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GÉRARD LETAC
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ABSTRACT. In this paper, we compute moments of a Wishart matrix variate U of the form

E(Q(U)) where Q(u) is a polynomial with respect to the entries of the symmetric matrix u, invariant

in the sense that it depends only on the eigenvalues of the matrix u. This gives us in particular the

expected value of any power of the Wishart matrix U or its inverse U-1. For our proofs, we do not

rely on traditional combinatorial methods but rather on the interplay between two bases of the

space of invariant polynomials in U. This means that all moments can be obtained through the

multiplication of three matrices with known entries. Practically, the moments are obtained by

computer with an extremely simple Maple program.

Key words: eigenvalues of random matrices, Schur polynomials, Wishart distribution, zonal

polynomials

1. Introduction

The Wishart distribution is the distribution of the sample variance–covariance matrix of a

multivariate Gaussian model. As such, it is fundamental to inference in multivariate statistics.

In particular its moments and the moments of its inverse are needed to approximate the

distribution of many test statistics. For example, Krishnamoorty & Mathew (1999) use the

first and second moments of the Wishart and the inverse Wishart in approximation methods

for computing tolerance factors for a multivariate Gaussian population. The inverse Wishart

distribution has also been used in discriminant analysis (see Das Gupta, 1968; Haff, 1982), in

obtaining moments of the maximum likelihood estimator on a growth curve model (von

Rosen, 1988, 1991, 1997) and in spectral estimation (see Shaman, 1980). In Bayesian statistics,

the inverse Wishart distribution is used as a prior distribution for the covariance parameter

when sampling from a multivariate Gaussian distribution (see Anderson, 1984, section 8.7.7,

or Dawid, 1981). Some distributions related to the Wishart have been introduced in the more

recent theory of graphical Gaussian models. The moments of these distributions are needed in

evaluating the strength of the correlation between variables. They can be deduced quite easily

from the moments of the Wishart distribution. It is therefore necessary to be able to compute

the moments of the Wishart and inverse Wishart distribution.

Our aim in this paper is to give the explicit expression of certain moments of the Wishart

matrix U and its inverse U )1 and show that they can be obtained in an automatic way with a

simple Maple program. We obtain in particular E(U±k) for k ¼ 1, 2,. . .. For instance, for a

real Wishart matrix U with scale parameter R and shape parameter p, we obtain

EðU3Þ ¼ nRðtr RÞ2 þ ðn2 þ nÞðRtr ðR2Þ þ 2R2tr RÞ þ ðn3 þ 3n2 þ 4nÞR3:

The moments we consider are also given for Hermitian Wishart matrices with complex

entries. In the last 40 years, there has been a steady interest in the extension of the Gaussian

distribution from Rr to Cr (see Goodman, 1963). To these Gaussian distribution on Cr are
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naturally associated complex Wishart distributions on the cone of non-negative complex

Hermitian (r, r) matrices. While the extension to complex numbers was originally motivated

by the study of complex stationary Gaussian processes in signal processing (see for instance

Maiwald & Kraus, 2000), a new motivation for the complex Wishart is found in the study of

random matrices (Haagerup & Thorbjørnsen, 1998) used in physics, in free probability and

even in number theory, where explicit formulae for the moments of complex Wishart are

extremely useful (see Graczyk et al., 2003). Going from the complex to the quaternionic case

as done by Andersson (1975) and Hanlon et al. (1992) is a natural and relatively easy step.

However, as we are not aware of applications of the Wishart distribution in the quaternionic

case, we work here with real or complex matrices only, although all our results are valid in the

quaternionic case as well, with minor modifications (see Letac & Massam, 2003) for a more

general version of the present paper).

Our first result, theorem 1 gives an explicit formula for any moment of order k for the

Wishart distribution, that is, it gives an explicit expression for the expected value

Eð
Qk

i¼1 trðUhiÞÞ of a product of traces tr(Uhi) where U is Wishart and hi are given Hermitian

matrices. But looking at formula (15) in theorem 1 quickly reveals the importance of certain

polynomials r(i), indexed by the set Ik of k-tuples (i) ¼ (i1,. . ., ik) of integers i1,. . ., ik such that

i1 + 2i2 + � � � + kik ¼ k. This set of polynomials r(i) is known to form a basis of the space

PðV ÞKk of homogeneous K-invariant polynomials of order k where V is the space of r · r

Hermitian matrices and K is the group of transformations on the cone of positive definite

Hermitian matrices, of the form s ´ usu* for u orthogonal or unitary and u* the conjugate

transpose of u. There is another basis of this same space which is also very interesting, that is

the basis of spherical polynomials U(m) indexed by the set Mk,r of sequences

(m) ¼ (m1, m2,. . ., mr) of integers m1 ‡ m2 ‡ � � � ‡ mr with m1 + m2 + � � � + mr ¼ k. These

polynomials have been known to statisticians for a long time since, in the real case, they

correspond to the zonal polynomials. Their very special property is that if U is Wishart

distributed with scale parameter r, then the expected value of U(m)(U) is a scalar multiple of

U(m)(r) and similarly the expected value of U(m)(U
)1) is a scalar multiple of U(m)(r

)1). Then if

the expected values of the U(m)(U) and U(m)(U
)1) are known, to compute any invariant mo-

ment, that is, the expected value of any element of P ðV ÞKk , we need only know the expression of

that element in the basis of spherical polynomials. The expression of any r(i) in the basis of

spherical polynomials can be obtained with a simple Maple program developed by Stembridge

(1998) and, therefore, we can compute using this Maple program any invariant moment of the

Wishart distribution and its inverse. We recall the properties of these two selected bases of

PðV ÞKk in section 4, where we also show that the computation of any invariant moment for U

or U)1 is in fact reduced to the multiplication of three known matrices. The explicit expression

for these moments is given in (24) and (29). These formulae are repeated and refined in

theorem 2 which is our second important result. In section 5, through a process, which we call

‘lifting’, we show how, with the help of the invariant moments, we can also compute the

expected value of U±k and (U)1)±k and other interesting expressions. The computation of all

the moments we have studied can be implemented on the computer. In section 6, we give the

algorithm and some examples. The appendix contains a number of proofs.

