sj
2 )

(3.23)

It is interesting to reexpress (3.22) in a slightly different way. Writing y = x̂−1 with x ∈ QG
and recalling that the image of νG(dy) under y 7→ ϕ(y) = x is µG(dx), we see that (3.22)

can be rewritten ∫
QG

e−〈θ,x̂
−1〉HG(α, β;x)µG(dx) = ΓII(α, β)HG(α, β; θ) (3.24)

From the two theorems above, it follows immediately that

A ⊃ ∪PAP and B ⊃ ∪PBP
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where the union of all AP and all BP is taken over all possible perfect order of the cliques

of G. Before making some important remarks, let us give an example.

Example: Consider the graph G = A4 :
1• − 2• − 3• − 4• .

Let C1 = {1, 2}, C2 = {2, 3}, C3 = {3, 4}, S2 = {2}, S3 = {3}, and let

α(Ci) = αi, i = 1, 2, 3, β(Si) = βi, i = 2, 3 . Then P1 = (C1, C2, C3) and P2 = (C2, C1, C3)

are perfect orders of the cliques. The orders P ′1 = (C3, C2, C1) and P ′2 = (C2, C3, C1) are

also perfect orders analog respectively to P1 and P2. On the other hand the only other

possible orders (C1, C3, C2) and its analog (C3, C1, C2) are not perfect. Let us therefore

identify AP and BP for P1, P
′
1 and P2, P

′
2:

AP1 = {(α1, α2, α3, β2, β3) | αi >
1
2
, i = 1, 2, 3, α1 + α2 − β2 > 0, α3 = β3}

AP ′1 = {(α1, α2, α3, β2, β3) | αi >
1
2
, i = 1, 2, 3, α2 + α3 − β3 > 0, α1 = β2}

while AP2 = AP1 and AP ′2 = AP ′1 . In a parallel way, we have

BP1 = {(α1, α2, α3, β2, β3) | − αi > 0, i = 1, 2, 3,−α1 − α2 + β2 − 1 > 0, α3 +
1
2

= β3}

BP ′1 = {(α1, α2, α3, β2, β3) | − αi > 0, i = 1, 2, 3,−α2 − α3 + β3 − 1 > 0, α1 +
1
2

= β2}

while BP2 = BP1 and BP ′2 = BP ′1 .

Remarks.

1. The domains AP and BP on which (3.19) and (3.22) respectively or equivalently (3.21)

and (3.24) hold, depend upon the chosen perfect order P of the cliques. Since the functions

HG do not depend upon P , it is clear that, even though the expression of ΓI and ΓII depend

upon P , their values do not.

2. Since Assumption 1 of Theorems 3.3 and 3.4 represents k′ − 1 constraints on the set of

(α, β)’s, we see that in general each set AP is of dimension k + 1.

3. From Theorem 3.3 and 3.4, the integrals (3.1) and (3.2) are finite and constant multiples

of HG(α, β;σ) and HG(α, β; θ) for (α, β) in ∪PAP and ∪PBP respectively. Using Hölder’s

inequality it is immediate to prove that these integrals are also finite on the convex hull of

∪PAP and ∪PBP . So the question naturally arises as to whether A and B are larger than

∪PAP and ∪PBP . We only have a partial answer to this. We have seen in the previous

section that, when G is homogeneous, A and B are completely known, and of full dimension

k + k′. However, if we consider the homogeneous example given in §3.3 and treat it using

the methods given in this section, we will find that the 24 possible orders are all perfect

with P1 = (C1, C2, C3, C4) and P2 = (C1, C4, C2, C3) being the only perfect orders yielding

distinct AP ’s. We have
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AP1 = {(α, β)| αi > 1, i = 1, 2, 3, α4 >
1
2
, α1 + α2 + α3 − 2β2 >

1
2
, α4 = β1},

BP1 = {(α, β)| αi < 0, i = 1, 2, 3, 4, −α1 − α2 − α3 + 2β2 >
5
2
, α4 − β1 +

1
2

= 0} ,

AP2 = {(α, β)| αi > 1, i = 1, 2, 3, α4 >
1
2
, α1 + α4 − β1 > 0, α2 + α3 − 2β2 = 0},

BP2 = {(α, β)| αi < 0, i = 1, 2, 3, 4, −α1 − α4 + β1 > 2, α2 + α3 − 2β2 + 1 = 0}.

Clearly, AP1∪AP2 is included in, but not equal to, A as given in (3.17). Similarly, BP1∪BP2

is included in, but not equal to, B as given in (3.18). The question is therefore whether in

the nonhomogeneous case it is possible to identify A and B. In the next section, we find A
and B for G = A4 and we see that they are of dimension strictly less than k + k′. Thus

G = A4 is a counterexample to the hypothesis that in the nonhomogeneous case, we could

also define a set of dimension k + k′ on which (3.21) and (3.22) hold.

3.5 The case G = A4

Let G be A4 as in the previous example. Then we write

σ =


σ1 σ12

σ21 σ2 σ23

σ32 σ3 σ34

σ43 σ4


for σ ∈ QG, with σij = σji, σi.j = σi − σijσ−1

j σji and similarly for θ ∈ QG.

Proposition 3.2 Consider the graph G = A4 with cliques and separators

C1 = {1, 2}, C2 = {2, 3}, C3 = {3, 4}, S2 = {2}, S3 = {3}.

Let αi = α(Ci), i = 1, 2, 3 βi = β(Si), i = 2, 3. Define

A4 = {(α, β) | αi >
1
2
, i = 1, 2, 3, α1 + α2 > β2, α2 + α3 > β3}.

Then the following integral converges for all σ ∈ QA4 if and only if (α, β) is in A4. Under

these conditions, it is equal to∫
QG

e−〈x,σ̂
−1〉HG(α, β;x)µG(dx) (3.25)

= π
3
2

Γ(α1 − 1
2)Γ(α2 − 1

2)Γ(α3 − 1
2)Γ(α1 + α2 − β2)Γ(α2 + α3 − β3)
Γ(α2)

σα1
1·2σ

α1+α2−β2
2·3 σα2+α3−β3

3·2 σα3
4·3 2F1(α1 + α2 − β2, α2 + α3 − β3, α2,

σ2
23

σ2σ3
)
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where 2F1 denotes the hypergeometric function. Similarly we define

B4 = {(α, β) | α1 < 0, α3 < 0, β2−α1−α2−
1
2
> 0, β3−α2−α3−

1
2
> 0, β2+β3−α1−α2−α3−

3
2
> 0}.

Then the following integral converges for all for θ ∈ QG if and only if (α, β) ∈ B4. Under

these conditions, it is equal to

∫
PG

e−〈θ,y〉HG(α, β;ϕ(y))νG(dy) (3.26)

= π
3
2 θα1

1·2θ
α1+α2−β2
2 θα2+α3−β3

3 θα3
4·3

Γ(−α1)Γ(β2 − α1 − α2 − 1
2)Γ(β2 + β3 − α1 − α2 − α3 − 3

2)Γ(β3 − α2 − α3 − 1
2)Γ(−α3)

Γ(β2 + β3 − α1 − α2 − α3 − 1)

2F1(β2 − α1 − α2 −
1
2
, β3 − α2 − α3 −

1
2

;β2 + β3 − α1 − α2 − α3 − 1;
θ2

23

θ2θ3
) .

The results above are obtained by a non trivial and long computation. A central part of

this computation is the following lemma.

