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Summary . We describe a novel stochastic search algorithm for rapidly identifying regions
of high posterior probability in the space of decomposable, graphical and hierarchical log-
linear models. Our approach is based on the Diaconis-Ylvisaker conjugate prior for log-linear
parameters. We discuss the computation of Bayes factors through Laplace approximations
and the Bayesian iterative proportional fitting algorithm for sampling model parameters. We
also present a clustering algorithm for discrete data and develop regressions derived from log-
linear models. We compare our model determination approach with similar results based on
multivariate normal priors for log-linear parameters and Markov chain Monte Carlo stochastic
search algorithms. The examples concern six-way, eight-way and sixteen-way contingency
tables.
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1. Introduction

Many datasets arising from social studies, clinical trials or, more recently, genome-wide
association studies can be represented as multi-way contingency tables. Log-linear models
(Bishop et al., 1975) are the most suitable way to summarize the most relevant interactions
that exist among the variables involved. Determining those log-linear models that are best
supported by the data is a problem that has been studied in the literature (Edwards and
Havranek, 1985; Agresti, 1990; Whittaker, 1990). When the number of observed samples
is considerable with respect to the number of cells in the table, asymptotic approximations
to the null distribution of the generalized likelihood ratio test statistic lead to appropriate
results. However, in the case of sparse contingency tables that contain mostly counts of
zero, the large sample assumptions no longer hold, hence using the same types of tests might
lead to unsuitable results. The number of degrees of freedom associated with a log-linear
model has to be properly adjusted as a function of the zero counts, while some log-linear
parameters become non-identifiable due to the non-existence of the maximum likelihood
estimates – see Fienberg and Rinaldo (2007) for an excellent discussion.

The Bayesian paradigm to model selection avoids these issues through the specification
of prior distributions for model parameters (Clyde and George, 2004). Markov chain Monte

Address for correspondence: Adrian Dobra, Department of Statistics, University of Washington,
Seattle, WA 98155-4322, USA.
E-mail: adobra@u.washington.edu



2 A. Dobra and H. Massam

Carlo (MCMC) algorithms have been traditionally used to identify models with high poste-
rior probability. Dellaportas and Forster (1999) is a key reference that describes a reversible
jump MCMC method applied to decomposable, graphical and hierarchical log-linear mod-
els. Other notable papers that develop various MCMC schemes for discrete data are, for
example, Madigan and Raftery (1994); Madigan and York (1995, 1997); Tarantola (2004);
Dellaportas and Tarantola (2005).

While MCMC methods seem to work well for problems involving a relatively small num-
ber of candidates models, they tend to be less efficient as the dimensionality of the model
space grows exponentially. Jones et al. (2005) and Hans et al. (2007) highlight this issue in
the context of Gaussian graphical models and regression variable selection. They introduce
the shotgun stochastic search (SSS) method that is similar to MCMC but it focuses on ag-
gresively moving towards regions of high posterior probability in the models space instead
of attempting to sample from the posterior distribution over the model space.

The aim of this paper is to present a novel stochastic search method for decomposable,
graphical and hierarchical log-linear models which we call the mode oriented stochastic
search (MOSS). The essence of MOSS is the identification of models such that the ratio of
their posterior probability and the posterior probability of the best model is above a certain
threshold. MOSS requires an efficient computation of the marginal likelihood of models in
the search space. Such a computation is made possible through the use of the Diaconis-
Ylvisaker conjugate prior for ”baseline” log-linear parameters for hierarchical models. This
conjugate prior has been studied in detail in Massam et al. (2008). In an effort to make
this paper self contained, we reproduce the derivation of this conjugate prior and some of
its properties. Using this conjugate prior is indeed crucial because it allows us to produce
the mode of the high-dimensional joint posterior distribution of log-linear parameters using
the iterative proportional fitting (IPF) algorithm. This in turn allows us to compute the
Laplace approximation to the marginal likelihood of hierarchial log-linear models. Another
advantage of this conjugate prior is that, as we show in Section 3, it is the conjugate prior
to an exponential family, hence sampling from the posterior distribution of the log-linear
parameters can be done using the Bayesian iterative proportional fitting algorithm origi-
nally proposed by Piccioni (2000).

The structure of the paper is as follows. In Section 2 we introduce the examples used
throughout the paper. In Section 3 we give a Diaconis-Ylvisaker conjugate prior distribution
for the log-linear parameters together with some of its main features, while in Section 4 we
show how to compute the marginal likelihood of decomposable, graphical and hierarchical
models based on this prior. In Section 5 we present our new stochastic search method,
discuss its properties and apply it to two examples. In Section 6 we give the details of
the Bayesian iterative proportional fitting algorithm for polychotomous variables. Section
7 explains the underlying connection between regressions involving discrete variables and
log-linear models in our Bayesian framework. In Section 8 we adapt MOSS to a cluster-
ing technique for categorical data. The relationship between MCMC and MOSS is further
studied in Section 9. In Section 10 we give some concluding comments.

2. Motivating examples

We consider three examples where the data are presented under the form of a contingency
table. Later we use the stochastic search algorithms developed in this paper to identify
log-linear models that represent the most relevant interactions among the given variables.
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Table 1. Prognostic factors for coronary heart disease
(Edwards and Havranek, 1985).

b no yes
f e d c a no yes no yes

Negative < 3 < 140 no 44 40 112 67
yes 129 145 12 23

≥ 140 no 35 12 80 33
yes 109 67 7 9

≥ 3 < 140 no 23 32 70 66
yes 50 80 7 13

≥ 140 no 24 25 73 57
yes 51 63 7 16

Positive < 3 < 140 no 5 7 21 9
yes 9 17 1 4

≥ 140 no 4 3 11 8
yes 14 17 5 2

≥ 3 < 140 no 7 3 14 14
yes 9 16 2 3

≥ 140 no 4 0 13 11
yes 5 14 4 4

2.1. First example: the Czech autoworkers data

Table 1 contains a 26 table, originally analyzed by Edwards and Havranek (1985) that
cross-classifies binary risk factors denoted by a, b, c, d, e, f for coronary thrombosis from a
prospective epidemiological study of 1841 workers in a Czechoslovakian car factory. Here a
indicates whether or not the worker “smokes”, b corresponds to “strenuous mental work”,
c corresponds to “strenuous physical work”, d corresponds to “systolic blood pressure”,
e corresponds to “ratio of β and α lipoproteins” and f represents “family anamnesis of
coronary heart disease”. This table has been extensively analyzed in the literature – see,
among others, Madigan and Raftery (1994) or Dellaportas and Forster (1999).

2.2. Second example: household study in Rochdale

Our second example focuses on a cross-classification of eight binary variables relating
women’s economic activity and husband’s unemployment from a survey of households in
Rochdale – see Table 2. This study was conducted to elicit information about factors af-
fecting the pattern of economic life and their time dynamics– see Whittaker (1990) page
279. The variables are as follows: a, wife economically active (no,yes); b, age of wife > 38
(no,yes); c, husband unemployed (no,yes); d, child ≤ 4 (no,yes); e, wife’s education, high-
school+ (no,yes); f , husband’s education, high-school+ (no,yes); g, Asian origin (no,yes); h,
other household member working (no,yes). There are 665 individuals cross-classified in 256
cells, which means that the resulting table is sparse having 165 counts of zero, 217 counts
with at most three observations, but also a few large counts with 30 or more observations.
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Table 2. Women’s economic activity data from Whit-
taker (1990). The cells counts are written in lexicograph-
ical order with h varying fastest and a varying slowest.

5 0 2 1 5 1 0 0 4 1 0 0 6 0 2 0
8 0 11 0 13 0 1 0 3 0 1 0 26 0 1 0
5 0 2 0 0 0 0 0 0 0 0 0 0 0 1 0
4 0 8 2 6 0 1 0 1 0 1 0 0 0 1 0
17 10 1 1 16 7 0 0 0 2 0 0 10 6 0 0
1 0 2 0 0 0 0 0 1 0 0 0 0 0 0 0
4 7 3 1 1 1 2 0 1 0 0 0 1 0 0 0
0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0
18 3 2 0 23 4 0 0 22 2 0 0 57 3 0 0
5 1 0 0 11 0 1 0 11 0 0 0 29 2 1 1
3 0 0 0 4 0 0 0 1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
41 25 0 1 37 26 0 0 15 10 0 0 43 22 0 0
0 0 0 0 2 0 0 0 0 0 0 0 3 0 0 0
2 4 0 0 2 1 0 0 0 1 0 0 2 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2.3. Third example: the NLTCS data

Our last example consists of a 216 contingency table extracted from the “analytic” data file
for National Long-Term Care Survey created by the Center of Demographic Studies at Duke
University. Each dimension corresponds to a measure of disability defined by an activity
of daily living, and the table contains information cross-classifying individuals aged 65 and
above. The 16 dimensions of this contingency table correspond to six activities of daily living
(ADLs) and ten instrumental activities of daily living (IADLs). Specifically, the ADLs are
(1) eating, (2) getting in/out of bed, (3) getting around inside, (4) dressing, (5) bathing
and (6) getting to the bathroom or using a toilet. The IADLs are (7) doing heavy house
work, (8) doing light house work, (9) doing laundry, (10) cooking, (11) grocery shopping,
(12) getting about outside, (13) travelling, (14) managing money, (15) taking medicine and
(16) telephoning. For each ADL/IADL measure, subjects were classified as being either
disabled (level 1) or healthy (level 0) on that measure. For a detailed description of this
extract see Erosheva et al. (2008).

Dobra et al. (2003) analyze these data from a disclosure limitation perspective, while
Fienberg et al. (2008) develop latent class models that are very similar to the individual-
level latent mixture models from Erosheva et al. (2008). The need to consider alternatives
to log-linear models for the NLTCS data comes from the severe imbalance that exists among
the cell counts in this table. The largest cell count is 3853, but most of the cells (62384 or
95.19%) contain counts of zero, while 1729 (2.64%) contain counts of 1 and 1499 (0.76%)
contain counts of 2. The grand total of this table is 21574, which gives a mean number of
observations per cell of 0.33. This is indicative of an extremely high degree of sparsity that
is characteristic of high-dimensional categorical data. For comparison, the mean number of
observations per cell for the Czech Autoworkers data is 28.77, while for the Rochdale data
is 2.6.
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3. Conjugate priors for hierarchical log-linear models

In the Bayesian model selection framework, the choice of a prior distribution is made on
the basis of, first, availability and ability to reflect prior knowledge and, next, mathematical
convenience whenever possible. If the search is restricted to the class of discrete models
Markov with respect to an undirected decomposable graph G, it is convenient to use the
hyper Dirichlet as defined by Dawid and Lauritzen (1993). The hyper Dirichlet is a conju-
gate prior for the clique and separator marginal cell counts of the multinomial distribution
Markov with respect to G. Its hyper-parameters can be thought of as representing the
clique and separator marginal cell counts of a fictive prior table of counts and they give
enough flexibility for the representation of prior beliefs – for example, see Madigan and
Raftery (1994) or Madigan and York (1995).