2. Notation and definitions

2.1. The Wishart distribution

In order to treat the real and complex Wishart distributions simultaneously, we introduce

the parameter d, which takes the value d ¼ 1 in the real case and d ¼ 2 in the complex case.
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We write Kd, d ¼ 1, 2, respectively, for K1 ¼ R and K2 ¼ C. A square matrix x of order r

with entries in Kd is said to be Hermitian if it is equal to its conjugate transpose (that is its

transpose in the real case). Throughout this paper, the order r of the matrix x is fixed and

we denote by V the space of real Hermitian matrices of order r on Kd. The parameters r, d

and f ¼ d/2 are sometimes called, respectively, the rank, the Peirce constant and the half

Peirce constant of V. We denote by X the open cone of positive definite elements of V, by �XX
the closed cone of the non-negative ones and by e the unit element of V. Let Od(r) be the

group of (r, r) matrices u with entries in R, C such that uu* ¼ e, where u* denotes the

conjugate transpose of u. For d ¼ 1, 2, Od(r) is, respectively, the orthogonal and unitary

group.

For the complex case, the Wishart distributions on V has been considered by Goodman

(1963) and Carter (1975) and for the quaternionic case by Andersson (1975). A more general

framework for these Wishart distributions would be the framework of Jordan algebras, as

introduced by Jensen (1988), and subsequently studied by Casalis & Letac (1994) and Massam

(1994). We will not use the framework of Jordan algebras in the present paper but rather

confine ourselves to the real and complex matrix cases. We will however, in some circum-

stances, use Faraut & Koranyi (1994) (henceforth abbreviated as FK) written in the frame-

work of Jordan algebras, as a reference because we find that it is, on some points, the most

accessible reference even in the matrix case.

Let us now recall the definition of the Wishart distribution on V. Using the half Peirce

constant f ¼ d/2, the following subset of R+,

K ¼ ff ; 2f ; . . . ; ðr � 1Þf g [ ððr � 1Þf ;1Þ ð1Þ

is called the Gyndikin set. This set has the following remarkable property: for p positive, there

exists a positive measure lp on �XX such that for all h 2 )X, we haveZ
�XX
ehh;uilpðduÞ ¼ ðdetð�hÞÞ�p ð2Þ

if and only if p is in K (see Casalis & Letac, 1994, or Massam, 1994). If p > (r ) 1)f, then lp is
absolutely continuous with respect to the Lebesgue measure of V and is equal to

lpðdxÞ ¼
1

CXðpÞ
ðdet xÞp�ð1þf ðr�1ÞÞ

1XðxÞdx; ð3Þ

where the constant CX(p) is defined by

CXðpÞ ¼ pdrðr�1Þ=4
Yr

j¼1
Cðp � f ðj � 1ÞÞ ð4Þ

and the Lebesgue measure dx on V is chosen such that (3) is a probability (note that our choice

of the Lebesgue measure is different from FK (p. 123) and agrees with the choice of

statisticians and probabilists).

If p ¼ f, 2f,. . ., (r ) 1)f, the measure lp is singular and is concentrated on the boundary

@X ¼ �XXnX of the cone. The measure lf can easily be described using the image of the

Lebesgue measure on Rrd (suitably identified with Cr for d ¼ 2) by the map z ´ zz* from Rrd

to �XX. For any integer n ¼ 2,. . ., r ) 1 the measure lnf is obtained as the nth power of con-

volution of lf.
The natural exponential family on V generated by lp is the set of probabilities on �XX of the

form (det ()h))p exp Æh, xælp(dx) where h 2 )X. A more convenient parametrization of this

family of distributions is given by the map from )X to X defined by
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h 7! rðhÞ ¼ ð�hÞ�1: ð5Þ

For r 2 X and p 2 K, the distribution

cp;rðduÞ ¼
1

ðdetrÞp e�hr�1;uilpðduÞ ð6Þ

is called the Wishart distribution with shape parameter p and scale parameter r. When d ¼ 1,

p ¼ n/2 where n is a positive integer, and when R ¼ 2r then cp,r is the classical Wishart

distribution Wr(n, R). As 2p is not necessarily an integer in (6), our definition of the Wishart

distribution is slightly more general than the usual one.

The next proposition shows that the expectation operator for the Wishart distribution cp,r
and denoted Tp(Æ) has certain properties we shall need later. If n ¼ r + fr(r ) 1) is the

dimension of the real space V, let u1,. . ., un be the components of u 2 V in a given basis. We

recall that a mapping Q : V ´ R is said to be a homogeneous polynomial of degree s if the

mapping (u1,. . ., un) ´ Q(u) is a homogeneous polynomial of degree s. It is trivial to check

that this property does not depend upon the chosen basis. The proof of the following pro-

position is deferred to the appendix.

Proposition 1

Let a be an invertible (r, r) matrix with entries in Kd. Consider the automorphism g of X defined

by g(x) ¼ axa*. If U follows the Wishart distribution cp,r then the distribution of g(U) is cp,g(r).
Furthermore, if Q : V fi R is any function such that

TpðQÞðrÞ ¼def
Z

V
QðuÞcp;rðduÞ ð7Þ

exists, then we have for all g as above

TpðQ � gÞðrÞ ¼ TpðQÞðgðrÞÞ: ð8Þ

Finally, if Q is a homogeneous polynomial with degree k, then Tp(Q) has the same property.

2.2. The moments of the Wishart distribution

For the sake of simplicity, let us describe the problem of the computation of the moments in

the space of symmetric matrices with real entries. We will give a precise definition of the

moments we consider in sections 3 and 4 below. It is well known that for p > (r ) 1)/2,

E(U) ¼ pr (see Muirhead, 1982, or Eaton, 1983) and that for p > (r + 1)/2,

EðU�1Þ ¼ r�1=½p � 1
2 ðr þ 1Þ�. This gives us the scalar moments E(Uij) and E((U)1)ij).