Lemma 3.1 Consider the following 2 × 2 random matrix X =

 X1 X12

X12 X2

 with the

Wishart distribution

w2(p, c−1; dx) =
(det c)p

Γ2(p)
e−〈x,c〉(x1x2 − x2

12)p−
3
2 1M+

2
(x)dx1dx2dx12

with p ≥ 1/2 and c =

 c1 c12

c12 c2

 positive definite. For a1 > −p and a2 > −p, the Mellin

transform of (X1, X2) is

E(Xa1
1 Xa2

2 ) =
(det c)p

ca1+p
1 ca2+p

2

Γ(a1 + p)Γ(a2 + p)
Γ(p)2 2F1(a1 + p, a2 + p; p;

c2
12

c1c2
)

The proofs of Proposition 3.2 and Lemma 3.1 are omitted.

We now derive from Proposition 3.2 the sets A and B when G = A4.

Corollary 3.1 Let G = A4. Then A = ∪AP and B = ∪BP , where the unions are taken

over the two possible AP and BP . The dimension of A and B is therefore strictly less than

k + k′.

Proof: Since the two statements are quite similar, we prove the second one only. We use the

equality (see Abramowitz and Stegun, formula 15.3.3)

(1− z)a+b−c
2F1(a, b; c; z) = 2F1(c− a, c− b; c; z). (3.27)
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Using (3.27) in the right hand side of (3.26) above with z = θ2
23

θ2θ3
and

(a, b, c) = (β2 − α1 − α2 −
1
2
, β3 − α2 − α3 −

1
2

;β2 + β3 − α1 − α2 − α3 − 1)

we see that

1
HG(α, β; θ)

∫
QG

e−〈θ,y〉HG(α, β;ϕ(y))νG(dy) = C 2F1(c− a, c− b; c; z)

where C is a constant which does not depend on z. Now clearly from its Taylor expansion

the hypergeometric function z 7→ 2F1(c − a, c − b; c; z) is a constant if and only if either

c − a or c − b is zero, which together with B4 proves that constancy occurs if and only if

(α, β) belongs to one of the two possible BP as given in the example of §3.4 above. 2

Remark. One can prove that the convex hulls in IR5 of A and B are respectively strictly

included in A4 and B4 as defined in Proposition 3.2.

4 Properties of the type I and II Wisharts

Let us recall that for a given decomposable graph G, the r-dimensional graphical Gaussian

model Markov with respect to G is the family of distributions

NG = {Nr(0,Σ), Σ ∈ QG}.

Dawid and Lauritzen (1993, p. 1306) have shown that this model is strong meta Markov.

This can also be shown directly since, using the notation of (2.8), for a given perfect order

of the cliques and with the convention that x[1]· = xC1 ,Σ[1]· = ΣC1 , x<1> = 0, r1 = c1, the

density of X ∈ IRr with distribution Nr(0,Σ) ∈ NG can be written as

f(x) =
k∏
i=1

1

(2π)
ri
2 Σ

1
2

[i]·

e
− 1

2
〈(x[i]−x[i>Σ−1

<i>Σ<i]),Σ
−1
[i]·(x[i]−x[i>Σ−1

<i>Σ<i])〉 (4.1)

The parameters

F1 = ΣC1 , (Li = Σ[i>Σ−1
<i>, Ni = Σ[i]·), i = 2, . . . , k (4.2)

of the distributions of XC1 , X[i]|xHi−1 , i = 2, . . . , k respectively are clearly variation inde-

pendent in the sense that any parameter (Σ[i>Σ−1
<i>,Σ[i]·) of the distribution of X[i]|XHi−1 is

compatible with any parameter {F1, (Lj , Nj), j < i} ofXHi−1 and any parameter {Lj , Nj , j >

i} of X| XHi . It then follows that for a decomposition (A,B) of G the parameter ΣA of the

distribution of XA is variation independent of the parameter ΣB|A of the conditional distri-

bution of XB given XA. This, according to Definition 4.3 of Dawid and Lauritzen (1993),
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means that the model NG is strong meta-Markov. For this model, Dawid and Lauritzen

(1993, p. 1306 and p. 1308) have shown that the distribution of the maximum likelihood

estimator of Σ, that is the hyper Wishart, is weak hyper Markov and that the hyper inverse

Wishart, the inverse of the G-Wishart, is a conjugate prior on Σ which is strong hyper

Markov.

We are now going to show parallel results for the type I and II Wishart: the type I

Wishart is weak hyper Markov, the inverse of the type II Wishart forms a conjugate family

for the scale parameter of the NG model and for any direction given to the graph by a

perfect order of its cliques, the inverse type II Wishart is strong directed hyper Markov.

Since we have seen in §3.2 that the hyper Wishart is a particular case of the type I Wishart

and the hyper inverse Wishart is a particular case of the inverse type II, it is not surprising

that their generalizations hold parallel Markov properties.

One might wonder whether the term “hyper” is adequate when talking about the weak

Markov property of the type I Wishart since this distribution has been identified so far

neither as the distribution of an estimator nor as a prior distribution for the parameter of

a Gaussian model. It is certainly adequate for the inverse of the type II Wishart since, as

we are going to prove right away in §4.1, it forms a conjugate family of prior distributions

for the scale parameter of the NG model, with a shape parameter set of dimension at least

k+ 1. We will then prove the hyper Markov properties in §4.2. Our main results below are

Corollary 4.1 and Theorem 4.4.

4.1 Conjugate prior distributions

The family of inverse type II Wishart distributions has several properties that make it useful

as a rich family of conjugate prior distributions for the scale parameter ΣG of the graphical

Gaussian model Markov with respect to a decomposable graph G. Recall that, following

the notation used in the introduction, if Σ is the positive definite covariance matrix for

Nr(0,Σ) ∈ NG, then ΣG = π(Σ) ∈ QG is the scale parameter for the Nr(0,Σ) distribution.

We have the following general result.

Theorem 4.1 Let G be a decomposable graph and let P be a perfect order of its cliques. Let

D be in QG, let (α, β) be in AP and (α′, β′) be in BP . If the joint distribution of (X,ΣG) on

QG × QG is WQG(α, β, σ; dx)IWPG(α′, β′, D; dσ), then the conditional distribution of ΣG

knowing X = x is IWPG(α′−α, β′−β,D+x; dσ) and the marginal distribution of X is an

F distribution of the first kind with parameter (α, β, α′, β′, D).

Proof: The joint distribution of (X,ΣG) is

WQG(α, β, σ; dx)IWPG(α′, β′, D; dσ)
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=
e−〈x,σ̂

−1〉HG(α, β;x)
ΓI(α, β)HG(α, β;σ)

µG(dx)
e−〈D,σ̂

−1〉HG(α′, β′;σ)
ΓII(α′, β′)HG(α′, β′;D)

µG(dσ)

=
[

HG(α, β;x)
ΓI(α, β)ΓII(α′, β′)HG(α′, β′;D)

µG(dx)
]
e−〈x+D,σ̂−1〉HG(α′ − α, β′ − β;σ)µG(dσ)

from which the result follows immediately. 2

Theorem 4.1 shows that the family of IWPG distributions is a conjugate family for

the scale parameter σ of the WQG(α, β, σ; dx). Consider now a sample Z1, . . . , Zn from

a Gaussian distribution Markov with respect to G, let S = 1
n

∑n
i=1 ZiZ

t
i . Then π(S),

the maximum likelihood estimator of ΣG is such that nπ(S) is hyper Wishart with shape

parameter p = n
2 and scale parameter ΣG, that is, Wishart of Type I with shape parameter

α(C) = p, C ∈ C, β(S) = p, S ∈ S, p > maxC∈C
|C| − 1

2

and scale parameter 2ΣG. Applying Theorem 4.1 to X = nπ(S), we obtain the following

corollary

Corollary 4.1 Let G be decomposable and let P be a perfect order of its cliques. Let

(Z1, . . . , Zn) be a sample from the Nr(0,Σ) distribution with ΣG ∈ QG. If the prior distri-

bution on 2ΣG is IWPG(α′, β′, D) with (α′, β′) ∈ BP and D ∈ QG, the posterior distribution

of 2ΣG, given nS =
∑n
i=1 ZiZ

t
i is IWPG(α′ − n

2 , β
′ − n

2 , D + π(nS)), where α′ − n
2 =

(α1 − n
2 , . . . , αk −

n
2 ) and β′ − n

2 = (β′1 − n
2 , . . . , β

′
k −

n
2 ) are such that (α′ − n

2 , β
′ − n

2 ) ∈ BP
and D + π(nS) ∈ QG.