When the class of possible models considered is the more general class of graphical
models Markov with respect to any undirected graph or the even wider class of hierarchical
models, the only priors available in the literature so far were normal priors for the log-linear
parameters. Knuiman and Speed (1988) use a multivariate normal prior for the log-linear
parameters. Dellaportas and Forster (1999) use a variant of this prior. King and Brooks
(2001) propose another multivariate normal prior for the log-linear parameters which has
the advantage that the corresponding prior distribution on the cell counts can also be de-
rived explicitly. Recently Massam et al. (2008) have expressed the multinomial distribution
in terms of random variables which are all possible marginal counts rather than the cell
counts. They also developed and studied the corresponding conjugate prior as defined by
Diaconis and Ylvisaker (1979) (henceforth abbreviated the DY conjugate prior) for the log-
linear parameters for the general class of hierarchical log-linear models.

In this section, for the sake of completeness, we show how to derive the DY conjugate
prior for log-linear parameters and some of its main properties.

3.1. Model parameterization
Let V be the set of criteria defining the contingency table. Denote the power set of V by E
and take E⊖ = E \{∅}. Let X = (Xγ , | γ ∈ V ) such that Xγ takes its values (or levels) in the
finite set Iγ of dimension |Iγ |. When a fixed number of individuals are classified according
to the |V | criteria, the data is collected in a contingency table (n) with cells indexed by
combination of levels for the |V | variables. We adopt the notation of Lauritzen (1996) and
denote a cell by i = (iγ , γ ∈ V ) ∈ I = ×γ∈V Iγ . The count in cell i is denoted n(i) and the
probability of an individual falling in cell i is denoted p(i). We write (n) = (n(i), i ∈ I) and
(p) = (p(i), i ∈ I). The grand total of (n) is N =

∑
i∈I n(i), while the grand total of (p)

is 1. For E ⊂ V , cells in the E-marginal table (nE) are denoted iE ∈ IE = ×γ∈EIγ . The
marginal counts in (nE) are denoted n(iE), iE ∈ IE . The counts (n) follow a multinomial
Mult(N ; (p)) distribution with density function proportional to

g((n), (p)) =
∏

i∈I

p(i)n(i). (1)

Let i∗ be a fixed but arbitrary cell that we take to be the cell indexed by the ”lowest levels”
of each factor. We denote these lowest levels by 0. Therefore i∗ can be thought to be the
cell i∗ = (0, 0, . . . , 0). We define the log-linear parameters to be

θ(iE) =
∑

F⊆E

(−1)|E\F | log p(iF , i∗F c), (2)
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which, by the Moebius inversion formula, is equivalent to

p(iE , i∗Ec) = exp
∑

F⊆E

θ(iF ). (3)

We denote θ(i∗) = θ(i∅) = θ∅ and p(i∗) = p∅. Remark that p∅ = exp θ∅. It is easy to see
that the following lemma holds.

Lemma 3.1. If for γ ∈ E, E ⊆ V we have iγ = i∗γ = 0, then θ(iE) = 0.

This result shows that our parameterization is the ”baseline” or ”corner” constraint parame-
terization that sets to zero the values of the E-interaction log-linear parameters when at least
one index in E is at level 0 – see Agresti (1990). Therefore, for each E ⊆ V , there are only
dD =

∏
γ∈E(|Iγ |−1) parameters and for any E ⊆ V , we define I∗

E = {iE | iγ 6= i∗γ , ∀γ ∈ E}.
We denote I∗ = I \ {i∗}. We use the notation F ⊆⊖ E to express that F is included in E
but is not equal to the empty set and, for iE ∈ I∗

E , E ∈ E , we write i(E) = (iE , i∗Ec). The
notation i(E) refers to the cell having components iγ 6= 0, γ ∈ E and iγ = 0, γ ∈ Ec and
should not be confused with the cell iE in the E-marginal table.

From (3) we obtain the following expression of the cell probabilities in terms of the
log-linear parameters

p∅ =
1

1 +
∑

E∈E⊖

∑
iE∈I∗

E
exp

( ∑
F⊆⊖E θ(iF )

) , (4)

and

p(i(E)) =
exp

∑
F⊆⊖E θ(iF )

1 +
∑

E∈E⊖

∑
iE∈I∗

E
exp

( ∑
F⊆⊖E θ(iF )

) , E ∈ E⊖. (5)

3.2. The multinomial for hierarchical log-linear models
Consider the hierarchical log-linear model m generated by the class A = {A1, . . . , Ak} of
subsets of V which, without loss of generality, can be assumed to be maximal with respect
to inclusion. We write D = {E ⊆⊖ Ai, i = 1, . . . , k} for the indexing set of all possible
interactions in the model m, including the main effects. If m is also graphical, D is the set
of all non-empty complete subsets of the corresponding independence graph.

It follows from the theory of log-linear models (for example, see Darroch and Speed
(1983)) and from Lemma 3.1 that, for E 6∈ D or for E ∈ D but iE 6∈ I∗

E

θ(iE) = 0 . (6)

Therefore, for iE ∈ I∗
E , (3) becomes

log p(iE , i∗Ec) = log p(i(E)) = θ∅ +
∑

F⊆E,F∈D,iF ∈I∗
F

θ(iF ) . (7)

and after the change of variable (n(i), i ∈ I∗) 7→ (n(iE), E ∈ E⊖), we obtain the following
expression for the multinomial distribution associated with m.
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Lemma 3.2. The probability function of the multinomial distribution (1) corresponding
to the model m can be represented as a natural exponential family with canonical statistics
the marginal cell counts y = (n(iD), iD ∈ I∗

D, D ∈ D), with density, with respect to the
counting measure, proportional to

f(y; θD, N) = exp





∑

D∈D

∑

iD∈I∗
D

θ(iD)n(iD) − N log
(
1 +

∑

E∈E⊖,iE∈I∗
E

exp
∑

F⊆DE

θ(iF )
)



 , (8)

The proof is straightforward and is provided in the Appendix. It is important to note that

θD = (θ(iD), D ∈ D, iD ∈ I∗
D), (9)

is the canonical parameter and

pD = (p(i(D)), D ∈ D, iD ∈ I∗
D), (10)

is the cell probability parameter of this multinomial distribution. The remaining cell prob-
abilities p(i(E)), E 6∈ D are not free and are a function of pD.

3.3. The Diaconis-Ylvisaker conjugate prior
The distribution of the marginal counts Y = y = (n(iD), iD ∈ I∗

D, D ∈ D) of a contingency
table with cell counts n(i), i ∈ I as given in (8) is a natural exponential family. It follows
immediately that the density of the conjugate prior for θD, with respect to the Lebesgue
measure is

πD(θD|s, α) = ID(s, α)−1h(θD; s, α), (11)

where ID(s, α) =
∫
IRdD h(θD; s, α)dθD is the normalizing constant of πD(θD|s, α), the di-

mension of the parameter space dD is
∑

D∈D

∏
γ∈D(|Iγ | − 1) and

h(θD; s, α) = exp





∑

D∈D

∑

iD∈I∗
D

θ(iD)s(iD) − α log
(
1 +

∑

E∈E⊖

∑

iE∈I∗
E

exp
∑

F⊆DE

θ(iF )
)



 . (12)

The corresponding hyper-parameters are:

(s, α) = (s(iD), D ∈ D, iD ∈ I∗
D, α), s ∈ IRdD , α ∈ IR. (13)

From Theorem 1 of Diaconis and Ylvisaker (1979) it follows that a necessary and sufficient
condition for the distribution (11) to be proper (i.e., ID(s, α) < +∞) is that s represent the
D-marginal counts s(iD) of a contingency table (s) that has strictly positive real numbers
s(i), i ∈ I as cell entries and that α is the grand total of (s), i.e. α =

∑
i∈I s(i). Remark

that s(i) are not necessarily integrers.
Massam et al. (2008) study this conjugate prior in detail and give ways to elicit infor-

mative priors through the choice of hyperparameters (s, α). A non-informative conjugate
prior is specified by taking all the cell entries s(i) to be equal to α

|I| , so that

s(iD) =
∑

j∈I,jD=iD

α

|I|
. (14)
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For the class of decomposable graphical models, this approach to constructing a conjugate
prior is equivalent to eliciting hyper-Dirichlet priors – see, for example, Dawid and Lauritzen
(1993) and Madigan and York (1997). While the hyper-Dirichlet priors are restricted to
decomposable log-linear models, the properties of the Diaconis-Ylvisaker conjugate priors
extend naturally to graphical and hierarchical log-linear models.

Given the prior πD(θD|s, α) and the multinomial likelihood expressed as a function of
the marginal cell counts y as in (8), the corresponding posterior distribution of θD is

πD(θD|s + y, α + N) = ID(s + y, α + N)−1h(θD; s + y, α + N).

Here s+y = (s(iD)+n(iD), iD ∈ I∗
D, D ∈ D). We remark that s(iD)+n(iD) represents the

(iD)-marginal count of the table (s + n) = (s(i) + n(i), i ∈ I) obtained by augmenting the
observed counts n(i) with the prior cell entries s(i). The grand total of this table is α + N .

3.4. Finding the mode of the DY conjugate prior
The mode of πD(θD|s, α) is given by

θ̂D = argmax
θD∈IRdD h(θD; s, α). (15)

As shown in the proof of Lemma 3.2, we have that h(θD; s, α) = g((s), (p)) where g is
given by (1). Therefore (15) is equivalent to finding the maximum likelihood estimate of
(p), the cell probabilities for the multinomial model m. Since all the cell entries in (s) are
strictly positive, g((s), (p)) has a unique mode (p̂) = (p̂(i), i ∈ I) that is identified using
the iterative proportional fitting (IPF) algorithm – see Bishop et al. (1975) and Lauritzen

(1996). We use (2) to obtain θ̂D = (θ̂(iD), iD ∈ I∗
D, D ∈ D) from (p̂).