Given a positive integer k, if for l ¼ 1,. . ., k, (il, jl) is in {1,. . ., r}2, we call the scalar

EðUi1;j1 . . .Uik ;jk Þ ð9Þ

a moment of U of order k. Similarly, if p > 1
2 ðr � 1Þ þ k we can see that U)1 ¼ ((U)1)ij)1£i,j£r

exists and so does

EððU�1Þi1j1 � � � ðU
�1Þik jk Þ: ð10Þ

The expected value (10) is called a moment of U)1. We note that (9) and (10) can be expressed

in a coordinate-free way if we consider the inner product on V defined by Æx, yæ ¼ tr(xy).

Indeed, if h1,. . ., hk are in V, by choosing hl appropriately, we have ÆU, hlæ ¼ Uil jl
and the

scalars
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EðhU ; h1i � � � hU ; hkiÞ ð11Þ

and

EðhU�1; h1i � � � hU�1; hkiÞ ð12Þ

are moments of type (9) and (10), respectively. Any moment of the Wishart or its inverse can

be expressed under these forms and therefore, to compute (9) and (10), it is sufficient to find an

expression for these quantities in function of the parameters p and r and of the indices

(il, jl), l ¼ 1,. . ., k. We give the explicit expression of (11) in theorem 1 below.

Let us note here that the calculation of moments is simplest in the complex case, and the real

and quaternionic cases are in a sense dual of each other (for further details see Graczyk et al.,

2003 for the complex case and Hanlon et al., 1992 for the real and quaternionic cases).

3. Expectation of product of traces

As mentioned in section 2, expected values of the type (9) can be computed from expected

values of the type (11) by choosing the hi’s appropriately. In this section, we compute the

expected value (11) when the Wishart random variable U belongs to the cone �XX of Hermitian

non-negative matrices for d ¼ 1, 2. From now on h1,. . ., hk are fixed given elements of the

space V of Hermitian (r, r) matrices. For a positive integer k, Sk denotes the group of per-

mutations of {1,. . ., k}. Any permutation p in Sk can be written in a unique way as a product

of cycles. If c ¼ (j1,. . ., jl) is one of these cycles, then, for x1, x2,. . ., xk in V, we use the

notation tr(Pj 2 cxj) to mean

trðxj1xj2 � � � xjlÞ:

The set of cycles of p is denoted C(p). We define

rpðx1; . . . ; xkÞ ¼
Y

c2CðpÞ
tr
Y
j2c

xj

 !
ð13Þ

and for u and hj in V, we use the notation rp(u)(h1,. . ., hk) for

rpðuÞðh1; . . . ; hkÞ ¼
Y

c2CðpÞ
tr
Y
j2c

uhj

 !
: ð14Þ

To prove the theorem in this section, we state without proof the following differentiation result.

Proposition 2

Let X be the cone of positive definite matrices. For h 2 X define r(h) ¼ (�h)�1. Then

1. The differential of h ´ r(h) ¼ ()h))1 is h ´ rhr.
2. For d ¼ 1, 2 the differential of h ´ log det r(h) is h ´ tr(rh).

Theorem 1

Let U be a random variable on V following theWishart cp,r distribution. Then for d ¼ 1, 2we have

EðhU ; h1i � � � hU ; hkiÞ ¼ EðtrðUh1Þ � � � trðUhkÞÞ ¼
X
p2Sk

pmðpÞrpðrÞðh1; . . . ; hkÞ; ð15Þ

where m(p) is the number of cycles of p.
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Remark. The reader is referred to theorem 5 below for a simpler form of (15) when

h1 ¼ � � � ¼ hk.

Proof. We will prove (15) by induction on k. Clearly, (15) is true for k ¼ 1. Let us assume

that it is true for k and show it also holds for k + 1. From the expression of the

Laplace transform of the measure lp, i.e. LpðhÞ ¼
R
�XX ehh;uilpðduÞ ¼ ðdetð�hÞÞ�p ¼

expðp log detðrðhÞÞÞ where r(h) ¼ ()h))1, we see immediately that the kth differential of Lp

for d ¼ 1, 2 is

LðkÞ
p ðhÞðh1; . . . ; hkÞ ¼ LpðhÞEðtrðUh1Þ . . . trðUhkÞÞ: ð16Þ

Let us now take the differential of these expressions in the direction hk+1 and use our in-

duction assumption. The right-hand side of (16) is then the sum of products of functions of h.
The differential of Lp(h) is pÆr, hæLp(h). Using proposition 2 we find that the differentials of

h ´ tr(rh1r� � �rhk) in the direction hk+1 is, for d ¼ 1, 2,

Xk

j¼1
trðrh1r � � � rhj�1rhkþ1rhj � � � rhkÞ;

from which we deduce the differential of h ´ tr(j 2 c(rhj)). From this we obtain the

differentials of rp(rh1,. . ., rhk). Combining these differentials we can see that (15) holds true

for k+1.

The complete extension of theorem 1 to Jordan algebras (for hi’s not necessarily equal) is

treated in Letac & Massam (2001).

4. Expectation of invariant polynomials in a Wishart matrix

We see in (15) that the polynomials rp play an important role. Moreover when the arguments

of rp are equal, rp(u,. . ., u), which, according to the notation given in (14), we will write

rp(u)(e,. . ., e) or even more simply rp(u), has a special property of invariance. We will use this

property of invariance to compute a wide class of moments of the Wishart distribution, the

invariant moments and other moments derived from the invariant ones. We first describe what

we mean by invariance and then study two sets of bases for the space of invariant homo-

geneous polynomials of degree k.

4.1. Invariance

For u 2 Od(r) the endomorphism ku of V defined by ku(x) ¼ uxu* maps X onto itself and

satisfies ku(e) ¼ e. One can easily prove that any endomorphism k of V with these two

properties has the form k ¼ ku with u 2 Od(r). Note that ku is an orthogonal transformation

of the Euclidean space V. We define K as the group of isomorphisms of V of the form ku for

some u 2 Od(r) (the correspondence is almost one-to-one, as the kernel of the group

homorphism u ´ ku is ±e). By definition, two elements x and y of V belong to the same orbit

of K if y ¼ k(x) for some k 2 K and this is so if and only if the Hermitian matrices x and y

have the same eigenvalues.