This means that the family {IWPG(α, β,D), (α, β) ∈ A, D ∈ QG} is a conjugate family

for the scale parameter ΣG of the Gaussian model Markov with respect to G. We note this

family has its shape parameter set of dimension at least k + 1 and is therefore much richer

than the traditional Diaconis-Ylvisaker family with shape parameter set of dimension equal

to 1.

Theorem 4.1 can also be immediately transcribed to the homogeneous case using the

variables (x[u]·, x[u>x
−1
<u>, u ∈ T ) and we obtain the following result.

Theorem 4.2 Let G be a homogeneous graph. Let D be in QG, let (α, β) be in A and (α′, β′)

be in B. If (X,ΣG) ∈ QG×QG and the joint distribution of (X[u]· X[u>X
−1
<u>, Σ[u]· Σ[u>Σ−1

<u>, u ∈
T ) is W ∗QG(α, β, σ)IW ∗PG(α′, β′, D), then the conditional distribution of Σ knowing X = x

is IW ∗PG(α′ − α, β′ − β,D + x).

We now have the following result dual to Theorem 4.1.
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Theorem 4.3 Let P be a perfect order of the cliques of G. Let σ be in QG. Let (α, β) be

in BP and (α′, β′) be in AP . If the joint distribution of (Y,Θ) on PG × PG is

WPG(α, β, θ)IWQG(α′, β′, σ), then the conditional distribution of Θ knowing Y = y is

IWQG(α′ − α, β′ − β, ϕ(y + σ̂−1)).

Theorem 4.3 shows that the family of IWQG distributions is a conjugate family for the scale

parameter θ of the WPG(α, β, θ).

4.2 Markov properties

We now want to show that the type II inverse Wishart IWPG is strong directed hyper

Markov and the type I Wishart weak hyper Markov. Let M(G) denote the set of all

Markov probabilities over G. Let the distribution Pρ ∈ M(G) be parametrized by ρ. Now

we randomize ρ according to a law L(ρ). For any subset A of V , let ρA denote the parameter

of the marginal distribution of XA (more specifically we should write ρ ∼A ρ′ if the marginal

distributions of XA under Pρ and Pρ′ coincide and call ρA the equivalence class of ρ for the

equivalence relation ∼A.) The parameter ρA|B of the conditional distribution of XA knowing

XB could be defined in a similar way. We say that L(ρ) is weak hyper Markov over G if

under L(ρ), for any decomposition (A,B) of V ,

ρA ⊥⊥ ρB|ρA∩B. (4.3)

We say that L(ρ) is strong hyper Markov over G if, under L(ρ), for any decomposition

(A,B) of V ,

ρA|B ⊥⊥ ρB. (4.4)

Let P be any perfect order of the cliques and consider a perfect numbering of the vertices

compatible with P (see Lauritzen (1996), p. 18). Let D be the directed graph obtained

from G by directing all edges in G from the vertex with the smallest number to the vertex

with the highest number. We say that a law L(ρ) is weak directed hyper Markov over D if

for all v ∈ V ,

ρv ⊥⊥ ρpr(v) | ρpa(v), (4.5)

where pa(v) denotes the sets of parents of v in D and pr(v) denotes the sets of predecessors,

i.e. the vertices with a lower number than v.

We say that L(ρ) is strong directed hyper Markov over D if for all v ∈ V ,

ρv|pa(v) ⊥⊥ ρpr(v) . (4.6)
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Let us also recall that a random variable on M+
r is said to follow the Wishart wr(p, σ)

distribution if its density with respect to the Lebesgue measure is

|x|p−
r+1

2

|σ|pΓr(p)
e−〈x,σ

−1〉,

in which case its inverse U = X−1 is said to follow the inverse Wishart distribution iwr(p, θ),

where θ = σ−1, with density with respect to the Lebesgue measure, equal to

|u|−p−
r+1

2

|σ|pΓr(p)
e−〈u

−1,θ〉.

Finally, we will use the notation x[12> and x[1]· for

x[12> = xC1\S2,S2
x−1
S2

and x[1]· = xC1\S2·S2
.

Theorem 4.4 Let G be a decomposable graph G and let P be a perfect order of its cliques.

Then, for (α, β) ∈ BP and for the direction given by P , the inverse type II Wishart is strong

directed hyper Markov. More precisely, if X ∼ IWPG(α, β, θ) with (α, β) ∈ BP and θ ∈ QG,

then

x[i]· ∼ iwci−si(−αi, θ[i]·), i = 1, . . . , k

x[12>|x[1]· ∼ N(c1−s2)×s2(θ[12>, 2 θ
−1
<2> ⊗ x[1]·)

x<2> ∼ iws2(−(α1 +
c1 − s2

2
+ γ2), θ<2>)

x[j>x
−1
<j>|x[j]· ∼ N(cj−sj)×sj (θ[j>θ

−1
<j>, 2 θ

−1
<j> ⊗ x[j]·), j = 2, . . . , k

and

{(x[12>, x[1]·), x<2>, (x[j>x
−1
<j>, x[j]·), j = 2, . . . , k} (4.7)

are mutually independent.

Proof: From (4.1), we know that (Σ[i>Σ−1
<i>,Σ[i]·) is the parameter of the distribution of Z[i]

given Z<i> when Z ∼ Nr(0,Σ) ∈ NG. Therefore it follows from the remark following

Theorem 2.6 and Proposition 3.8 of Dawid and Lauritzen (1993) that to construct a weak

hyper Markov distribution for ρ = ΣG ∈ QG, it is sufficient to build a weak directed hyper

Markov distribution for a given direction of the vertices compatible with a given perfect

order of the cliques, that is a distribution with density of the form

p(ΣG) = pC1(ΣC1)
k∏
i=2

pi(Σ[i>Σ−1
<i>,Σ[i]· | Σ<j>)

= p1(Σ[12>,Σ[1]· | Σ<2>)p<2>(Σ<2>)
k∏
i=2

pi(Σ[i>Σ−1
<i>,Σ[i]· | Σ<j>) . (4.8)
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If we want to show that, for the given direction, this distribution is in fact strong directed

hyper Markov, by Proposition 3.13 of Dawid and Lauritzen (1993) it is sufficient to show

that

{(Σ[12>,Σ[1]·), Σ<2>, (Σ[j>Σ−1
<j>,Σ[j]·), j = 2, . . . , k} (4.9)

are mutually independent. Let us now show that the Inverse type II Wishart satisfies both

(4.8) and (4.9). Let X ∼ IWPG(α, β, θ) with (α, β) ∈ BP and θ ∈ QG. Combining (7.9)

and (7.11) of the appendix, we show that the image of the IWPG(α, β, θ; dx) distribution

by the change of variables (2.12) and (7.5) is

IW ∗∗PG(α, β, θ; d(x[1]·, d(x[12>, d(xS2), d(x[j>x
−1
<j>), dx[j]·, j = 2, . . . , k)

∝ e
−〈x−1

[1]·,θ[1]·〉|x[1]·|α1−
c1−s2+1

2 |x[1]·|−
s2
2 e
−〈(x[12>−θ[12>),x−1

[1]·(x[12>−θ[12>)θ<2>〉 (4.10)

e−〈x
−1
<2>,θ<2>〉|x<2>|α1+

c1−s2
2

+γ2−
s2+1

2 dx<2> (4.11)
k∏
j=2

|x[j]·|αj−
cj−sj+1

2 e
−〈x−1

[j]·,θ[j]·〉|x[j]·|−
sj
2 (4.12)

k∏
j=2

e
−〈(x[j>x

−1
<j>−θ[j>θ

−1
<j>),x−1

[j]·(x[j>x
−1
<j>−θ[j>θ

−1
<j>)θ<j>〉 (4.13)

dx[12>dx[1]·

k∏
j=2

d(x[j>x
−1
<j>)dx[j]·.