The mode of the posterior distribution πD(θD|s+y, α+N) can be computed in a similar
manner. The posterior mode exists and is unique because (s + n) has only strictly positive
cell entries even if (n) has many counts of zero.

4. Computing marginal likelihoods

Let (n) be a contingency table and let (s, α) be hyper-parameters for the conjugate prior
πD(θ|s, α) associated with a hierarchical log-linear model m specified by the interactions D.
The marginal likelihood of m is the ratio of normalizing constants of the posterior and the
prior for θ:

Pr((n)|m) = ID(y + s, N + α)/ID(s, α).

Knowing how to efficiently evaluate the marginal likelihood of a certain model is key for
the stochastic search methods discussed in this paper. We show how to calculate the
normalizing constant ID(s, α) of the distribution πD(θ|s, α) in (11) for hierarchical, graphical
and decomposable log-linear models. The posterior normalizing constant ID(y + s, N + α)
is computed in a similar manner.

4.1. Hierarchical log-linear models
In the most general case when m is a hierarchical log-linear model, we use the Laplace
approximation (Tierney and Kadane, 1986) to estimate ID(s, α) =

∫
IRdD hs,α(θD)dθD where
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hs,α(θD) = h(θD; s, α). Let θ̂D be the mode of πD(θD|s, α) calculated using IPF as explained
in Section 3.4. The Laplace approximation to ID(s, α) is

̂ID(s, α) =

∫

IRdD

exp

{
log hs,α(θ̂D) +

1

2
(θD − θ̂D)tHs,α(θ̂D)(θD − θ̂D)

}
dθD,

≈ hs,α(θ̂D)

∫

IRdD

exp

{
1

2
(θD − θ̂D)tHs,α(θ̂D)(θD − θ̂D)

}
dθD,

≈ hs,α(θ̂D)(2π)
dD
2 det(Hs,α(θ̂D))−1/2,

where (θD − θ̂D) is a dD-dimensional column vector and

Hs,α(θ̂D) =
d2

dθ2
D





∑

D∈D

∑

iD∈I∗
D

θ(iD)s(iD) − α log
(
1 +

∑

E∈E⊖

∑

iE∈I∗
E

exp
∑

F⊆DE

θ(iF )
)





∣∣∣bθD

.

Let us compute the first derivative

dhs,α(θD)

dθ(iD)
= s(iD) − α

∑
G∈E⊖
G⊇D

∑
jG∈I∗

G
(jG)D=iD

exp
∑

F⊆DE θ(iF )

1 +
∑

E∈E⊖

∑
iE∈I∗

E
exp

∑
F⊆DE θ(iF )

,

= s(iD) − α
∑

G∈E⊖
G⊇D

∑

jG∈I∗
G

(jG)D=iD

p(jG).

Using the expression for dp(j(G))
dθ(lH) derived in Massam et al. (2008), we obtain

d2hs,α(θD)

dθ(iD)dθ(lH)
= −α

∑

G∈E⊖
G⊇D

∑

jG∈I∗
G

(jG)D=iD

dp(j(G))

dθ(lH)
,

= −α
∑

G∈E⊖
G⊇D

∑

jG∈I∗
G

(jG)D=iD

p(j(G))



δ(jG)H
(lH) −

∑

(jC )H=lH
C∈E⊖,jC∈I∗

C

p(j(C))



 .

where

δ(jG)H
(lH) =

{
1, if (jG)H = lH ,
0, otherwise.

For binary data, this yields

d2hs,α(θD)

dθ(D)dθ(H)
= −α

∑

G⊇D

p(G)



δ⊇H(G) −
∑

C⊇H

p(C)



 ,

where

δ⊇H(G) =

{
1, if G ⊇ H,
0, otherwise.
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The Hessian matrix Hs,α(θ̂D) is therefore the dD × dD matrix with (iD, lH) entries, D ∈
D, iD ∈ I∗

D, H ∈ D, lH ∈ I∗
H given by

−α
∑

G∈E⊖
G⊇D

∑

jG∈I∗
G

(jG)D=iD

p(j(G))



δ(jG)H
(lH) −

∑

(jC )H=lH
C∈E⊖,jC∈I∗

C

p(j(C))



 .

4.2. Graphical log-linear models
Let us assume that the log-linear model m is Markov with respect to an arbitrary undirected
graph G. We develop a more efficient way of approximating ID(s, α) based on the strong
hyper-Markov property (Dawid and Lauritzen, 1993) of the generalized hyper-Dirichlet
πD(θ|s, α).

Let P1, . . . , Pk a perfect sequence of the prime components of G and let S2, . . . , Sk be the

corresponding separators, where Sl =
(
∪l−1

j=1 Pj

)
∩ Pl, l = 2, . . . , k. Dobra and Fienberg

(2000) outlined fast algorithms for producing such a perfect sequence of prime components
together with their separators.

We use the notation DPl (l = 1, . . . , k) and DSl (l = 2, . . . , k) for the collection of
complete subsets of the induced sub-graphs GPl

and GSl
, respectively. More precisely,

DA for some A ⊂ V defines the graphical log-linear model for the A-marginal of (n) with
independence graph GA, the subgraph of G induced by A. The parameters of the Pl-
marginal and the Sl-marginal multinomials are θ(DPl) and θ(DSl), respectively. Massam
et al. (2008) prove that πD(θD|s, α) is strong hyper-Markov with respect to G and can be
written as a hyper-Markov combination of the marginal distribution of θ(DPl ) and θ(DSl)
as follows:

Theorem 4.1. If θD follows the generalized hyper Dirichlet πD(θD|s, α) , then the joint
distribution of the parameters θ(DPl) and θ(DSl) has density

πD(θD|s, α) =

∏k
l=2 IDSl (s

Sl , α)
∏k

l=1 IDPl (sPl , α)
·

∏k
l=1 exp{〈θ(DPl), s(DPl)〉 − α k(θ(DPl))}

∏k
l=2 exp{〈θ(DSl), s(DSl)〉 − α k(θ(DSl))}

,

where, for A = Sl, Rl, sA = (s(iD), D ∈ DA, iD ∈ I∗
D),

〈θ(DA), s(DA)〉 =
∑

D⊆
DAA

∑

iD∈I∗
D

θA(iD)s(iD),

k(θ(DA)) = log
(
1 +

∑

D⊆⊖A

∑

iD∈I∗
D

exp
∑

F⊆
DA D

θA(iF )
)

and θA(iF ) is defined as in (2) with p(iH , i∗Hc) replaced by pA(iH , i∗A\H).

Theorem 4.1 implies that the normalizing constant ID(s, α) of πD(θD|s, α) is equal to

ID(s, α) =

∏k
l=1 IDPl (s

Pl , α)
∏k

l=2 IDSl (sSl , α)
, (16)

i.e., it is the Markov ratio of normalizing constants for the lower-dimensional models DPl ,
l = 1, . . . , k and DSl , l = 2, . . . , k Markov with respect to the prime components and the
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separators of the graph G.
If A is a prime component of G, GA is might not be complete and we need to use the

Laplace approximation from Section 4.1 to calculate the normalizing constant IDA(sA, α).
On the other hand, if GA is complete, no approximation is needed because the normalizing
constant is that of a Dirichlet. More precisely, we have (Massam et al., 2008):

IDA(sA, α) =
Γ(αA

∅ )

Γ(α)

∏

D∈DA,iD∈I∗
D

Γ(αA(iD, i∗A\D)), (17)

where

αA(iD, i∗A\D) =
∑

A⊇F⊇D

∑

jF ∈I∗
F

(jF )D=iD

(−1)|F\D|s(jF ),

αA
∅ = α +

∑

D⊆A

(−1)|D|
∑

i∈I∗
D

s(iD).

If A is a separator of G the subgraph GA is always complete and we can use (17).
Although the IPF algorithm can efficiently determine the mode of πD(θD|s, α), it can still

be slow for large, sparse contingency tables since it has to take into consideration every single
cell. The divide-and-conquer method for estimating ID(s, α) based on the sequence of prime
components and separators of the independence graph is likely to be faster than the Laplace
approximation from Section 4.1 since it breaks the original table into smaller dimensional
marginals whose corresponding normalizing constants can be calculated in parallel.

4.3. Decomposable log-linear models
We further assume that the log-linear model m is Markov with respect to a decomposable
undirected graph G. A graph is decomposable if and only if each of its prime components
is complete (Dobra and Fienberg, 2000). Assume that G is decomposed in the complete
prime components P1, . . . , Pk and the sequence of separators S2, . . . , Sk. Then ID(s, α) is
calculated using formula (16) with each IDA(sA, α) for A ∈ {P1, . . . , Pk, S2, . . . , Sk} given
by (17). Therefore the normalizing constant for a decomposable log-linear model can be
calculated exactly since πD(θD|s, α) is hyper Dirichlet (Massam et al., 2008).

5. The mode oriented stochastic search (MOSS) algorithm

The Bayesian paradigm to model determination involves choosing models with high pos-
terior probability selected from a set M of competing models. Godsill (2001) provides an
excellent review of MCMC methods for exploring M such as the reversible jump sampler
of Green (1995) or the product space scheme of Carlin and Chib (1995). The number of
iterations required to achieve convergence can increase rapidly if the Markov chain is run
over the product space of M and the corresponding model parameters due to the high
dimensionality of the state space. For this reason there has been a recent development of
stochastic search methods in which the model parameters are integrated out. Examples of
such methods are the Markov chain Monte Carlo model composition (MC3) algorithm of
Madigan and York (1995) and the shotgun stochastic search (SSS) algorithm of Jones et al.
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(2005) and Hans et al. (2007). If the posterior probability of a model is readily available
from its marginal likelihood, up to the normalizing constant

[
∑

m∈M

Pr(m|(n))

]−1

, (18)

there is no substantive need to sample from the whole posterior distribution {Pr(m|(n)) :
m ∈ M}. A stochastic search method is designed to visit regions of high posterior prob-
ability and is not constrained to be a Markov chain on M. Jones et al. (2005) and Hans
et al. (2007) showed that SSS consistently finds better models faster than MC3 for linear
regression and Gaussian graphical models.