Let us now define the real invariant homogeneous polynomials of degree s on V. Consider a

homogeneous polynomial Q, as defined in section 2.1. We will say that Q is K-invariant (or

simply that Q is invariant) if, for all k 2 K and all x 2 V, we have Q(k(x)) ¼ Q(x). Thus Q is

invariant if and only if for all x 2 V, Q(x) depends only on the eigenvalues of x. We denote by

PðV ÞKs the set of real invariant homogeneous polynomials of degree s on V.
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In the sequel, we will actually always talk about invariant homogeneous polynomials of

degree k where k is therefore an integer and not an element of K and we will thus use the

notation PðV ÞKk for the set of real invariant homogeneous polynomials of degree k on V. This

should lead to no confusion at all as the meaning of k will always be clear from the context.

4.2. The basis of the r(i)’s

Let us now introduce the polynomials r(i). In section 3, we have considered the polynomials

u 7! rpðuÞðh1; . . . ; hkÞ

for p in the symmetric group Sk and for fixed h1,. . ., hk in V. When all the hi’s are equal to the

unit element h ¼ e 2 V, rp(u)(e,. . ., e) becomes a polynomial Q(u) ¼ r(i)(u) such that

Q 2 PðV ÞKk ; which we are going to describe now.

Let Ik be the set of all sequences (i) ¼ (i1,. . ., ik) of non-negative integers such that

i1 + 2i2 + � � � + kik ¼ k. If p 2 Sk, let ij be the number of cycles of p of length j. The

corresponding element (i) of Ik is called the portrait of p. If p and p¢ have the same portrait, we
clearly have rp(u)(h,. . ., h) ¼ rp¢(u)(h,. . ., h) and so, for a given (i) 2 Ik, it makes sense to

consider

rðiÞðhÞ ¼
Yk
j¼1

ðtr hjÞij : ð17Þ

For instance r(0,0,. . .,0,1)(h) ¼ tr(hk) and r(k)(h) ¼ (tr h)k where from now on r(k)(h) is a short

notation for r(k,0,. . .,0)(h).

For the sake of simplicity and consistently with the notation r(k)(h) just adopted, in the

sequel we write r(i) ¼ rði1 ;...;inÞ, where in is the last non-zero integer of the sequence (i). The r(i)’s
are important since, as we are going to see in proposition 4, they form a basis of P ðV ÞKk . To
show this, we need proposition 3, which tells us that the invariant polynomials in u 2 V are in

1–1 correspondence with the symmetric homogeneous polynomials in the eigenvalues of u.

Proposition 3

Let PðVÞKk be the space of K-invariant homogeneous polynomials Q : V fi R of degree k and

let Sk,r be the space of symmetric homogeneous polynomials S : Rr
´ R of degree k. Then, for

all Q 2 P ðVÞKk , there exists a unique SQ in Sk,r such that for all u 2 V, Q(u) ¼ SQ(k1,. . ., kr)
where (k1,. . ., kr) are the eigenvalues of u. Furthermore Q ´ SQ is an isomorphism between the

two spaces.

The proof, which is fairly easy, is omitted. It relies on the fact that any u 2 V can be written

in an appropriate basis as a diagonal matrix with elements its eigenvalues ki, i ¼ 1,. . ., r and

conversely any symmetric homogeneous polynomial in ki, i ¼ 1,. . ., r can be written in terms

of the elementary symmetric functions

e1ðk1; . . . ; krÞ ¼ k1 þ � � � þ kr; e2ðk1; . . . ; krÞ ¼
X

1�i�j�r

kikj: ð18Þ

Proposition 4

Let Ik,r be the set of (i) ¼ (i1,. . ., ik) in Ik such that ij ¼ 0 when j > r, r being the rank of V. Then

(r(i))(i) 2 Ik,r
is a basis of PðVÞKk .
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Proof. To show this result, we need to show that the (r(i))(i) 2 Ik,r
are linearly independent and

that the cardinality of this set is equal to the dimension of P ðV ÞKk . If u 2 V has eigenvalues

(k1,. . ., kr) then

rðiÞðuÞ ¼
Yr

i¼1
ðkj

1 þ � � � þ kj
rÞ

ij

and therefore from the previous proposition, showing that the (r(i))(i) 2 Ik,r
are linearly

independent is equivalent to showing that the

pðiÞðk1; . . . ; krÞ ¼ SrðiÞ ðk1; . . . ; krÞ ¼
Yr

j¼1
ðkj

1 þ � � � þ kj
rÞ

ij ð19Þ

are linearly independent for (i) 2 Ik,r. This is a classical result and can be found, for example,

in Macdonald (1995, p. 24).

Let us now show that the cardinality of Ik,r is the dimension of Sk,r, that is, from the

previous proposition, the dimension of P ðV ÞKk . Any element of Sk,r is a polynomial with

respect to the elementary symmetric functions as given in (18). Since monomials of e1,. . ., er in

Sk,r must be of the form ei1
1 ei2

2 � � � eir
r with i1 + � � � + rir ¼ k, it is clear that the cardinality of

Ik,r is the dimension of Sk,r and therefore of P ðV ÞKk .

4.3. The basis of spherical polynomials

We now introduce another basis of P ðV ÞKk . Let Mk,r be the set of sequences of integers

m ¼ (m1, m2, . . ., mr) such that m1 ‡ m2 ‡ � � � mr ‡ 0 and m1 + � � � + mr ¼ k. The sets Mk,r

and Ik,r as defined in proposition 4 have the same cardinality, since the correspondence

m ´ (i) given by ij ¼ #{l; ml ¼ j} is clearly one-to-one. It is well known (see Macdonald,

1995, Chapter VI, especially sections 1 and 10) that for a given number a > 0, one can define a

set of polynomials ðJ ðaÞ
m ;m 2 Mk:rÞ in k1,. . ., kr, called the Jack polynomials of order m that

form an orthogonal basis of Sk,r for a special scalar product depending on a (see Stanley, 1989,

pp. 76–79; Macdonald, 1995, VI formulae (1.4) and (4.7); Lassalle, 1992, pp. 224 and 225 for a

more compact presentation). For a ¼ 2, the J ðaÞ
m ’s are the zonal polynomials, well known to

statisticians; for a ¼ 1 they are the Schur polynomials (see James, 1964; Takemura, 1984).