We see that the densities (4.10), (4.11), (4.12) and (4.13) with x replaced by ΣG are exactly

of the form required for the respective factors of (4.8). It follows that the IWPG(α, β, θ) is

weak directed hyper Markov but we also see from (4.10) - (4.13) above that the independence

in (4.9) is satisfied and therefore IWPG(α, β, θ) is strong directed hyper Markov. The

densities of

(x[1]·, x[12>, x<2>, x[j]·, x[j>x
−1
<j>, j = 2, . . . , k)

are also clearly as indicated in the theorem. 2

This strong directed hyper Markov property of the type II inverse Wishart corresponds

to the strong hyper Markov property for the inverse G-Wishart, i.e. the hyper inverse

Wishart. We do not quite have the strong hyper-Markov property because the parameters

(α, β) ∈ BP are linked to the perfect order P . The property analog to the weak hyper

Markov property of the hyper Wishart is given in the following theorem.

Theorem 4.5 Let G be a decomposable graph and let P be a perfect order of its cliques.

Then, for (α, β) ∈ AP , the type I Wishart is weak hyper Markov. More precisely, if X ∼
WQG(α, β, σ) with (α, β) ∈ AP and σ ∈ QG , then

x[1]· ∼ wc1−s2(α1 −
s2

2
, σ[1]·)
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x[12>|x<2> ∼ N(c1−s2)×s2(σ[12>, 2 x
−1
<2> ⊗ σ[1]·)

x<2> ∼ ws2(α1 + δ2, σ<2>)

x[j>x
−1
<j>|x<j> ∼ N(cj−sj)×sj (σ[j>σ

−1
<j>, 2 x

−1
<j> ⊗ σ[j]·)

x[j]· ∼ wcj−sj (αj −
sj
2
, σ[j]·), j = 2, . . . , k

Proof: Using (7.4) and (7.6) of the Appendix, we see that the image of the WQG(α, β, σ; dx)

distribution by the change of variables (2.12) and (7.5) is

W ∗∗QG(α, β, σ; dx[1]·, dx[12>, dx<2>, dx[j]·, d(x[j>x
−1
<j>), j = 2, . . . , k)

∝ |x[1]·|α1−
s2
2
− c1−s2+1

2 e
−〈x[1]·,σ

−1
[1]·〉dx[1]· (4.14)

×|x<2>|
c1−s2

2 e
−〈(x[12>−σ[12>)x<2>(x<2,1]−σ<2,1])σ

−1
[1]·〉dx[12> (4.15)

×|x<2>|α1+δ2−
s2+1

2 e−〈x<2>,σ
−1
<2>〉dx<2> (4.16)

×
k∏
j=2

|x[j]·|αj−
sj
2
−
cj−sj+1

2 e
−〈x[j]·,σ

−1
[j]·〉dx[j]· (4.17)

×|x<j>|
cj−sj

2 e
−〈(x[j>x

−1
<j>−σ[j>σ

−1
<j>)x<j>(x−1

<j>x<j]−σ
−1
<j>σ<j])σ

−1
[j]·〉d(x[j>x

−1
<j>) .(4.18)

From the expression of the density W ∗∗QG(α, β, σ) above, we see that, for x = ΣG, (4.14)

and (4.15) give p1(Σ[C1\S2,S2>Σ−1
S2
,ΣC1\S2·S2

| ΣS2) of (4.8) while (4.16) gives pS2(ΣS2) and

(4.17) and (4.18) give pi(Σ[i>Σ−1
<i>,Σ[i]· | Σ<j>). Therefore the WQG(α, β, σ) type I Wishart

is weak directed hyper Markov and, by Proposition 3.8 of Dawid and Lauritzen (1993), weak

hyper Markov. 2

We note that in the proof above, the density p1(Σ[C1\S2,S2>Σ−1
S2
,ΣC1\S2·S2

| ΣS2) depends

upon ΣS2 and the density pi(Σ[i>Σ−1
<i>,Σ[i]· | Σ<j>) depends upon Σ<j> and therefore the

WQG(α, β, σ) type I Wishart is not strong directed hyper Markov.

4.3 Laplace transforms and expected values

For (α, β) ∈ A, F(α,β),I = {WQG(α, β, σ; dx), σ ∈ QG} is the natural exponential family

generated by the measure

µ(α,β),G(dx) =
HG(α, β;x)

ΓI(α, β)
µG(dx) .

For −y ∈ PG, the Laplace transform of µ(α,β),G is

Lµ(α,β),G
(y) =

∫
QG

e tr (xy)µ(α,β),G(dx) = HG(α, β;−ϕ(y)).

This is a reformulation of (3.19). It implies that, for −y+ σ̂−1 ∈ PG, the Laplace transform

of WQG(α, β, σ) is defined by∫
QG

e tr (xy)WQG(α, β, σ; dx) =
HG(α, β;ϕ(σ̂−1 − y))

HG(α, β;σ)
. (4.19)
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Suppose that (α, β) and (α′, β′) in A are such that (α+α′, β + β′) is still in A. This is, for

example, true for any G if (α, β) and (α′, β′) are in the same AP and it is always true if G

is homogeneous. We then have the convolution formula

WQG(α, β, σ) ∗WQG(α′, β′, σ) = WQG(α+ α′, β + β′, σ),

a result which would be difficult to prove using densities alone, i.e. without Theorem 3.3.

Let us also mention some properties of the NEF F(α,β),I . From Theorem 2.1 (1), we deduce

that Lµ(α,β),G
(y) is finite if and only if −y ∈ PG. Since −PG is an open subset of ZG (see

Letac and Massam, 2006), F(α,β),I is a regular family in the sense of Barndorff Nielsen (1978)

and the domain of the means MF(α,β),I
of the family F(α,β),I coincides with the interior of

the closed convex support of the family. Thus MF(α,β),I
= QG. The cumulant function of

µ(α,β),G is

kµ(α,β),G
(y) =

k∑
j=1

αj log det((−y−1)Cj )−
k∑
j=2

βj log det((−y−1)Sj ). (4.20)

The computation of its differential requires some care and it is done in the Appendix in

Propositions 7.1 and 7.2. We give the result here. If X ∼WQG(α, β, σ), for y = σ̂−1 ∈ PG,

EWQG
(α,β,σ)(X) =

d

dy
kµ(α,β),G

(y)

=
k∑
j=1

αj τ(σ̂V \Cj ,Cjσ
−1
Cj

)σCj −
k∑
j=2

βj τ(σ̂V \Sj ,Sjσ
−1
Sj

)σSj , (4.21)

where

τ(σ̂V \Cj ,Cjσ
−1
Cj

)σCj =

(
ICj 0

σ̂V \Cj ,Cjσ
−1
Cj

IV \Cj

)(
σCj 0

0 0

)(
ICj σ−1

Cj
τσCj ,V \Cj

0 IV \Cj

)

=

(
σCj σ̂Cj ,V \Cj

σ̂V \Cj ,Cj σ̂V \Cjσ
−1
Cj
σCj ,V \Cj

)
= σ̂ − σ̂V \Cj ·Cj (4.22)

with a similar expression for τ(σV \Sj ,Sjσ
−1
Sj

)σSj . This implies that if X ∼ WQG(α, β, σ),

then

EWQG
(α,β,σ)(X) =

( k∑
j=1

αj −
k∑
j=2

βj
)
σ̂ +

k∑
j=1

αj σ̂V \Cj ·Cj −
k∑
j=2

βj σ̂V \Sj ·Sj

We have parallel results for the type II Wishart. We note that for (α, β) ∈ B

F(α,β),II = {WPG(α, β, θ; dy), θ ∈ QG}
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is the natural exponential family generated by the measure

ν(α,β),G(dy) =
HG(α, β;ϕ(y))

ΓII(α, β)
νG(dy) .