In this section we further exploit the principles behind SSS and propose a novel stochas-
tic search method which we call the mode oriented stochastic search (MOSS, henceforth).
MOSS focuses on determining the set of models

M(c) =

{
m ∈ M : Pr(m|(n)) ≥ c · max

m′∈M
Pr(m′|(n))

}
, (19)

where c ∈ (0, 1) and (n) is the data. We follow the Occam’s window idea of Madigan and
Raftery (1994) and discard models with a low posterior probability compared to the highest
probability model. Raftery et al. (1997) described an MCMC approach to identify models
in M(c) for linear regression.

In order to implement MOSS we need to compute the posterior probability Pr(m|(n)) ∝
Pr((n)|m)Pr(m) of any given model m ∈ M. In Section 4 we showed how to evaluate the
marginal likelihood Pr((n)|m) for decomposable, graphical and arbitrary log-linear models.
Throughout this paper we assume that the models in M are a priori equally likely, so that
Pr(m|(n)) ∝ Pr((n)|m). The determination of the normalizing constant (18) is not required
in our framework.

We also need a way to traverse the space M. To this end, we associate with each can-
didate model m ∈ M a neighborhood nbd(m) ⊂ M. Any two models in m, m′ ∈ M are
connected through at least a path m = m1, m2, . . . , mk = m′ such that mj ∈ nbd(mj−1) for
j = 2, . . . , k. The neighborhoods are defined with respect to the class of models considered:

(a)Hierarchical log-linear models. The neighborhood of a hierarchical model m con-
sists of those hierarchical models obtained from m by adding one of its dual generators
(i.e., minimal interaction terms not present in the model) or deleting one of its generators
(i.e., maximal interaction terms terms present in the model). For details see Edwards and
Havranek (1985) and Dellaportas and Forster (1999).

(b)Graphical log-linear models. The neighborhood of a graphical model m with inde-
pendence graph G is defined by the graphs obtained by adding or removing one edge from
G. The size of the neighborhoods is therefore constant across graphical models that involve
the same number of covariates.

(c)Decomposable log-linear models. Here the neighborhood of a model is obtained by
adding or deleting edges such that resulting graph is still decomposable – see Dawid and
Lauritzen (1993) or Tarantola (2004) for details. The size of the neighborhoods of two
decomposable graphs are not necessarily the same even if they differ by exactly one edge.

To implement MOSS, we need a current list S of models that is updated during the
search. We define the subset S(c) of S in the same way we defined M(c) based on M. In
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order to allow our search to escape local optima by occasionally moving to models with lower
posterior probability and exploring their neighborhoods, we define S(c′) with 0 < c′ ≤ c
so that S(c) ⊆ S(c′). We also need to choose the probability q of pruning the models in
S \ S(c). A model m is called explored if all its neighbors m′ ∈ nbd(m) have been visited.
A model in S can be explored or unexplored. MOSS proceeds as follows:

PROCEDURE MOSS(c,c′,q)

(a) Initialize the starting list of models S. For each model m ∈ S, calculate its
posterior probability Pr(m|(n)) up to the normalizing constant (18) and record it.
Mark m as unexplored.

(b) Let L be the set of unexplored models in S. Sample a model m ∈ L according to
probabilities proportional to Pr(m|(n)) normalized within L. Mark m as explored.

(c) For each m′ ∈ nbd(m), check if m′ is currently in S. If it is not, calculate its
posterior probability Pr(m′|(n)) up to the normalizing constant (18) and record it. If
m′ ∈ S(c′), include m′ in S and mark m′ as unexplored. If m′ is the model with the
highest posterior probability in S, eliminate from S the models in S \ S(c′).

(d) With probability q, eliminate from S the models in S \ S(c).

(e) If all the models in S are explored, eliminate from S the models in S \ S(c) and
STOP. Otherwise go back to step (b).

END.

We output S = S(c) and further use it to quantify the uncertainty related to our
model choice. Kass and Raftery (1995) suggest that choosing c in one of the intervals
(0, 0.01], (0.01, 0.1], (0.1, 1/3.2], (1/3.2, 1] is equivalent to, respectively, discarding models
with decisive, strong, substantial or “not worth more than a bare mention” evidence against
them with respect to mh. The number of models in M(c) increases as c decreases, thus
M(c) can be exhaustively enumerated for higher values of c. We note that producing the
entire set M is not practically possible for the examples we present in this paper.

The choice of the other two parameters of the MOSS algorithm is merely a way to balance
the computing time required by the procedure and the computing resources available with
its ultimate successful identification of M(c). If c′ is set to be too close to c, MOSS might
end before reaching mh due to its inability to escape local modes. On the other hand,
setting c′ to an extremely low value could mean that MOSS might take a long time to
end since the neighborhoods of too many models would have to be explored. In addition,
managing the list L might become cumbersome due to its size. Larger values of q decrease
the number of iterations until MOSS ends since models with lower posterior probability are
more often discarded from S. However, these models might be on paths between S and mh,
hence MOSS could end before identiying mh if these paths are broken.

In our experience finding suitable values for the parameters c′ and q has been far less
burdensome than calibrating the number of iterations needed by a Markov chain to find
the best models in M. We remark that there is a rich literature dedicated to assessing
the convergence of MCMC algorithms to their stationary distributions – see, for example,
Robert (1998). To the best of our knowledge, there is no rigorous approach for establishing
whether an MCMC algorithm has actually found models in M(c). We suggest running
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MOSS several times to make sure that the same final set of models has been reached. We
also recommend using values of c′ and q as small as possible in order to visit as many
models as possible. In fact, we view any MOSS(c, c′, q) procedure with c′ > 0 and q > 0
as an approximation to the MOSS(c, 0, 0) procedure. In the limiting case when c′ = q = 0,
MOSS always outputs M(c) as we prove below.

Proposition 5.1. MOSS(c,0,0) visits the entire set of candidate models M.

Proof. Let m0 be a model included in the starting list of models from step (a) of the
algorithm. Let m1, . . . , mk, mk+1 = m be a path that connects m0 with an arbitrary model
m ∈ M, i.e. mj ∈ nbd(mj−1) for j = 1, . . . , k +1. For l equal to, successively, 0, 1, 2, . . . , k,
let us assume that at the current iteration ml ∈ S, and ml+1 /∈ S. We want to show that
MOSS must include ml+1 in S before it ends. Since ml+1 ∈ nbd(ml), ml is still unexplored,
i.e. ml ∈ L. The probability that ml is selected at step (b) of the procedure is therefore:

Pr(ml|(n))/

[
∑

m′∈L

Pr(m′|(n))

]
. (20)

In the worst possible case, MOSS explores all the other models in L before ml but because c′

and q are both equal to 0, ml remains in L and MOSS cannot end before L becomes empty
– see step (e) of MOSS. Since, in this worst possible case, ml is then the only model in L,
the probability (20) is equal to 1. Hence MOSS selects ml and visits all its neighbors. This
implies that ml+1 is included in S, which in turn implies that MOSS reaches m starting
from m0.

This result shows that MOSS(c,0,0) ends only when the entire M has been explored, hence
S = M at step (e) of the last iteration of the procedure. MOSS(c,0,0) includes in S every
model it visits and never discards any of these models. This implies that MOSS(c,0,0)
explores every model in M exactly once. By comparison, the procedure MOSS(c,c,q),
q ∈ [0, 1], discards every model in S \ S(c) so that S = S(c) at all times. Therefore
MOSS(c,c,q) might not identify a model m ∈ M(c) if lower posterior probability models in
S \ S(c) are needed to connect the starting set of models from step (a) of MOSS to m.

It is important to remark that MOSS never discards a model in M(c) from the current
set of models S for any choices of c′ and q. This means that the models in M(c) are never
explored twice during a run of the procedure. On the other hand, MOSS might explore
models in M\M(c) more than once if c′ ∈ (0, c) and q > 0. MCMC algorithms can revisit
all the models in M indefinitely. In an MCMC search, the next model to be explored
is selected only from the neighbors of the model evaluated at the previous iteration. In
a MOSS search, this model is selected from the most promising models identified so far.
Models with higher posterior probability are more likely to be selected for exploration than
models with lower posterior probability. This feature allows MOSS to move faster than any
MCMC method towards regions of high posterior probability in M.

Proposition 5.2. MOSS(c,0,0) finds the highest posterior probability model mh ∈ M
more efficiently than any Markov chain algorithm W that moves around M by sampling
from the posterior distribution {Pr(m|(n)) : m ∈ M}.

Proof. Let us assume that MOSS and W have visited so far the same set of models S
in M. Let us further assume that the highest posterior probability model mh has not been
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visited yet. MOSS finds mh at the current iteration if it selects one of its neighbours for
being explored at step (b). This happens with probability




∑

m∈nbd(mh)∩S

Pr(m|(n))



 /

[
∑

m′∈L

Pr(m′|(n))

]
. (21)

Since mh has not been reached yet, none of the neighbors of mh has been explored and
hence nbd(mh) ∩ S = nbd(mh) ∩ L.

At the current iteration, the Markov chain W can be in the neighborhood of mh with
probability:

max

{
Pr(m|(n))/

[
∑

m′∈S

Pr(m′|(n))

]
: m ∈ nbd(mh) ∩ S

}
. (22)

We have L ⊂ S, therefore (21) is larger than (22). The probability that W finds mh at the
current iteration is actually much smaller than (22) since only one neighbor of the current
model is visited and this model might not be mh. Therefore MOSS is more likely to find
mh than W at all times.

We further study the efficiency of MOSS with respect to MCMC methods in Section 9. The
examples that follow illustrate that MOSS finds the highest posterior probability models
after a relatively small number of iterations.