Coming back to V with rank r and Peirce constant d ¼ 2f ¼ 1, 2 and following the notation

of proposition 3 we define on V the spherical polynomial u ´ Um(u) of order m 2 Mk,r by

J ð1=f Þ
m ¼ SUm

;

that is, J ð1=f Þ
m is the polynomial in Sk,r corresponding to the symmetric polynomial

Um in PðV ÞKk . (To see that they coincide with the spherical polynomials as defined in FK,

p. 228, see FK, p. 239 and the references given therein.)

As mentioned before, our aim is to compute the expected value of Q(U), that is

	VQ(u)cp,r(du) for Q 2 P ðV ÞKk . As the r(i)’s and the Um’s form two different bases of P ðV ÞKk , if
we know the expectations of each element of one basis, we can compute the expectation of any

element of the other basis provided we know the matrix of passage from one basis to the other.

We can then compute the expectation of any Q(U) with Q in PðV ÞKk . This is exactly what we
are going to do. The expected value of Um(U) is known (proposition 5) and we will compute

the expected value of Um(U
)1) (proposition 6).

Recall the notation introduced in proposition 1. For any function Q : V fi R, we write

TpðQÞðrÞ ¼
Z

V
QðuÞcp;rðduÞ: ð20Þ

It follows from proposition 1 that if Q belongs to PðV ÞKk , then Tp(Q) applied to r in X, an open
subset of V, is also a homogeneous polynomial function of degree k. This polynomial function
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can be extended in a unique way to a homogeneous polynomial of degree k on V and therefore

the mapping Tp defined by Q ´ Tp(Q) is an endomorphism of PðV ÞKk (which has already been

considered by Kushner & Meisner, 1980). The expression of Tp(Um)(r) is particularly simple

since, as stated in proposition 5 below, the Um’s are in fact the eigenvectors of Tp.

To describe the eigenvalues of Tp we have to recall the definition of the Gamma function of

V: for sj > (j ) 1)f,

CXðs1; . . . ; srÞ ¼ pdrðr�1Þ=4
Yr

j¼1
Cðsj � ðj � 1Þf Þ: ð21Þ

If p is a positive real number and if s ¼ (s1,. . ., sr) we write CX(p + s) for CX(p +

s1,. . ., p + sr) and CX(p) for CX(p,. . ., p) (this symbol was used in (4)). If p > (r ) 1)f and

m 2 Mk,r we define the generalized Pochhammer symbol as (p)m ¼ CX(p + m)/CX(p) (see FK,

p. 230). If p belongs to the singular part {f, 2f,. . ., (r ) 1)f} of the Gyndikin set, the generalized

Pochhammer symbol is

ðlf Þm ¼
Yl

j¼1

Cðmj þ ðl � j þ 1Þf Þ
Cððl � j þ 1Þf Þ

for l ¼ 1, 2,. . ., r ) 1 (see Letac et al., 2001).

At this point, we should mention that (p)m depends on m and p, but does not depend on the

rank r, in the following sense. Given a sequence m ¼ (m1,. . ., mc, 0, 0, . . .) of integers such

that m1 ‡ m2 ‡ � � � ‡ mc > 0 and m1 + � � � + mc ¼ k, then m can be considered as a member

of Mk,r for any r ‡ c and the value of (p)m will not change with r. Let us momentarily denote

(p)m by ((p)m)r. We have to check that ((p)m)r ¼ ((p)m)c. This is easily done by considering

separately the case p ¼ f, 2f,. . ., (c ) 1)f, the case p ¼ cf,. . ., (r ) 1)f, and the case

p > (r ) 1)f. Our remark is thus proved.

The following proposition is most important as it gives us the eigenvectors and eigenvalues

of Tp. For p > (r ) 1)f, its proof is essentially in FK (p. 226). For the singular case, see Letac

et al. (2001, theorem 3.6). When p/f is an integer, it is also proved by beautiful combinatorial

methods in Hanlon et al. (1992, formula 5.3, p. 166).

Proposition 5

Let U be cp,r distributed on V, where p is in the Gyndikin set (1). For m 2 Mk,r we have

TpðUmÞðrÞ ¼ EðUmðUÞÞ ¼ ðpÞmUmðrÞ; ð22Þ
where (p)m is the generalized Pochhammer symbol.

Thus Um is an eigenvector of Tp associated with the eigenvalue (p)m. We have therefore

solved, at least in theory, the problem of the computation of the expectation of the

E(r(i)(U))’s. The only thing left to do is to write the r(i)’s as a linear combination of the Um’s

or, equivalently, according to proposition 3, to write p(i) as defined in (19) as a linear com-

bination of the J ð1=f Þ
m ’s. Following the notation of our Maple program (see section 6.2), we

denote by p the basis of the p(i)’s in Sk,r and by J the basis of the J ð1=f Þ
m ’s. With some abuse of

language we also identify p and J to the corresponding basis (r(i), (i) 2 Ik,r) and

(Um, m 2 Mk,r). Let Ak,r be the passage matrix from the basis p to the basis J, i.e. the matrix
representative of the identity endomorphism of Sk,r from the basis J to the basis p. This
matrix Ak,r ¼ (P(i),m(a)) is a matrix of polynomials with respect to one variable

a ¼ 1/f (see Stanley, 1989, p. 97) whose rows are indexed by Ik,r and columns are indexed by

Mk,r. The inverse matrix A�1
k;r ¼ ðQm; ðiÞðaÞÞ is the passage matrix from the basis J to the basis

p. We also consider the square diagonal matrix Dk,r(p) whose rows and columns are indexed
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by Mk,r and with diagonal element corresponding to m, the Pochhammer symbol (p)m. With

these notations proposition 5 implies that the matrix representative of Tp in the basis J is

½Tp�JJ ¼ Dk;rðpÞ;

and the representative matrix of Tp in the basis p is

½Tp�pp ¼ Ak;rDk;rðpÞA�1
k;r : ð23Þ

If we write [r(i)(u)]Ik,r for the column vector made with the polynomials r(i)(u); (i) 2 Ik,r, (23) is

equivalent to

½EðrðiÞðUÞÞ�Ik;r ¼ ½Ak;rDk;rðpÞA�1
k;r �

t½rðiÞðrÞ�Ik;r ; ð24Þ

where Mt is the transposed matrix of the matrix M.