Here the Laplace transform Lν(α,β),G
(x) is finite if and only if x is in −QG (Theorem 2.1

part 1.) which is an open subset of IG (see Letac and Massam, 2006), and the domain of the

means of Fα,β,II is PG. We have Lν(α,β),G
(x) = HG(α, β,−x). This implies that the Laplace

transform of WPG(α, β; θ) is defined for −x+ θ ∈ QG by∫
PG

e〈x,y〉WPG(α, β, θ; dy) =
HG(α, β; θ − x)
HG(α, β; θ)

. (4.23)

The cumulant transform is

kν(α,β),G
(x) =

k∑
j=1

αj log det((−x)Cj )−
k∑
j=2

βj log det((−x)Sj ).

and its differential is given by the following element of PG

k′ν(x) =
k∑
j=1

αj(−x−1
Cj

)0 −
k∑
j=2

βj(−x−1
Sj

)0. (4.24)

This implies that if Y ∼WPG(α, β, θ), then

EWPG
(α,β,θ)(Y ) =

k∑
j=1

αj(θ−1
Cj

)0 −
k∑
j=2

βj(θ−1
Sj

)0. (4.25)

To conclude this section, let us make a few remarks. Formula (4.25) with Y replaced by

Σ̂−1
G , (α, β) replaced by (α′ − α, β′ − β) and θ replaced by D + x gives the posterior mean

E(Σ̂−1
G |X = x) of the inverse of the natural canonical parameter ΣG for WQG(α, β,ΣG) in

Theorem 4.1 when the prior distribution on ΣG is the IWPG(α′, β′, D). It is, of course, also

of interest to compute the posterior mean of the natural canonical parameter ΣG. In other

words, we need EWPG
(α′−α,β′−β,D+x)(ϕ(Y )) when Y = Σ̂−1

G . We have the general formula

−θ =
( k∑
j=1

(αj +
cj + 1

2
)−

k∑
j=2

(βj +
sj + 1

2
)
)
EWPG

(α,β,θ)(ϕ(Y )) (4.26)

+
k∑
j=1

(αj +
cj + 1

2
)EWPG

(α,β,θ)(ϕ(Y )V \Cj ·Cj )

−
k∑
j=2

(βj +
sj + 1

2
)EWPG

(α,β,θ)(ϕ(Y )V \Sj ·Sj ) .

The proof is not straightforward. To derive (4.26), we use Stokes formula and obtain

0 =
∫
PG

(u′(y)v(y) + u(y)v′(y))dy
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with u(y) = HG(α + c+1
2 , β + s+1

2 , ϕ(y)), v(y) = e〈θ,y〉 and where (α, β) ∈ B satisfy some

restrictions similar to the restrictions for the existence of the expected value of the inverse

Wishart, that is p > r+1
2 for the wr(p, σ) distribution. Using the same substitutions for

α, β, θ in (4.26) as we did in (4.25), we see that (4.26) implies that in Theorem 4.1, the

posterior mean of ΣG is not linear in x; this is in accordance with Theorem 3 of Diaconis-

Ylvisaker (1979). We also see from Corollary 4.1 that when X = π(S) ∈ QG follows the

hyper Wishart distribution with (α, β) = (n2 ,
n
2 ) and the shape parameter of the prior on

ΣG are (α′, β′), then the shape parameters of the posterior are (α′ − n
2 , β

′ − n
2 ). That is, as

for the inverse Wishart or the hyper inverse Wishart, the parameters (α′, β′) of the IWPG

are added to half of the sample size and from (4.26) and the choice of (α′, β′) has the same

kind of impact on the posterior mean as the choice of the shape parameters for the inverse

or hyper inverse Wishart.

Let us also mention here that the IW ∗∗PG(α, β, θ) distribution as given by equations (4.10)-

(4.12) is conditionally (k + 1)-reducible and is an enriched conjugate family of prior distri-

butions, in the sense of Consonni and Veronese (2001), for the parameter ΣG = π(Σ) of a

Gaussian distribution Markov with respect to G. This follows immediately from Theorem

4.4. The IW ∗∗PG(α, β, θ) is also closely linked to the enriched standard conjugate Wishart

family of priors for K = Σ−1 in the standard Gaussian distribution, that is when G is a

complete graph, built by Consonni and Veronese (2003). Theorem 2 and Corollary 1 in that

paper correspond to Theorem 4.4 here. However we should note that it is the WPG(α, β, θ)

family that is an exponential family, not the IW ∗∗PG(α, β, θ) family and therefore the analog

of the enriched Wishart, for G decomposable, is the WPG(α, β, θ).

5 Open problems

We will now raise some natural questions related to the paper.

Singularity. The well known Gyndikin theorem states that the mapping θ 7→ (det(−θ))−p

from −M+
r to (0,∞) is the Laplace transform of some positive measure µp on symmetric

real matrices of order n if and only if p is in the set

Λ = {1
2
,
2
2
, . . . ,

r − 1
2
} ∪ (

r − 1
2

, ∞).

A very readable proof of this theorem can be found in Shanbhag (1988). The natural expo-

nential family generated by µp is the set of Wishart distributions with shape parameter p.

If p = j/2 with j = 1, . . . , n−1 then µp is concentrated on the singular semipositive definite

matrices of rank j. For a decomposable graph G on V = {1, . . . , r} and for (α, β) ∈ A, the

mapping y 7→ HG(α, β;−ϕ(y)) from −PG to (0,∞) is the Laplace transform of a positive

35



measure on QG which generates the natural exponential family of Wishart distributions of

type I. Natural questions are

• For which values of α, β is y 7→ HG(α, β;−ϕ(y)) the Laplace transform of some positive

measure on IG?

• How do we describe these measures?

Similar questions arise with the Wishart distributions of type II: for which values of α, β is

the mapping x 7→ HG(α, β; −x) from −QG to (0,∞) the Laplace transform of some positive

measure on ZG?

Complex and quaternionic numbers. Wishart matrices with complex and quaternionic

entries are well defined. Thus many concepts of the present paper are extendable to complex

or quaternionic matrices in a rather mechanical way.

The sets A and B. Is it true that A = ∪AP and that B = ∪BP for any non homogeneous

graph? Calculations are terrifying for the graph A5 : • − •− •− •− •. On the other hand,

this conjecture is easily proved for the tree represented in Figure 3 below, with n + m + 2

vertices denoted a1, . . . , an, b1, . . . , bm, 2, 3 with edges ai ∼ 2, bj ∼ 3 for all i, j and 2 ∼ 3 :

to prove it, we need only extend the calculations of Proposition 3.2 and Corollary 3.1.