5.1. Czech autoworkers data: revisited
We illustrate the MOSS algorithm by analyzing the Czech Autoworkers data from Table 1.
MOSS was started five times from randomly generated models with c = 0.1, c′ = 0.001 and
a pruning probability q = 0.1. We use a flat conjugate prior with equal fictive cell entries as
in (14). In order to assess the sensitivity of the models selected to our choice of priors, we
run instances of MOSS with α ∈ {1, 2, 3, 32, 64, 128}. This is equivalent to augmenting the
actual cell counts with 1/64, 1/32, 3/64, 0.5, 1 and 2, respectively. For each value of α, we
perform four separate searches as follows: (i) a search over decomposable log-linear models,
(ii) a search over graphical log-linear models with marginal likelihoods estimated by decom-
posing the independence graph in its prime components as described in Section 4.2, (iii) a
search over graphical log-linear models with marginal likelihoods estimated through a single
Laplace approximation, and (iv) a search over hierarchical log-linear models. The results
are shown in Tables 3 and 4. The four types of searches are labeled “Dec.”, “Graph./PM”,
“Graph./Lapl” and “Hierar.”, respectively.

We compare our results with the log-linear models selected by Dellaportas and Forster
(1999) who proposed a reversible jump Markov chain Monte Carlo with normal priors for
log-linear parameters and with the decomposable models selected by Madigan and Raftery
(1994) who employed a hyper-Dirichlet prior for cell probabilities. For smaller values of
α = 1, 2 or 3, our most probable decomposable model bc|ace|ade|f is also the best de-
composable model identified by both Dellaportas and Forster (1999) and Madigan and
Raftery (1994). Our most probable graphical model ac|bc|be|ade|f for α = 1, 2 or 3 in
the “Graph./Lapl” search is precisely the most probable model of Dellaportas and Forster
(1999) and is the second best model selected by Edwards and Havranek (1985). We remark
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that both estimation methods for the marginal likelihood of graphical models yield con-
sistent results. Our most probable hierarchical model ac|bc|ad|ae|ce|de|f for α = 1, 2 or 3
coincides with the model with the largest posterior probability identified by Dellaportas
and Forster (1999). The highest probable models selected by us and by Dellaportas and
Forster (1999) are extremely consistent for small choices of α.

Increasing α leads to the inclusion of higher order interaction terms in the corresponding
log-linear models. This implies that α effectively penalizes for an increased model complex-
ity. Sparser log-linear models are identified by decreasing α and these are precisely the
models we are looking for in higher-dimensional contingency tables having most counts
equal to zero. Such tables cannot support more complex interactions due to the small num-
ber of observed samples. For a fixed value of α, the highest probable log-linear models also
become sparser as we sequentially relax the structural constraints from decomposable to
graphical and hierarchical. Tables 3 and 4 show that the most probable graphical (hierar-
chical) models can be obtained by dropping some of the second order interaction terms in
the most probable decomposable (graphical) models.

Massam et al. (2008) present the highest probable log-linear models identified by em-
ploying MC3 instead of MOSS. For each value of α and each class of log-linear models,
they run four separate Markov chains from random starting models for 25, 000 iterations
with a burn-in of 5, 000 iterations. The top models identified by MC3 are precisely the top
models identified by MOSS. The posterior probabilities of each model determined in the
MC3 search are slightly smaller than the posterior model probabilities as reported by MOSS
since lower posterior probability models that fall outside M(0.1) are discarded. Eliminat-
ing these models has no consequence on the top models identified. However, the highest
posterior probability models are more likely to coincide with the median log-linear model
with respect to M(c). A median log-linear model contains those interaction terms having
a posterior inclusion probability greater than 0.5. Such models are hierarchical irrespective
of the class of log-linear models considered. The median log-linear models associated with
the entire set of candidate models M might contain spurious interaction terms that do not
appear in the highest probable models. This remark is even more important in the case of
hierarchical log-linear models whose individual posterior probability tend to be small be-
cause only one or at most two interactions terms differentiate models having close posterior
probabilities.

Table 5 gives the number of models visited by MOSS before its completion. In most cases
only a couple of hundred models need to be evaluated to identify the highest probability
models. The number of models visited by MC3 in each search was 30, 000. While it is ex-
tremely likely that a much smaller number of MCMC iterations were needed to get to the top
models, actually determining when convergence has been reached is traditionally a tedious
process. MOSS provides a simple way to avoid the need to evaluate convergence because
it has an implicit stopping rule. This is another reason why MOSS is more efficient than
MC3 and this efficiency becomes even more important in the analysis of higher-dimensional
datasets. Table 5 also shows that the number of models evaluated increases as α increases
since the highest posterior probability models contain more complex interaction terms.

A very interesting question is whether there exists evidence between the family history
of coronary heart disease (variable f) and the five risk factors a, b, c, d and e. Whittaker
(1990) page 263 chooses the graphical model abce|ade|bf that links f with b – strenuous
mental work. The most probable models identified by Dellaportas and Forster (1999),
Madigan and Raftery (1994) or Edwards and Havranek (1985) indicate the independence
of f from the other risk factors. Their findings are consistent with the models we identify
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Table 3. The models with the highest posterior probabilities identified by MOSS for the Czech
autoworkers data when α ∈ {1, 2, 3}. We give the models whose normalized posterior probabilities
are greater than 0.05. The median log-linear models are labeled ”med.”
Search α = 1 α = 2 α = 3

Dec. bc|ace|ade|f 0.370 bc|ace|ade|f 0.342 bc|ace|ade|f 0.425
bc|ace|de|f 0.155 bc|ace|de|f 0.231 bc|ace|ade|bf 0.211
bc|ad|ace|f 0.151 bc|ace|de|bf 0.125 bc|ace|de|f 0.145

ac|bc|be|de|f 0.089 bc|ad|ace|f 0.094 bc|ace|ade|ef 0.089
bc|ace|de|bf 0.076 bc|ace|de|bf 0.085 bc|ace|de|bf 0.072
ac|bc|ae|de|f 0.068 bc|ace|ade|ef 0.053 bc|ad|ace|f 0.059
bc|ace|de|f med. bc|ace|ade|f med. bc|ace|ade|f med.

Graph./PM ac|bc|ae|be|de|f 0.577 ac|bc|ae|be|de|f 0.482 ac|bc|ae|be|de|f 0.432
ac|bc|ad|ae|be|f 0.235 ac|bc|ad|ae|be|f 0.196 ac|bc|ae|be|de|bf 0.215
ac|bc|ae|be|de|bf 0.119 ac|bc|ae|be|de|bf 0.176 ac|bc|ad|ae|be|f 0.176
ac|bc|d|ae|be|f 0.070 ac|bc|ae|be|de|ef 0.074 ac|bc|ae|be|de|ef 0.090

ac|bc|ad|ae|be|bf 0.072 ac|bc|ad|ae|be|bf 0.087
ac|bc|ae|be|de|f med. ac|bc|ae|be|de|f med. ac|bc|ae|be|de|f med.

Graph./Lapl ac|bc|be|ade|f 0.391 ac|bc|be|ade|f 0.454 ac|bc|be|ade|f 0.485
ac|bc|ae|be|de|f 0.264 ac|bc|be|ade|bf 0.187 ac|bc|be|ade|bf 0.245
ac|bc|be|ade|bf 0.114 ac|bc|ae|be|de|f 0.154 ac|bc|ae|be|de|f 0.111
ac|bc|ad|ae|be|f 0.108 ac|bc|be|ade|ef 0.079 ac|bc|be|ade|ef 0.103
ac|bc|ae|be|de|bf 0.077 ac|bc|ae|be|de|bf 0.064 ac|bc|ae|be|de|bf 0.056

ac|bc|ad|ae|be|f 0.063
ac|bc|be|ade|f med. ac|bc|be|ade|f med. ac|bc|be|ade|f med.

Hierar. ac|bc|ad|ae|ce|de|f 0.392 ac|bc|ad|ae|ce|de|f 0.298 ac|bc|ad|ae|ce|de|f 0.256
ac|bc|ad|ae|be|de|f 0.246 ac|bc|ad|ae|be|de|f 0.187 ac|bc|ad|ae|be|de|f 0.161

ac|bc|ad|ae|be|ce|de|f 0.124 ac|bc|ad|ae|be|ce|de|f 0.133 ac|bc|ad|ae|be|ce|de|f 0.140
ac|bc|ad|ae|ce|de|bf 0.114 ac|bc|ad|ae|ce|de|bf 0.123 ac|bc|ad|ae|ce|de|bf 0.129
ac|bc|ad|ae|be|de|bf 0.071 ac|bc|ad|ae|be|de|bf 0.077 ac|bc|ad|ae|be|de|bf 0.081

ac|bc|ad|ae|be|ce|de|bf 0.055 ac|bc|ad|ae|be|ce|de|bf 0.071
ac|bc|ad|ae|ce|de|ef 0.052 ac|bc|ad|ae|ce|de|ef 0.055

ac|bc|ad|ae|ce|de|f med. ac|bc|ad|ae|be|ce|de|f med. ac|bc|ad|ae|be|ce|de|f med.



18 A. Dobra and H. Massam

Table 4. The models with the highest posterior probabilities identified by MOSS for the Czech Autowork-
ers data when α ∈ {32, 64, 128}. We give the models whose normalized posterior probabilities are
greater than 0.05.
Search α = 32 α = 64 α = 128

Dec. bc|ace|ade|bf 0.169 ace|bce|ade|bcf 0.134 ace|bce|ade|bcf 0.359
ace|bce|ade|bf 0.123 ace|bce|ade|bf 0.118 ace|ade|bcf |cef 0.133
bc|ace|ade|f 0.077 ace|ade|bcf 0.081 abc|ace|ade|bcf 0.105

abc|ace|ade|bf 0.075 bc|ace|ade|bf 0.071 abc|abe|ade|bcf 0.104
bc|ace|ade|ef 0.071 abc|ace|ade|acf 0.062 ace|ade|acf 0.089
abc|abe|ade|bf 0.057 abc|ace|ade|bf 0.055 abce|ade|acf 0.060
ace|bce|ade|f 0.056 abc|abe|ade|acf 0.052 ace|ade|bcef 0.051
ace|bce|ade|ef 0.051 ace|ade|abcf 0.050
bc|ace|ade|bf med. bc|be|ace|ade|bf med. be|ace|ade|bcf med.

Graph./PM bc|ace|ade|bf 0.093 ace|bce|ade|bcf 0.091 ace|bce|ade|bcf 0.280
ac|bc|ade|bde|bf 0.069 ace|bce|ade|bf 0.080 ace|bce|ade|bde|bcf 0.138
ace|bce|ade|bf 0.068 ace|ade|acf 0.055 ace|ade|bcf |cef 0.104

bc|acd|be|ade|bf 0.058 abc|ace|ade|bcf 0.082
bc|bd|ace|ade|bf 0.053 abc|abe|ade|bcf 0.081

ace|ade|bcf 0.070
bc|be|ace|ade|bf med. bc|be|ace|ade|bf med. be|ace|ade|bcf med.