It is now time to investigate the moments of U)1 when U has a Wishart distribution. This is

considered in the literature as a difficult problem (see Haff, 1982; von Rosen, 1988; Lauritzen,

1996, p. 259; Maiwald & Kraus, 2000). However the expectation of E(Um(U
)1)) and therefore

of E(r(i)(U
)1)) appears to be relatively easy. For q > k ) f and m 2 Mk,r we denote

ðqÞ�m ¼
Qr

j¼1 Cð�mj þ jf þ qÞQr
j¼1 Cðjf þ qÞ : ð25Þ

Note that q 7! ðqÞ�m is a rational function whose coefficients depend only on m. A remark

similar to the one made before proposition 5 is in order: for fixed q and m, the number ðqÞ�m
does not depend on r. We have the following result.

Proposition 6

Let U be cp,r distributed on V, where p > (r � 1)f + k. For m 2 Mk,r we have

EðUmðU�1ÞÞ ¼ ððp � rf Þ�ÞmUmðr�1Þ ð26Þ

where ðqÞ�m is defined by (25).

Proof. To show that (26) is true, we need the following proposition, whose proof is given in

the appendix.

Proposition 7

Let m ¼ (m1,. . ., mr) with mj 2 R and p > f(r � 1) such that p � mj > f(r � j) for j ¼ 1,. . ., r.

Let m* ¼ (mr,. . ., m1) and for s ¼ (slk)1£l,k£r in X, and for j ¼ 1,. . ., r, let Dj(s) be the deter-

minant of the (j, j) Hermitian matrix (slk)1£l,k£j. We write

DmðsÞ ¼ ðD1ðsÞÞm1�m2ðD2ðsÞÞm2�m3 � � � ðDrðsÞÞmr :

Then, if the random variable S has the Wishart distribution cp,r, we have

EðDmðS�1ÞÞ ¼ CXðp �m�Þ
CXðpÞ

Dmðr�1Þ:

Proposition 7 enables us to complete the proof of proposition 6. Let du be the Haar measure

on the compact group Od(r). Then
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EðUmðU�1ÞÞ ¼ð1Þ E
Z
Od ðrÞ

DmððuUu�Þ�1Þdu
 !

¼ð2Þ E
Z
Od ðrÞ

DmðuU�1u�Þdu
 !

¼ð3Þ
Z
Od ðrÞ

EðDmðuU�1u�ÞÞdu ¼ð4ÞCXðp �m�Þ
CXðpÞ

Z
Od ðrÞ

Dmður�1u�Þdu

¼ð5ÞCXðp �m�Þ
CXðpÞ

Umðr�1Þ:

In this sequence of equalities, (1) and (5) are due to the property of spherical functions as given

in FK (p. 304, theorem XIV.3.1), (2) is clear, (3) follows from Fubini and (4) from proposition

7. The proof of proposition 6 is therefore complete.

Even the case k ¼ 1 provides a non-trivial example of application of (26) as it yields

E(U)1) ¼ r)1/(p ) 1 ) (r ) 1)f) if p > (r ) 1)f + 1, as ðqÞ�1 ¼ 1=ðq þ f � 1Þ and

U1(u) ¼ tr u. If the polynomial Q is in P ðV ÞKk , we introduce the symbol T �
p ðQÞ as follows

T �
p ðQÞðr�1Þ ¼

Z
V

Qðu�1Þcp;rðduÞ ¼ EðQðU�1ÞÞ: ð27Þ

Proposition 6 shows that T �
p , like Tp, is an endomorphism of P ðV ÞKk and that the eigenvectors

are the Um’s again, with eigenvalues ((p ) rf)*)m. Denoting by D�
k;rðqÞ the diagonal matrix

whose entry corresponding to m is ðqÞ�m; we obtain the matrix representative of T �
p in the basis

p:

½T �
p �

p
p ¼ Ak;rD�

k;rðp � rf ÞA�1
k;r : ð28Þ

This is equivalent to

½EðrðiÞðU�1ÞÞ�Ik;r ¼ ½Ak;rD�
k;rðp � rf ÞA�1

k;r �
t½rðiÞðr�1Þ�Ik;r : ð29Þ

5. The expectations of r(i)(U
±1) and of U±k

5.1. The expectation of r(i)(U
±1)

In (24) and (29) above, we have already given the expected values of r(i)(U) and r(i)(U
)1) for

k £ r. We want to obtain these expectations for all k. We observe that for k £ r we have the

following four equalities:

Ik;r ¼ Ik;k ;

Dk;rðpÞ ¼ Dk;kðpÞ;
D�

k;rðqÞ ¼ D�
k;kðqÞ;

Ak;r ¼ Ak;k :

The first equality is obvious from the definition of Ik,r given in proposition 4, the second and

the third are consequences of the remarks made just before proposition 5 and proposition 6,

respectively, and the fourth is a consequence of the properties of symmetric polynomials.

A detailed proof of this last statement would imitate the proof of proposition 2 below, and so

we skip it. We now denote for simplicity

Dk;kðpÞ ¼ DkðpÞ; D�
k;kðqÞ ¼ D�

kðqÞ; Ak;k ¼ Ak; Bk ¼ At
k : ð30Þ

Recall that Ik has already been defined before (17). Clearly Ik,k ¼ Ik.

Scand J Statist 31 Invariant moments of the Wishart 305

� Board of the Foundation of the Scandinavian Journal of Statistics 2004.



The next theorem extends (24) and (29) to be valid for any k. If r < k the polynomials r(i)
are not linearly independent, thus formulae (24) and (29) do not give E(r(i)(U)) and E(r(i)(U

)1))

for (i) 2 IknIk,r in general. But we are going to see that the same results do hold true for any k.
We imitate the notation used in (24) by considering the column vector [r(i)(r)]Ik. Note that

from now on, we use the transposed matrix Bk ¼ At
k rather than Ak, as it is Bk rather than Ak

which will appear in the numerical calculations of section 5.