•a1

BBBBBBBB •b1

||||||||

•a2 •2 •3 •b2

•a3

||||||||
•b3

BBBBBBBB

Figure 3: The case n = m = 3
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7 Appendix

7.1 Proofs of §2

Proof of Theorem 2.1 (1). The dual of PG is P ∗G = {x ∈ IG; tr (xy) > 0 for all y ∈ PG\{0}}
where PG is the closure of PG, that is, the cone of semi positive definite matrices of ZG.

To show that QG = P ∗G we will first show that QG ⊂ P ∗G and then that QG ⊃ P ∗G. If

x ∈ QG then by Theorem 2.1 there exists a symmetric positive definite matrix x̂ which is

the completion of x. Thus tr (xy) = tr (x̂y) for all y ∈ ZG. Furthermore, if y ∈ PG \ {0}
then tr (x̂y) = tr ((x̂)1/2y(x̂)1/2). Since the matrix (x̂)1/2y(x̂)1/2) is semi positive definite

and non zero, its trace is positive. Thus x ∈ P ∗G and QG ⊂ P ∗G is proved.

Conversely, take x ∈ IG such that x ∈ P ∗G. Fix a clique C and consider a vector v of

IRr such that the components of v which are not in C are 0. Denote by vC and by xC the

restrictions of v to C and to C × C respectively and assume that v 6= 0 and thus vC 6= 0.

Since vvt is in PG \ {0} and since x ∈ P ∗G, 0 < tr (xvvt) = vtxv = vtCxCvC . Moreover, this

is true for any vC 6= 0 and therefore xC is positive definite. Since this is true for all cliques,

we deduce that x is in QG and QG ⊃ P ∗G is also proved. We thank S. Andersson for this

result and this proof. Our former proof was longer and was relying on the description of

the extremal lines of the cones PG and QG given in Letac and Massam (2006). 2

7.2 Proofs of §3.3

Proof of Proposition 3.1. For convenience, we will agree to write t for a vertex of T

corresponding to a clique C while we write q for a vertex of T corresponding to a separator

S. As defined in (3.10), mv =
∑
u�v nu and for any v ∈ T , we have

|xC | =
∏
u�t
|x[u]·|, |xS | =

∏
u�q
|x[u]·|, |C| = c = mt, |S| = s = mq .
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This means that |x[u]·| will appear in |xC | for any C such that u � t and in any |xS | for any

S such that u � q. Therefore∏
|xC |αt−

c+1
2∏

|xS |ν(q)(βq− s+1
2

)
(7.1)

=
∏
u∈T
|x[u]·|

∑
u�t(αt−

mt+1
2

)−
∑

u�q ν(q)(βq−
mq+1

2
)

=
∏
u∈T
|x[u]·|

(∑
u�t αt−

∑
u�q ν(q)βq

)
|x[u]·|

−
(∑

u�t
mt+1

2
−
∑

u�q ν(q)
mq+1

2

)

=
∏
u∈T
|x[u]·|

(∑
u�t αt−

∑
u�q ν(q)βq

)
|x[u]·|−(

∑
u≺t

nt
2

+mu+1
2 )

=
∏
u∈T
|x[u]·|

(∑
u�t αt−

∑
u�q ν(q)βq

)
|x[u]·|−(

∑
u≺v

nv
2

+
∑

v≺u
nv
2

+nu+1
2 )

where the third equality above follows from the definition of mv and the fact that for any

vertex q of the tree, ν(q) is equal to the number of children of q minus 1 (see Part 2 of

Proposition 2.2). We now make the change of variables (3.14). The Jacobian of this change

of variables is

J =
∏
v∈T
|x<v>|nv =

∏
v∈T

(∏
u≺v
|x[u]·|

)nv
=
∏
u∈T
|x[u]·|

∑
u≺v nv (7.2)

Therefore we obtain the image of HG(α, β, x)µG(dx) as

H∗G(α, β, x)µ∗G(
∏
u∈T

dx[u]· d(x[u>x
−1
<u>)) (7.3)

=
∏
t∈T
|x[t]·|αt−

mt+1
2

∏
u∈T,u 6=t

|x[u]·|

(∑
u�t αt−

∑
u�q ν(q)βq+

∑
u≺v

nv
2
−
∑

v≺u
nv
2

)
−nu+1

2

dx[u]· dx[u>x
−1
<u>

=
∏
u∈T
|x[u]·|

(∑
u�t αt−

∑
u�q ν(q)βq+

∑
u≺v

nv
2
−
∑

v≺u
nv
2

)
−nu+1

2 dx[u]· dx[u>x
−1
<u>

=
∏
u∈T
|x[u]·|λu−

nu+1
2 dx[u]· dx[u>x

−1
<u>

where

λu =
∑
u�t

αt −
∑
u�q

ν(q)βq +
∑
u≺v

nv
2
−
∑
v≺u

nv
2
.

2

7.3 Proofs of §3.4

In the sequel, in order to avoid numbering difficulties for separators with multiplicity greater

than one, we sometimes use the generic notation S for a separator and ν(S) for its multi-
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plicity. However, when it is important to list the separators as they appear from a perfect

order of the cliques, we denote the separator Sj by 〈j〉. The double notation should not

cause any difficulty.

Proof of Theorem 3.3. To avoid any ambiguity in the notation in the proof below and

all the other proofs in the reminder of the paper, let us recall that the set S of distinct

separators contains k′ ≤ k − 1 elements. For convenience, let us write A for the left hand

side of (3.19) and y = σ̂−1 for σ ∈ QG. Using the Jacobian (2.13) and formula (2.9), we

then have

A =
∫
QG

e−〈x,σ
−1〉

∏k
j=1 |xCj |αj−

cj+1

2∏
S∈S |xS |ν(S)(β(S)− |S|+1

2
)
dx

=
∫
|xC1 |α1−

c1+1

2 e
−〈xC1

,σ−1
C1
〉

k∏
j=2

|x[j]·|αj−
cj+1

2 e
−〈x[j]·,σ

−1
[j]·〉

k∏
j=2

e
−〈(x[j>x

−1
<j>−σ[j>σ

−1
<j>),σ−1

[j]·(x[j>x
−1
<j>−σ[j>σ

−1
<j>)x<j>〉

∏
S∈S
|xS |

∑
i∈J(P,S)

(αi−
ci+1

2
)−ν(S)(β(S)− |S|+1

2
) ∏
S∈S
|xS |

∑
i∈J(P,S)

ci−ν(S)|S|
dxC1

k∏
j=2

d(x[j>x
−1
<j>)dx[j]·.

Now, since the cardinality of J(P, S) is equal to ν(S) and, by assumption 1 of the theorem,

all |xSj | = |x<j>|, j 6= 2 appear with exponent equal to cj−sj
2 while |xS2 | = |x<2>| appears

with exponent equal to
∑
i∈J(P,S2) αi − ν(q)βq +

∑
i∈J(P,S2)

ci−s2
2 we have

A =
∫
|xC1 |α1−

c1+1

2 e
−〈xC1

,σ−1
C1
〉 |x<2>|δ2 (7.4)

k∏
j=2

|x<j>|
cj−sj

2 e
−〈(x[j>x

−1
<j>−σ[j>σ

−1
<j>),σ−1

[j]·(x[j>x
−1
<j>−σ[j>σ

−1
<j>)x<j>〉

|x[j]·|αj−
sj
2
−
cj−sj+1

2 e
−〈x[j]·,σ

−1
[j]·〉dxC1

k∏
j=2

d(x[j>x
−1
<j>)dx[j]·.