Graph./Lapl ac|bc|be|ade|bf 0.303 ac|bc|be|ade|bf 0.162 ac|be|ade|bcf 0.161
ac|bc|be|ade|f 0.167 ac|be|ade|bcf 0.128 ace|bce|ade|bcf 0.114
ac|bc|be|ade|ef 0.127 ac|bc|be|ade|af |bf 0.068 ac|be|ade|bcf |df 0.109

ac|bc|be|ade|af |bf 0.091 ac|bc|be|ade|bf |df 0.068 ace|bce|ade|bcf |df 0.077
ac|bc|be|ade|bf |df 0.084 ac|bc|be|ade|ef 0.068 ac|ade|bcf |bef 0.069

ac|be|ade|acf 0.059 ac|bc|be|ade|f 0.057 ac|ade|bcf |bef |def 0.064
ac|be|ade|bcf |df 0.054

ac|bc|be|ade|bf med. ac|bc|be|ade|bf med. ac|be|ade|bcf med.

Hierar. ac|bc|ad|ae|be|ce|de|bf 0.071 ac|bc|ad|ae|be|ce|de|bf 0.023 ac|ad|ae|be|ce|de|bcf |ef 0.012
ac|bc|ad|ae|be|ce|de|bf med. ac|bc|ad|ae|be|ce|de|bf med. ac|ad|ae|be|ce|de|bcf |df |ef med.

Table 5. The minimum, median and maximum number of models evaluated by MOSS for the Czech
Autoworkers data for non-informative priors induced by α ∈ {1, 2, 3, 32, 64, 128} across five search
replicates.

α

Search 1 2 3 32 64 128

Dec. 85|177|397 179|216|454 117|236|340 256|349|416 374|381|415 201|255|294
Graph./PM 95|167|223 267|343|442 191|201|394 718|1029|1266 621|1048|1139 259|452|721
Graph./Lapl 217|311|637 209|237|478 220|315|439 195|365|788 652|743|806 420|621|859

Hierar. 636|752|834 701|744|1045 548|811|877 1446|1544|1767 3417|3954|4072 6296|6372|6808
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Table 6. Posterior inclusion probabilities for the edge bf

for various choice of priors and classes of log-linear mod-
els as determined by MOSS for the Czech autoworkers
data.

α

Search 1 2 3 32 64 128

Dec. 0.076 0.244 0.283 0.522 0.715 1
Graph./PM 0.119 0.248 0.302 0.533 0.697 1
Graph./Lapl 0.190 0.251 0.301 0.616 0.785 1

Hierar. 0.186 0.263 0.290 0.749 0.912 1

for smaller values of α. However, as we increase the grand total α in the prior fictive table
we employ, a direct link between b and f appears in our highest probable models. Table 6
shows the posterior inclusion probability of the first order interaction between b and f for
various choices of α and structural model constraints. Table 6 seems to confirm Whittaker’s
findings as the posterior probability of the edge bf increases from 0.076 to almost 1. This
edge does not appear in sparser models corresponding with smaller values of α because
there are stronger associations among the five risk factors than between a particular risk
factor and the family history of coronary heart disease. The first-order interaction bf enters
the top models only if the penalty for model complexity is decreased.

5.2. Household study in Rochdale: revisited
Next we use MOSS to analyze the Rochdale data presented in Table 2. Whittaker (1990)
pointed out that the severe imbalance in the cell counts of this sparse eight-way table is
often found in social survey analysis. Whittaker’s analysis was based on the assumption
that models with higher-order interactions cannot be fit to this data due to the zero counts
in the marginals that in turn translate into the non-existence of MLEs and into difficulties
in correctly calculating the number of degrees of freedom. Whittaker starts with the all
two-way interaction model and sequentially eliminates edges based on their deviances. All
the higher-order interactions were discarded up front. Whittaker chooses the model

fg|ef |dh|dg|cg|cf |ce|bh|be|bd|ag|ae|ad|ac. (23)

To the extent of the authors’ knowledge, there was no other analysis of this dataset follow-
ing Whittaker’s work. We present a new analysis of this data that confirms Whittaker’s
intuition but also reveals that there actually exists a three-way interaction bdh that is sup-
ported by the data. This interaction indicates a strong connection between wife’s age, her
child’s age and the presence of another working member in the family.

We penalize for model complexity by choosing α = 1 in the specification of the conjugate
prior. This means that we augment the actual data with small fictive counts of 2−8. We
run five replicates of MOSS within the space of decomposable, graphical and hierarchical
log-linear models. The search over decomposable models was done with c = 0.1, c′ = 10−5

and q = 0.001. We increased the pruning probability to 0.1 for the graphical and hierar-
chical searches due to the larger number of models that had to be kept in the list S. The
search over decomposable models was started from random starting models. The graphical
models search was started from the top decomposable models identified by MOSS, while the
hierarchical models search was started from the top graphical models identified. Replac-
ing the random starting models with a set of models that are known to give a fairly good
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representation of the data leads to a more efficient stochastic search that visits a smaller
number of models. We have already seen for the Czech autoworkers data that there is a
strong relationship among the highest posterior probability models associated with nested
classes of log-linear models.

Table 7 shows the top decomposable, graphical and hierarchical log-linear models iden-
tified by MOSS. Remark the similarity of the models obtained by estimating the marginal
likelihoods of graphical models by a single Laplace approximation or by decomposing the
independence graph in its prime components. The hierarchical log-linear model with the
highest posterior probability differs by only one interaction term bdh from the model pro-
posed by Whittaker.

Table 7 also gives the number of models evaluated by MOSS before its completion.
About 5600 models had to be examined in the decomposable case. Evaluating the marginal
likelihood of a decomposable model is extremely efficient since explicit formulas exist in
this case, hence this relatively modest number of visited models gives a good indication of
the performance of MOSS. Since numerical approximations to marginal likelihoods have to
be used in the graphical and hierarchical case, it is imperative to attempt to reduce the
number of models that are visited due to the increased computing time needed to evaluate
each model. Fewer graphical and hierarchical models were evaluated by MOSS because the
search was started from models that were not far from the highest probable models in each
class. MOSS determined the top graphical models out of 228 possible graphs by visiting
less than one thousand models. MOSS seems to work very well for hierarchical log-linear
models by identifying the top models out of 5.6×1022 possible hierarchical log-linear models
(Dellaportas and Forster, 1999) by visiting less than 2, 000 models.

6. The Bayesian iterative proportional fitting algorithm

Consider a hierarchical log-linear model with an irreducible generating class A = {Ai, i =
1, . . . , k} and with constraints D defined as the set of subsets of Ai, i = 1, . . . , k. Finding the
mode of the posterior distribution πD(θD|s+y, α+N) or the mode of the prior distribution
πD(θD|s, α) can be done in a computational efficient manner using the IPF algorithm – see
Section 3.4. Although this solves the problem of fitting log-linear models, it is important
to know how to sample from these constrained distributions in order to quantify estimation
uncertainty and to produce Bayesian estimates of other quantities of interest that are non-
linear transformations of θD.

To this end, Gelman et al. (2004) and Schafer (1997) proposed the Bayesian iterative
proportional fitting algorithm for simulating random draws from the constrained Dirichlet
posterior for a given log-linear model. The Bayesian IPF is extremely similar to the classical
IPF algorithm, except that sequentially updating the parameters θ based on each fixed
marginal is replaced with an adjustment based on a marginal table with the same structure
whose entries have been drawn from Gamma distributions with certain shape parameters.
Piccioni (2000) exploits the theory of regular exponential families with cuts to formally
construct a Gibbs sampler algorithm for sampling from their natural conjugate densities.
Asci and Piccioni (2007) give an extension to improper target distributions.

In this section we generalize to arbitrary contingency tables the version of Bayesian
IPF for binary data described in Asci and Piccioni (2007). The algorithm starts with a

random set of θ
(0)
D = (θ(0)(iD), iD ∈ I∗

D, D ∈ D) that can be generated, for example, from

independent standard normal distributions. The remaining elements of θ(0) ∈ IR|E| = IR2|V |
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Table 7. The models with the highest posterior probabilities identified by MOSS
for the Rochdale data. We report the models whose normalized posterior proba-
bilities are greater than 0.05. We also give the minimum, median and maximum
number of models visited by MOSS before completion across the five search
replicates.

Search Top models Models evaluated

Dec. efg|beg|bdh|bdg|adg|acg 0.436 1123|5608|6240
efg|ceg|bdh|adg|acg 0.369

efg|ceg|beg|bdh|bdg|acg 0.069
efg|bh|beg|bdg|adg|acg 0.068
efg|ceg|bh|bd|adg|acg 0.058

efg|beg|bdh|bdg|adg|acg med.

Graph./PM fg|ef |be|bdh|bdg|adg|acg|ace 0.462 240|369|608
fg|ef |bh|be|bd|adg|acg|ace 0.337
fg|ef |bh|be|bdg|adg|acg|ace 0.072
fg|ef |ce|be|bdh|bdg|adg|acg 0.067
fg|ef |ce|bh|be|bd|adg|acg 0.061

fg|ef |be|bdh|bdg|adg|acg|ace med.

Graph./Lapl fg|ef |be|bdh|adg|acg|ace 0.507 290|515|926
fg|ef |ce|be|bdh|adg|acg 0.184
efg|ceg|be|bdh|adg|acg 0.112

fh|fg|ef |be|bdh|adg|acg|ace 0.087
fg|ef |bg|be|bdh|ad|acg|ace 0.056

fg|ef |be|bdh|bdg|adg|acg|ace 0.055
fg|ef |be|bdh|adg|acg|ace med.