Theorem 2

Let U follow the cp,r distribution. Then with the notation given in (30) we have

for p 2 K; ½EðrðiÞðUÞÞ�Ik ¼ B�1
k DkðpÞBk ½rðiÞðrÞ�Ik ð31Þ

for p � k þ ðr � 1Þf ; ½EðrðiÞðU�1ÞÞ�Ik ¼ B�1
k D�

kðp � rf ÞBk ½rðiÞðr�1Þ�Ik : ð32Þ

Proof. For r ‡ k there is nothing to prove as the desired results are identical to (24) and

(29). When r ¼ k, (31) and (32) are identities in PðV ÞKk that can be translated into identities on

Sk,k by the map Q ´ SQ as defined in proposition 3. Thus we obtain identities between

homogeneous symmetric polynomials of degree k with respect to k1, . . ., kk. Let us now

consider the case r < k for some V with Peirce constant d and rank r. If we set

kr+1 ¼ . . . ¼ kk ¼ 0 in (31) and (32), we obtain identities in Sk,r and if we translate these

identities through the isomorphism Q ´ SQ into identities in P ðV ÞKk , we see immediately that
they are nothing but (24) and (29) for V and our result is therefore proved.

The actual computation of Bk ; B�1
k ; B�1

k DkðpÞBk and B�1
k D�

kðp � rf ÞBk is detailed in

section 6.

5.2. Extended results

If we apply proposition 1 to Q(U) ¼ r(i)(U) with g(U) ¼ h1/2Uh1/2 for h 2 V, we immediately

obtain the following extension of theorem 2.

Theorem 3

Let U follow the cp,r distribution. Then for h 2 X and with the notation given in (30) we have

for p 2 K; ½EðrðiÞðh1=2Uh1=2Þ�Ik ¼ B�1
k DkðpÞBk ½rðiÞðh1=2rh1=2Þ�Ik ð33Þ

and for p ‡ k + (r ) 1)f,

½EðrðiÞðh1=2U�1h1=2ÞÞ�Ik ¼ B�1
k D�

kðp � rf ÞBk ½rðiÞðh1=2r�1h1=2Þ�Ik : ð34Þ

We thus obtain the expected values of

rðiÞðh1=2Uh1=2Þ ¼
Y

j

ðtrðUhÞjÞij ; rðiÞðh�1=2U�1h�1=2Þ ¼
Y

j

ðtrðUhÞ�jÞij :

It is then clear that we can also compute the expectation of any Q(h1/2Uh1/2) for Q in PðV ÞKk . It
will be useful to view Q(h1/2Uh1/2) as both a polynomial in U and in h, which we will denote as
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~QQðU ; hÞ. From proposition XIV.1.1 of FK, also given in the appendix as proposition 8, we

know that the correspondence between Q and ~QQ is an isomorphism. The polynomial ~QQ is used

in the next section to obtain such results as E(U±k).

5.3. Previous results

Results (33) when k ¼ 2, 3 and (34) for k ¼ 2 have already been obtained by Letac &

Massam (1998) in a paper devoted to the characterization of the Wishart distribution.

Indeed, for

MðpÞ ¼ p2 p
pf p � pf þ p2

� 	

Letac & Massam (1998, proposition 3.2, p. 584) have shown that

EðU � UÞ
EðPðUÞÞ

� 	
¼ MðpÞ r � r

PðrÞ

� 	
: ð35Þ

Here, u � u is the symmetric endomorphism of V defined by x ´ uÆu, xæ and P(u) is the

symmetric endomorphism of V defined by x ´ uxu. Due to the relation between symmetric

endomorphisms and quadratic forms on a Euclidean space and proposition 8, this is in turn

equivalent to

Eðrð2ÞðUÞÞ
Eðrð01ÞðUÞÞ

� 	
¼ MðpÞ rð2ÞðrÞ

rð01ÞðrÞ

� 	
: ð36Þ

For the case k ¼ 3, Letac & Massam (1998) also proved

Eðrð3ÞðUÞÞ
Eðrð11ÞðUÞÞ
Eðrð001ÞðUÞÞ

264
375 ¼

p3 3p2 2p

p2f p3 þ p2ð1� f Þ þ 2pf 2p2 þ 2pð1� f Þ
pf 2 3p2f þ 3pf ð1� f Þ p3 þ 3p2ð1� f Þ þ pð2� 3f þ 2f 2Þ

264
375

�
rð3ÞðrÞ
rð11ÞðrÞ
rð001ÞðrÞ

264
375: ð37Þ

Letac & Massam (2000, theorem 6.1) gave the following second moments of U)1. Writing

q ¼ p ) rf, they obtain

Eðrð2ÞðU�1ÞÞ
Eðrð01ÞðU�1ÞÞ

" #
¼ 1

ðq þ f � 1Þðq þ f � 2Þðq þ 2f � 1Þ
q þ 2f � 2 1

f q þ f � 1

� 	

�
rð2Þðr�1ÞÞ
rð01Þðr�1Þ

" #
: ð38Þ

The method of proof for these two latter results is too complicated to be extended to higher k.

Let us also mention here that a second method of computation of the E(r(i)(U)) could be

extracted from Hanlon et al. (1992). This elegant paper provides a general formula for

E(r(i)(U)). In the present paper, we have used a third method: our tools, as we have seen, are

the two different bases of P ðV ÞKk and the eigenvectors of Tp. Results (36), (37) and (38) can be

obtained using theorem 2.
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5.4. The expectation of U±k and other animals

For each polynomial frðiÞrðiÞðu; hÞ ¼ rðiÞðh1=2uh1=2Þ, we can derive by a process of polarization and
differentiation a quantity that we are going to denote as

LrðiÞ ðuÞ ¼ rðiÞðuÞ
Xk

j¼1
jij

uj

trðujÞ : ð39Þ

We can think of Lr(i)
(u) as ‘nearly a derivative’ of r(i)(u) with respect to u. Note that Lr(i)

(u) is

not a number, but an element of V. We will call it the lifting of r(i)(u). Its expectation is given in

the following theorem, which allows us to compute the expectations of random variables like

Uk, U)k and more generally Lr(i)
(U), the ‘other animals’ of the title. The appendix considers in

general the lifting LQ of Q 2 PðV ÞKk : see propositions 10 and 11.