Clearly (x[k]·, x[k>x
−1
<k>) is independent of xC1∪...∪Ck−1

= (xC1 , x[j>x
−1
<j>, x[j]·, j = 2, . . . , k−

1) and x[k]· is independent of x[k>x
−1
<k>. Therefore holding all other variables fixed, we first

integrate with respect to (x[k]·, x[k>x
−1
<k>). Since < k > ⊂ C1 ∪ . . . , Ck−1, then x<k> is fixed

and by Lemma 2.4 we obtain∫
M+
ck−sk

|x[k]·|αk−
sk
2
− ck−sk+1

2 e
−〈x[k]·,σ

−1
[k]·〉dx[k]·

×
∫
L(Rsk ,Rck−sk )

|x<k>|
ck−sk

2 e
−〈(x[k>x

−1
<k>
−σ[k>σ

−1
<k>

),σ−1
[k]·(x[k>x

−1
<k>
−σ[k>σ

−1
<k>

)x<k>〉d(x[k>x
−1
<k>)

= Γck−sk(αk −
sk
2

)|σ[k]·|αk

×
∫
L(Rsk ,Rck−sk )

|σ[k]·|−
sk
2 |x<k>|

ck−sk
2 e

−〈(x[k>x
−1
<k>
−σ[k>σ

−1
<k>

),σ−1
[k]·(x[k>x

−1
<k>
−σ[k>σ

−1
<k>

)x<k>〉d(x[k>x
−1
<k>).
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= π
sk(ck−sk)

2 Γck−sk(αk −
sk
2

)|σ[k]·|αk

Repeating this process successively for j = k − 1, . . . , 2, we obtain

A =
k∏
j=2

π
sj(cj−sj)

2 Γcj−sj (αj −
sj
2

)|σ[j]·|αj
∫
|xC1 |α1−

c1+1

2 e
−〈xC1

,σ−1
C1
〉 |x<2>|δ2dxC1 .

In this last integral, setting, as in §4.2,

x[1]· = xC1\S2
− xC1\S2,S2

x−1
S2
xS2,C1\S2

, x[12> = xC1\S2,S2
x−1
S2
,

we make the change of variable

xC1 7→ (x[1]·, x[12>, x<2>) (7.5)

with Jacobian equal to |x<2>|c1−s2 . Then, by (2.11)∫
|xC1 |α1−

c1+1

2 e
−〈xC1

,σ−1
C1
〉 |x<2>|δ2dxC1

=
∫
|x[1]·|α1−

s2
2
− c1−s2+1

2 e
−〈x[1]·,σ

−1
[1]·〉dx[1]· (7.6)

×
∫
M+
s2

|x<2>|α1+
c1−s2

2
+δ2−

s2+1

2 e
−〈x<2>,σ

−1
S2
〉

×
( ∫

L(Rs2 ,Rc1−s2 )
e
−〈(x[12>−σ[12>),σ−1

[1]·(x[1,2>−σ[1,2>)x<2>〉dx[12>

)
dx<2>

= Γc1−s2(α1 −
s2

2
)|σ[1]·|α1π

s2(c1−s2)

2

∫
M+
s2

|x<2>|α1−
s2
2
− c1−s2+1

2
+c1−s2−

c1−s2
2

+δ2e
−〈x<2>,σ

−1
S2
〉
dx<2>

= π
s2(c1−s2)

2 Γc1−s2(α1 −
s2

2
)|σ[1]·|α1

∫
M+
s2

|x<2>|α1−
s2+1

2
+δ2e

−〈x<2>,σ
−1
S2
〉
dx<2>

= π
s2(c1−s2)

2 Γc1−s2(α1 −
s2

2
)|σ[1]·|α1 |σS2 |α1 |σS2 |δ2Γs2(α1 + δ2)

= π
s2(c1−s2)

2 |σC1 |α1 |σS2 |δ2Γc1−s2(α1 −
s2

2
)Γs2(α1 + δ2) (7.7)

Now, let us observe that using the multiplicity of S2 and Assumption 1 of the theorem, we

obtain
k∏
j=2

|σ[j]·|αj =
|σC2 |α2

|σS2 |α2

k∏
j=3

|σCj |αj
|σSj |αj

=
|σC2 |α2

|σS2 |
∑

i∈J(P,S2)
αi

∏k
j=3 |σCj |αj∏

S∈S,S 6S2
|σS |ν(S)β(S)

(7.8)

Combining (7.5), (7.7) and (7.8), we obtain (3.19) with

ΓI(α, β) = Γs2 (α1 + δ2)× π
1
2

(c1−s2)s2Γc1−s2(α1 −
s2

2
)

k∏
j=2

π
∑k

j=2
1
2

(cj−sj)sjΓcj−sj (αj −
sj
2

).

To obtain (3.20), we use (2.16). 2

Proof of Theorem 3.4. For convenience let us denote by B the left hand side of (3.22).

Using first ϕ(y) = x ∈ QG and Jacobian (2.4) and then, making the change of variable
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(2.12) with Jacobian (2.13) and using (2.9), we have

B =
∫
QG

e−〈θ,x̂
−1〉

∏k
j=1 |xCj |αj−

cj+1

2∏
S∈S |xS |ν(S)(β(S)− |S|+1

2
)
dx

=
∫
|xC1 |α1−

c1+1

2 e
−〈x−1

C1
,θC1
〉

k∏
j=2

|x[j]·|αj−
cj+1

2 e
−〈x−1

[j]·,θ[j]·〉
k∏
j=2

e
−〈(x[j>x

−1
<j>−θ[j>θ

−1
<j>),x−1

[j]·(x[j>x
−1
<j>−θ[j>θ

−1
<j>)θ<j>〉

∏
S∈S
|xS |

∑
i∈J(P,S)

(αi−
ci+1

2
)−ν(S)(β(S)− |S|+1

2
) ∏
S∈S
|xS |

∑
i∈J(P,S)

ci−ν(S)|S|
dxC1

k∏
j=2

d(x[j>x
−1
<j>)dx[j]·.

By Assumption 1 of the theorem, this is equal to

B =
∫
|xC1 |α1−

c1+1

2 e
−〈x−1

C1
,θC1
〉|x<2>|γ2 (7.9)

k∏
j=2

|x[j]·|αj−
cj+1

2 e
−〈x−1

[j]·,θ[j]·〉e
−〈(x[j>x

−1
<j>−θ[j>θ

−1
<j>),x−1

[j]·(x[j>x
−1
<j>−θ[j>θ

−1
<j>)θ<j>〉

dxC1

k∏
j=2

d(x[j>x
−1
<j>)dx[j]·.

Clearly xC1 , (x[j>x
−1
<j>, x[j]·, j = 2, . . . , k) are mutually independent and

B = B1 ×
k∏
j=2

Bj ,

where

B1 =
∫
|xC1 |α1−

c1+1

2 e
−〈x−1

C1
,θC1
〉|x<2>|γ2dxC1

and, using Lemma 2.1 in the third equality below, we have

Bj =
∫
M+
cj−sj

( ∫
L(Rsj ,Rcj−sj )

e
−〈(x[j>x

−1
<j>−θ[j>θ

−1
<j>),x−1

[j]·(x[j>x
−1
<j>−θ[j>θ

−1
<j>)θ<j>〉d(x[j>x

−1
<j>)

)
|x[j]·|αj−

cj+1

2 e
−〈x−1

[j]·,θ[j]·〉dx[j]·

= π
sj(cj−sj)

2

∫
M+
cj−sj

|θ<j>|−
cj−sj

2 |x[j]·|αj−
cj+1

2
+
sj
2 e
−〈x−1

[j]·,θ[j]·〉dx[j]·

= π
sj(cj−sj)

2

∫
M+
cj−sj

|θ<j>|−
cj−sj

2 |x−1
[j]·|
−αj+

cj−sj+1

2
−(cj−sj+1)e

−〈x−1
[j]·,θ[j]·〉d(x−1

[j]·)

= π
sj(cj−sj)

2 |θ<j>|−
cj−sj

2 |θ[j]·|αjΓcj−sj (−αj) .