Hierar. fg|ef |dg|cg|cf |ce|be|bdh|ag|ae|ad|ac 0.076 1391|1417|1617
fg|ef |dg|cg|ce|be|bdh|ag|ae|ad|ac 0.069
fg|ef |dg|cf |ce|be|bdh|ae|ad|acg 0.057

fg|ef |dg|ce|be|bdh|ae|ad|acg 0.052
fg|ef |dg|cg|cf |ce|be|bdh|ag|ae|ad|ac med.
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are set to zero, i.e. θ(0)(iE) = 0 for E 6∈ D or E ∈ D, iE 6∈ I∗
E . A cycle of Bayesian

IPF sequentially goes through each sufficient configuration Al, l = 1, . . . , k and updates the

current sampled values θ(old) to a new set of sampled values θ(new) in the following way:

(a) Generate independent gamma variables for the marginal expected cell counts
τAl(iD, i∗Al\D), D ⊆ Al, iD ∈ I∗

D ∪ (i∗)Al
according to the law

gAl
(τAl(iD, i∗Al\D)) ∝ τAl(iD, i∗Al\D)αAl (iD ,i∗Al\D)−1 exp(−ατAl(iD, i∗Al\D)),

where for D 6= ∅,

αAl(iD, i∗Al\D) =
∑

Al⊇F⊇D

∑

jF ∈I∗
F

(jF )D=iD

(−1)|F\D|s(jF ),

and

αAl(i∗Al
) = αAl

∅ = α +
∑

D⊆Al

(−1)|D|
∑

iD∈I∗
D

s(iD).

In other words, generate independent gamma variables with shape parameter αAl(iD, i∗Al\D)

and scale parameter 1/α.

(b) Normalize the table obtained in (a) to obtain the table of Al-marginal probabilities
with entries

pAl(iD, i∗Al\D) =
τAl(iD, i∗Al\D)

∑
F⊆Al,iF ∈I∗

F
∪(i∗)Al

τAl(iF , i∗Al\F )
, D ⊆ Al, iD ∈ I∗

D ∪ (i∗)Al
.

(c) Compute the ”marginal” θAl(iE), E ⊆ Al, iE ∈ I∗
E using the formula

θAl(iE) = log
∏

F⊆E

pAl(iF , i∗Al\F )(−1)|E\F |

. (24)

(d) • For E ∈ D, E ⊆ Al, iE ∈ I∗
E , set θ(new)(iE) to be equal to

θAl(iE) +
∑

F⊆E

(−1)|E\F |−1 log
(
1 +

∑

L⊆⊖Ac
l

exp
∑

H⊆F,G⊆⊖L

jG∈I∗
G

θ(old)(iH , jG)
)
.

• For E ∈ D, E 6⊆ Al, set θ(new)(iE) = θ(old)(iE).
• For E 6∈ D or E ∈ D, iE 6∈ I∗

E , set θ(new)(iE) = 0.

Example. We illustrate the use of Bayesian IPF to generate 5, 000 random draws from
the conjugate posterior and the conjugate prior distribution associated with the log-linear
model ac|bc|ad|ae|ce|de|f – see Figure 1. From Table 3 we learned that this was the top
hierarchical log-linear model for the Czech autoworkers data for α = 1. There are twelve
independent parameters: θ(a), θ(b), θ(c), θ(ac), θ(bc), θ(d), θ(ad), θ(e), θ(ae), θ(ce), θ(de)
and θ(f). This order was used to number the θ’s from 1 to 12 in Figure 1. Estimates of the
posterior and prior density of each parameter are plotted in blue, while the dotted black
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Fig. 1. Posterior and prior density estimates (solid blue lines) for the twelve free parameters of the
log-linear model ac|bc|ad|ae|ce|de|f for the Czech Autoworkers data. The dotted black lines give
the sample normal approximation, while the red lines represent the mode of these distributions as
estimated using IPF.
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lines represent the corresponding sample normal approximations. The IPF algorithm was
used to identify the mode of the joint posterior and its conjugate prior. The mode estimate
of each parameter is represented with a red line. Remark that the posterior densities of
the θ’s are very close to their normal approximations and that IPF correctly identifies the
posterior modes. The priors are always centered at zero with a high variance, hence they
are proper and non-informative as we would expect. They also tend to have slightly heavier
tails than their normal approximations.

7. Regressions induced by log-linear models

We consider the problem of studying how a subset of response variables XA, A ⊂ V are
influenced by the remaining covariates XAc where Ac = V \ A. In particular, we are
interested in transforming a log-linear model into the regression of XA on XAc . Since a log-
linear model gives a parsimonious representation of the joint distribution of all variables in
a contingency table, the dependencies that might exist among the explanatory variables are
taken into account in the implied conditional [XA|XAc ]. Moreover, it is likely that the log-
linear interaction terms involving one or more response variables Xv, v ∈ A, might contain
only a subset of the explanatory variables XE , E ⊂ Ac. This means that a variable selection
step is performed and the full regression [XA|XAc ] reduces to [XA|XE ]. Similar ideas have
been previously discussed by Agresti (1990) who describes the relationship between log-
linear and logit models.

We want to compute

log p(iA|iAc) = log p(iA, iAc) − log
∑

jA∈IA

p(jA, iAc) . (25)

We assume that (iA, iAc) 6= i∗. There exists B ⊂ V such that (iA, iAc) = (iB, i∗Bc) such
that iB ∈ I∗

B. With the usual notation (iB, i∗Bc) = i(B), we have

p(iA, iAc) = p(i(B)) =
exp

∑
F⊆DB θ(iF )

1 +
∑

E∈E⊖

∑
iE∈I∗

E
exp

∑
F⊆DE θ(iF )

. (26)

Similarly, each (jA, iAc) = i(HjA
) for some HjA

⊆ V such that HjA
∩ Ac = B ∩ Ac and

p(jA, iAc) = p(i(HjA
)) =

exp
∑

F⊆DHjA
θ((jA, iAc)F )

1 +
∑

E∈E⊖

∑
iE∈I∗

E
exp

∑
F⊆DE θ(iF )

. (27)

From (25), (26) and (27), we obtain

log p(iA|iAc) =
∑

F⊆DB

θ(iF ) − log
∑

jA∈IA

exp
∑

F⊆DHjA

θ((jA, iAc)F ), (28)

that is the desired formula for the regression of XA on XAc . In the case of binary data,
(28) becomes

log p(iA|iAc) =
∑

F⊆DB

θ(F ) − log
∑

G⊆A

exp
∑

F⊆DG∪(Ac∩B)

θ(F ). (29)
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In the case where there is only one response variable Xγ , i.e., A = {γ} for some γ ∈ V ,
instead of considering (29), we may consider the odds ratio which will then be equal to

log

(
p(iγ |iB\γ , i∗Bc)

p((i∗)γ |iB\γ , i∗Bc)

)
=

∑
D⊆DB θ(D)

∑
D⊆DB\{γ} θ(D)

= θγ +
∑

(γ∪D)⊆DB

θγ∪D; . (30)

Example. We exemplify these results with the problem of predicting wife’s economic
activity a in the Rochdale data. Whittaker (1990) page 285 considers the log-linear model
ac|ad|ae|ag induced by the generators of (23) that involve a. Using maximum likelihood
estimation of log-linear parameters in this model, he obtains the following estimates of the
logistic regression of a on c, d, e and g:

log
p(a = 1|c, d, e, g)

p(a = 0|c, d, e, g)
= const. − 1.33c− 1.32d + 0.69e− 2.17g. (31)

The corresponding standard errors of the regression coefficients are 0.3, 0.21, 0.2, 0.47. The
generators involving a in the top hierarchical model identified by MOSS (see Table 7)

fg|ef |dg|cg|cf |ce|be|bdh|ag|ae|ad|ac (32)

are again ac, ad, ae and ag which, according to (30), yield the regression equation

log
p(a = 1|c, d, e, g)

p(a = 0|c, d, e, g)
= θ(a) + θ(ac) + θ(ad) + θ(ae) + θ(ag). (33)

Using Bayesian IPF to produce 10, 000 draws from the posterior probability associated with
the log-linear model (32), we estimate the regression equation (33) to be:

log
p(a = 1|c, d, e, g)

p(a = 0|c, d, e, g)
= const. − 1.30c− 1.26d + 0.70e− 2.31g,

with standard errors 0.29, 0.2, 0.19 and 0.47, respectively. While these coefficient estimates
are very close to Whittaker’s estimates in (31), there is a major difference between how
these estimates were obtained. We used the information in the full eight-way table to fit
the log-linear model (32), while Whittaker used the five-way marginal associated with a, c,
d, e and g to fit the log-linear model ac|ad|ae|ag.

8. Clustering discrete data with MOSS

MOSS seems to scale well and facilitate an efficient determination of hierarchical log-linear
models for dichotomous eight-way tables. Unfortunately the number of candidate models
increases way too fast with the inclusion of only a few additional categorical variables to
allow MOSS to perform equally well for higher-dimensional tables such as the NLTCS data
presented in Section 2.3. Model selection is further compounded by the extremely small
number of observed samples that makes most of the cells to contain zero counts. Recall
that 95.19% of the counts in the NLTCS data were zero. To address these issues we develop
a clustering algorithm that breaks the full table into marginals involving non-overlapping
subsets of variables. These smaller dimensional tables are less sparse and can be analyzed
separately. Hu and Johnson (2007) present an MCMC approach to identify log-linear models



26 A. Dobra and H. Massam

Table 8. The cluster log-linear models with the highest posterior probabilities identified by MOSS for the
Czech autoworkers data. The non-informative conjugate priors are induced by α ∈ {1, 2, 3, 32, 64, 128}.
We report the models whose normalized posterior probabilities are greater than 0.05.

α = 1 α = 2 α = 3 α = 32 α = 64 α = 128

abc|de|f 0.458 abc|de|f 0.519 abc|de|f 0.530 abce|d|f 0.738 abce|d|f 0.654 abce|d|f 0.378
bc|ade|f 0.368 bc|ade|f 0.419 bc|ade|f 0.429 abce|df 0.256 abce|df 0.345 abce|df 0.320
bc|d|ae|f 0.107 abcef |d 0.254
abc|d|e|f 0.055
abc|de|f med. abc|de|f med. abc|de|f med. abce|d|f med. abce|d|f med. abce|d|f med.

having non-overlapping minimal sufficient statistics.
We are interested in log-linear models m whose generators {P1, P2, . . . , Pk}, k ≥ 1,

represent a clustering of the variables in V, i.e. P1 ∪ . . .∪Pk = V and Pi ∩Pk = ∅ for i 6= j.
Such a log-linear model is clearly decomposable. Its cliques are precisely P1, P2, . . . , Pk,
while its separators are k − 1 empty sets. The marginal likelihood of m is easily calculated
with the formulas from Section 4.3. We call m a cluster log-linear model. MOSS can be
used to perform a stochastic search over the class of cluster log-linear models. We follow
the ideas in Hu and Johnson (2007) and define the neighborhood of the model m to be
generated through two types of moves:

(a) Split move: Replace a cluster Pj with two sub-clusters P
(1)
j and P

(2)
j such that P

(1)
j ∪

P
(2)
j = Pj and P

(1)
j ∩ P

(2)
j = ∅.

(b) Merge move: Replace two clusters Pi and Pj , i 6= j, with the cluster Pi ∪ Pj .

To avoid clusters with too many variables, we allow a merge move only if the size of the
resulting cluster is below a certain cutoff q′. Visiting a cluster model m involves producing
all the neighbors of m, that is, splitting each cluster in every possible way and attempting
to merge any two clusters.

Examples. We use MOSS to cluster the variables in the three datasets from Section 2.
We run five instances of MOSS starting from random clusters with c = 0.333, c′ = 0.001
and a pruning probability of q = 0.1.

Table 8 gives the top cluster models for the Czech Autoworkers data. We allowed the
clusters to have a maximum size q′ = 6. Most of these clusters also appear as interaction
terms in the highest probable decomposable, graphical or log-linear models from Tables 3
and 4. For the Rochdale data we took q′ = 8 and determined the cluster model acg|bdh|ef
with a posterior probability of almost 1. All the terms in this model also appear in the top
models from Table 7.

Next we proceed to the sixteen-dimensional NLTCS data. A choice of q′ = 16 leads to
a model with only one cluster containing all sixteen variables. For computational reasons,
we set q′ = 8 and identify the cluster model

1, 5, 11, 12, 13, 14, 15, 16|2, 3, 4, 6, 7, 8, 9, 10

with a normalized posterior probability equal to one. This clustering seems to make sense
since the first group contains activities that relate a person to the outside world, while
the second group contains activities that take place exclusively around the house. The
“outdoor” cluster contains two ADLs and six IADLs, while the “indoor” cluster is more
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balanced having four ADLs and four IADLs. The two marginal tables associated with
these clusters are less sparse since their mean number of observations per cell is 84.3. The
“outdoor” marginal has 213 non-zero counts with a largest count of 6860 in the (0, 0, . . . , 0)
cell. The “indoor” marginal has 182 non-zero counts with a largest count of 5268 in the
(0, 0, . . . , 0) cell. This means that log-linear models are likely to be suitable for representing
associations in these two eight-way tables.

We run MOSS from five starting points with c = 0.333, c′ = 0.001 and a pruning
probability of 0.01. The top hierarchical model for the “outdoor” marginal has a normalized
posterior probability of 0.754:

13, 15, 16|13, 14|12, 16|12, 13|11, 15, 16|11, 13, 15|11, 12, 14, 15|

5, 14, 16|5, 14, 15|5, 12, 14|5, 11, 15|1, 16|1, 13|1, 12|1, 5. (34)

The top hierarchical model for the “indoor” marginal has a normalized posterior probability
of 0.358 and coincides with the median hierarchical model in M(0.333):

8, 9, 10|7, 8, 10|7, 8, 9|6, 9|6, 7, 10|4, 7|4, 6, 8, 9|

3, 7|3, 4, 8|3, 4, 6|2, 9|2, 8|2, 7|2, 4, 10|2, 3. (35)

Many of the interactions present in these two log-linear models seem to be reasonable. For
example, the two nested IADLs 7 and 8 (doing heavy and light housework) belong to the
same cluster and appear together in two second-order terms in (35). The term “nested”
refers to the fact that an individual who is incapable of doing light housework is also inca-
pable of doing heavy houwsework.

We assess the fit of these models by drawing 10000 samples from the posterior distribu-
tions of their parameters using Bayesian IPF. The p-value for model (34) is 0 based on a
χ2 value of 587.57 on 212 degrees of freedom, while the p-value for model (35) is 0 based
on a χ2 value of 414.62 on 212 degrees of freedom.

By joining the interactions in (34) and (35) we obtain a log-linear model for the complete
216 table. However, this log-linear model does not have a good fit. The posterior mean of
the cell probability (0, 0, . . . , 0) in the “outdoor” marginal is 0.242. The corresponding value
in the “indoor” marginal is 0.313. This leads to a fitted value for the (0, 0, . . . , 0) cell of the
NLTCS data of 1631.76 that is not close to the observed count of 3853.

Breaking the initial table in several non-overlapping marginals might offer some insight
about the underlying associations that exist, but some other relevant associations could be
lost when the clusters are created. This is precisely why the unrestricted cluster search
returned the complete 216 table.

9. MCMC vs. MOSS

We would like to gain further insight about the relative efficiency of MOSS with respect to
MCMC stochastic search algorithms by studying how much of the total posterior probability
is actually covered by the subset M(c), c ∈ (0, 1) of models with the highest posterior
probability. That is, we want to determine the ratio:




∑

m∈M(c)

Pr(m|(n))



 /

[
∑

m′∈M

Pr(m′|(n))

]
. (36)
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Fig. 2. Ratios between the posterior probability of the models in M(0.1) and the total probability
mass over the hierarchical models of 219 marginal tables derived from the Rochdale data. The ratios
(y-axis) are grouped by the dimension of the marginals (x-axis).

In order to evaluate this ratio we use the MC3 algorithm of Madigan and York (1995) which
can be briefly described as follows. This algorithm constructs an irreducible Markov chain
mt, t = 1, 2, . . . with state space M and equilibrium distribution {Pr(m|(n)) : m ∈ M}. If
the chain is in state mt at time t, a candidate model m′ is drawn from a uniform distribution
on nbd(mt). The chain moves in state m′ at time t + 1, i.e. mt+1 = m′ with probability

min

{
1,

Pr((n)|mt+1)/#nbd(mt+1)

Pr((n)|mt)/#nbd(mt)

}
, (37)

where #nbd(m) denotes the number of neighbors of m. Otherwise the chain does not move,
i.e. we set mt+1 = mt. In (37) it was assumed that all models are apriori equally likely. The
number of times the chain hits a model in M(c) divided by the total number of iterations
represents an estimate of (36).

We used MOSS to determine the top hierarchical log-linear models in M(c) with c = 0.1
for 219 marginal tables derived from the Rochdale data: 56 three-way tables, 70 four-way
tables, 56 five-way tables, 28 six-way tables, 8 seven-way tables and one eight-way table.
For each of these marginal tables, we run MC3 from four different starting points for 10, 000
iterations with a burn-in of 2, 500 iterations. Figure 2 shows the resulting estimates of (36)
grouped by the dimension of the tables analyzed. For three-way tables the coverage of
probability space seems to be around 0.5, but it decreases to about 0.4 for six-way tables,
0.3 for seven-way tables and to approximately 0.2 for the full eight-way table. It seems
appropriate to infer that the ratio (36) goes to zero as the dimension of the contingency
tables increases while the sample size remains fixed.

MCMC algorithms identify models with high posterior probability by sampling from the
posterior distribution over the space of candidate models. If there are many models with low
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posterior probability with respect to the model with the highest posterior probability, and
their total posterior probability dominates the space then most of the MCMC iterations are
spent visiting such models. This makes any Markov chain likely to be extremely inefficient
for high-dimensional datasets because sampling from {Pr(m|(n)) : m ∈ M} becomes a
different question than the efficient determination of M(c). MOSS is designed to solve the
latter problem, while MCMC algorithms solve the former problem.

10. Conclusions

In this paper we showed that the combination of MOSS and the conjugate prior for log-
linear parameters of Massam et al. (2008) is a powerful technique to analyze multi-way
contingency tables. Since we are able to integrate out the model parameters and compute
marginal likelihoods, we avoid using MCMC techniques. We attempted to use MC3 to find
hierarchical log-linear models for the Rochdale data, but we did not manage to obtain results
worth mentioning. MOSS is able to reach relevant log-linear models fast by evaluating a
reduced set of models. Since models in each neighborhood can be evaluated in parallel,
MOSS can be made considerably faster in a parallel implementation that takes advantage
of cluster computing.

Penalizing for increased model complexity is immediate in this framework and is key in
the analysis of sparse categorical data. The Bayesian IPF plays a crucial role in fitting log-
linear models as well as the corresponding regressions based on these priors. The clustering
technique we proposed is able to quickly identify the most relevant groups of variables and
scales to sparse datasets involving a larger number of discrete variables.

C++ code implementing various versions of MOSS for discrete data has been developed
by the authors and can be downloaded from

http://www.stat.washington.edu/adobra/software/mosstables/

The current implementation of MOSS is written only for dichotomous contingency tables.
The methods presented in this paper hold for arbitrary multi-way cross-classifications and
our code can therefore be extended to polychotomous data in a straighforward albeit time
consumming manner.
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11. Appendix

Proof of Lemma 3.2
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We have

∏

i∈I

p(i)n(i) = p
n(i∗)
∅

∏

E∈E⊖

∏

iE∈I∗
E

p(i(E))n(i(E)),

= p
n(i∗)
∅

∏

E∈E⊖

∏

iE∈I∗
E

(
exp

∑

F⊆E

θ(iF )
)n(i(E))

,

=
∏

E∈E⊖

∏

iE∈I∗
E

exp
(
n(i(E))

∑

F⊆⊖E

θ(iF )
)

p
n(i∗)+

P
E∈E⊖

P
iE∈I∗

E
n(i(E))

∅ ,

= pN
∅ exp

∑

E∈E⊖

∑

iE∈I∗
E

(
n(i(E))

∑

F⊆⊖E

θ(iF )
)
,

= pN
∅ exp

∑

E∈E⊖

∑

iE∈I∗
E

n(iE)θ(iE),

= exp{
∑

E∈E⊖

∑

iE∈I∗
E

θ(iE)n(iE) + Nθ∅}, .

where the second equality is due to (3), the third to the fact that exp θ∅ = p∅, the fourth
to the identification of the exponent of p∅ as the total count N , the fifth to the definition
of marginal counts n(iE) and the sixth to p∅ = exp θ∅. Finally (8) follows from (4), (6) and
Lemma 3.1.