Therefore

B =
k∏
j=2

π
sj(cj−sj)

2 |θ<j>|−
cj−sj

2 |θ[j]·|αjΓcj−sj (−αj)×B1. (7.10)
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To compute B1, let us make the change of variable (7.5). Then

B1 =
∫
|x[1]·|α1−

c1+1

2 e
−〈x−1

[1]·,θ[1]·〉e
−〈(x[12>−θ[12>),x−1

[1]·(x[12>−θ[12>)θ<2>〉 (7.11)

e−〈x
−1
<2>,θ<2>〉|x<2>|α1−

c1−s2
2
− s2+1

2
+γ2+(c1−s2)dx[1]·dx[12>dx<2> .

Integrating with respect with x[12> and using Lemma 2.1, we obtain

B1 = |θ<2>|−
c1−s2

2 π
(c1−s2)s2

2

∫
M+
c1−s2

e
−〈x−1

[1]·,θ[1]·〉|x[1]·|α1−
c1−s2+1

2 dx[1]·

×
∫
M+
s2

e−〈x
−1
<2>,θ<2>〉|x<2>|α1−

c1−s2
2

+γ2−
s2+1

2
+(c1−s2)dx<2>

= |θ<2>|−
c1−s2

2 π
(c1−s2)s2

2

∫
M+
c1−s2

e
−〈x−1

[1]·,θ[1]·〉|x−1
[1]·|
−α1−

c1−s2+1

2 d(x−1
[1]·)

×
∫
M+
s2

e−〈x
−1
<2>,θ<2>〉|x−1

<2>|
−α1−

c1−s2
2
−γ2−

s2+1

2 d(x−1
<2>)

= π
(c1−s2)s2

2 |θ<2>|−
c1−s2

2 |θ[1]·|α1Γc1−s2(−α1)|θ<2>|α1+
c1−s2

2
+γ2Γs2(−α1 −

c1 − s2

2
− γ2)

= π
(c1−s2)s2

2 |θ<2>|α1+γ2 |θ[1]·|α1Γc1−s2(−α1)Γs2(−α1 −
c1 − s2

2
− γ2)

= π
(c1−s2)s2

2 |θC1 |α1 |θ<2>|α1Γc1−s2(−α1)Γs2(−α1 −
c1 − s2

2
− γ2). (7.12)

Let us now observe that

k∏
j=2

|θ<j>|−
cj−sj

2 |θ[j]·|αj =
∏k
j=2 |θCj |αj |θ<j>|−αj−

cj−sj
2
∏
S∈S |θS |ν(S)β(S)∏

S∈S |θS |ν(S)β(S)

=
∏k
j=2 |θCj |αj∏

S∈S |θS |ν(S)β(S)

∏
S∈S
|θS |

−
∑

j∈J(P,S)
αj+

1
2

(cj−sj)+ν(S)β(S)

=
∏k
j=2 |θCj |αj∏

S∈S |θS |ν(S)β(S)
|θ<2>|−γ2 (7.13)

Combining (7.10), (7.12) and (7.13), we obtain

ΓII(α, β) = π
1
2

((c1−s2)s2+
∑k

j=2
(cj−sj)sj)Γs2

[
−α1 −

c1 − s2

2
− γ2

]
Γc1−s2(−α1)

k∏
j=2

Γcj−sj (−αj)

To obtain (3.23), we use (2.17). 2

7.4 Proofs of §4.3

Proposition 7.1 For −y ∈M+
r and C ⊂ {1, . . . , r} denote σC(y) = ((−y)−1)C . We write

y by blocks corresponding to C and its complement

y =

 y1 y12

y21 y2

 .
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We denote for simplicity y′12 = y12y
−1
2 . With these notations the differential of y 7→ σC(y)

is

h =

 h1 h12

h21 h2

 7→ [
σC −σCy′12

]  h1 h12

h21 h2

 σC

−y′21σC

 . (7.14)

Furthermore the differential of y 7→ κC(y) = − log detσC(y) est

h 7→ tr

 h1 h12

h21 h2

 σC −σCy′12

−y′21σC y′21σCy
′
12

 = tr

 h1 h12

h21 h2

 σC σ̂C,V \C

σ̂V \C,C σ̂V \C,Cσ
−1
C σ̂C,V \C

 ,
(7.15)

where the last equality is due to the fact that y′12 = −σ−1
C σ̂C,V \C .

Proof: We know that

σC(y) = (y−1)1 = −(y1 − y12y
−1
2 y21)−1.

Let MC and M+
C denote the restrictions of M and M+

r to the clique C. Then σC(y) = a◦b(y)

where a : −M+
C → M+

C is defined by a(x) = −x−1 and has differential h 7→ a′(x)(h) =

x−1hx−1 (a linear application from MC to MC) and where b : −M+ → −M+
C is defined by

b(y) = y1− y12y
−1
2 y21. The differential of b is the following linear mapping from M to MC : h1 h12

h21 h2

 7→ h1−h12y
−1
2 y21−y12y

−1
2 h21+y12y

−1
2 h2y

−1
2 y21 =

[
1 −y′12

]  h1 h12

h21 h2

 1

−y′21


(7.16)

Finally we apply the composition of differentials to obtain

σ′C(y)(h) = (a ◦ b)′(y)(h) = a′(b(y))(b′(y)(h)) = σC(y)(b′(y)(h))σC(y)

which gives (7.14) when combined with (7.16). Now consider the real function l defined

on M+
C by l(x) = log detx. Then its differential is the linear form on MC defined by

h 7→ l′(x)(h) = tr (x−1h). Thus the differential of the real function on M+
r defined by l◦σC

is the following linear form on M

h 7→ (l ◦ σC)′(y)(h) = tr σ−1
C σ′C(y)(h)

which gives (7.15) when combined with (7.14). 2

We will now use the previous proposition to compute m = k′µ(y). We need to introduce

the notation hC for the restriction of h ∈ ZG to C×C when C ⊂ V the notation C ′ = V \C
and the notations hC,C′ and hC′,C for the restrictions of h to C×C ′ and C ′×C respectively.
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Proposition 7.2 The differential of the real function y 7→ kµ(y) defined on PG by (4.20)

is the linear form on ZG defined by

h 7→
k∑
j=1

αj [ tr (hCjσCj )− 2 tr (hC′j ,CjσCjy
′
Cj ,C′j

) + tr (hC′jy
′
C′j ,Cj

σCjy
′
Cj ,C′j

)]

−
k∑
j=2

βj [ tr (hSjσSj )− 2 tr (hS′j ,SjσSjy
′
Sj ,S′j

) + tr (hS′jy
′
S′j ,Sj

σSjy
′
Sj ,S′j

)]

= tr

(
h1 h12

h21 h2

)[ k∑
j=1

αj

(
σCj σ̂Cj ,V \Cj

σ̂V \Cj ,Cj σ̂V \Cj ,Cjσ
−1
Cj
σ̂Cj ,V \Cj

)

−
k∑
j=2

βj

(
σSj σ̂Sj ,V \Sj

σ̂V \Sj ,Sj σ̂V \Sj ,Sjσ
−1
Sj
σ̂Sj ,V \Sj

)]

Proof: We apply (7.15) to each term of the sum kµ. The proposition has been established for

the cone M+
r and we apply it here to the restriction PG = M+

r ∩ZG of M+
r . Therefore the

formulas for the differentials of functions restricted to this subspace are still in force when

interpreted as linear applications defined on ZG. 2
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