Theorem 4

Let U follow the cp,r distribution. Let [Lr(i)
]Ik denote the column vector of the Lr(i)

’s. Then

for p 2 K; ½EðLrðiÞ ðUÞÞ�Ik ¼ B�1
k DkðpÞBk½LrðiÞ ðrÞ�Ik ð40Þ

for p � k þ ðr � 1Þf ; ½EðLrðiÞ ðU�1ÞÞ�Ik ¼ B�1
k D�

kðp � rf ÞBk ½LrðiÞ ðr�1Þ�Ik : ð41Þ

In particular the last line of (40) gives kE(Uk) and the last line of (41) gives kE(U)k).

Proof. From propositions 2 and 12 we have

½TpðLrðiÞ Þ�Ik ¼ ½LTpðrðiÞÞ�Ik ¼ LB�1
k DkðpÞBk ½rðiÞ�Ik

¼ B�1
k DkðpÞBk ½LrðiÞ �Ik :

This proves (40). The proof of (41) is similar. From proposition 11 it follows that for

(i) ¼ (0,. . ., 0, 1), Lr(i)(u)
¼ kuk and this proves the last part of the theorem.

For instance, when k ¼ 1, we obtain E(U)1) ¼ r)1/(p ) (r ) 1)f) (see Muirhead, 1982, p.

103, with a misprint). Formulae (36) and (38) combined with proposition 11 and theorem 4

give

EðU trUÞ ¼ p2r tr r þ pr2;

EðU2Þ ¼ pfr tr r þ ðp � pf þ p2Þr2;

EðU�1trU�1Þ ¼ 1

ðq þ f � 1Þðq þ f � 2Þðq þ 2f � 1Þ ððq þ 2f � 2Þr�1tr r�1 þ r�2Þ;

EðU�2Þ ¼ 1

ðq þ f � 1Þðq þ f � 2Þðq þ 2f � 1Þ ðfr�1tr r�1 þ ðq þ f � 1Þr�2Þ

(recall that q ¼ p ) rf as usual). Similarly, formula (37) gives

EðU3Þ ¼ pf 2rðtr rÞ2 þ ðp2f þ pf ð1� f ÞÞðr trðr2Þ þ 2r2tr rÞ
þ ðp3 þ 3p2ð1� f Þ þ pð2� 3f þ 2f 2ÞÞr3:

Using the traditional notations p ¼ n/2 and r ¼ 2R, for f ¼ 1/2 (real case), this becomes the

formula given in the introduction.

Formulae parallel to the ones obtained above, for E(U)3), E(U4) and E(U)4) are given below

in (44), (45), (46) and (47). Note that, as Lr(1,1)
(u) ¼ u tr u2 + 2u2 tr u, formula (37) leads to
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EðU trU2 þ 2U2 trUÞ
¼ 3p2frðtr rÞ2 þ ðp3 þ p2ð1� f Þ þ 2pf Þðrtrðr2Þ þ 2r2tr rÞ þ 3ð2p2 þ 2pð1� f ÞÞr3;

but the methods of the present paper cannot yield the individual computation of E(U tr U2).

Note that as the multilinear forms on Vk defined by (h1,. . ., hk) ´ rp(u)(h1,. . ., hk) are not

necessarily symmetric, there is no hope of recovering E(rp(U)(h1,. . ., hk)) from the knowledge

of the h ´ E(rp(U)(h,. . ., h)) by a polarization process.

6. Explicit computations

6.1. The algorithm

The expressions given in (31) and (32) can actually be computed explicitly, for any k. Here, we

use Maple in order to take advantage of the Maple package SF developed by Stembridge

(1998). The package SF does a number of things. The function that we are going to be most

interested in is the function ‘top’, which allows the passage from the basis J to the basis p.
According to the theory developed in section 4, in order to obtain the matrix Ak for a given

k, it is sufficient to obtain the coefficient of J ð1=f Þ
m , for all m 2 Mk in the basis p. These

coefficients will form the columns of the matrix Ak, or equivalently, the rows of the matrix

Bk ¼ A t
k . The matrices Bk and B�1

k are therefore obtained immediately.

In order to compute all the expectations in (31) and (32), we need the diagonal matrices Dk

and D�
k . The diagonal element of Dk corresponding to the line indexed by m is

ðpÞm ¼ CXðp þmÞ
CXðpÞ

¼
Ylm
j¼1

Ymj

s¼1
ðp þ s � 1� ðj � 1Þf Þ; ð42Þ

where lm is the number of non-zero mj’s in m. Similarly, for q ¼ p ) rf and m* ¼
()mk,. . ., )m1), according to (25), the diagonal element of D�

k corresponding to row m is

equal to

ðqÞ�m ¼
Yk

j¼k�lmþ1

Ymk�jþ1

s¼1
ðq þ ðk � j þ 1Þf � sÞ

" #�1
: ð43Þ

We can write an elementary program in Maple to obtain each diagonal element (42) and (43).

Once the matrices Bkðf Þ; B�1
k ðf Þ; DkðpÞ; D�

kðqÞ have been obtained in this fashion, the

expected values are calculated following the formulae in (31) and (32).

The algorithm to compute the matrix MðpÞ ¼ B�1
k DkðpÞBk representative of Tp (in the basis

p) and the matrix M�ðqÞ ¼ B�1
k D�

kðqÞBk representative of T �
p for each k 2 N is therefore very

simple:

Step 1. Using the function ‘top’ in SF, build the matrix Bk,

Step 2. Using formulae (42) and (43), build the matrices Dk(p) and D�
kðqÞ,

Step 3. Compute MðpÞ ¼ B�1
k DkðpÞBk and M�ðqÞ ¼ B�1

k D�
kðqÞBk .

In the rest of this section, we are going to give the Maple commands as well as the results

given by Maple for (31) and (32) in the case k ¼ 2. Similar programs can be written for any k.

The results obtained allow us to obtain E(U±k) for any k. For example, using theorem 4 and

the last line of M�
3 ðqÞ, as given in section 6.2, our algorithm yields immediately

d3EðU�3Þ ¼ 2f 2r�1ðtr r�1Þ2 þ f ðq þ f � 1Þðr�1tr r�2 þ 2r�2tr r�1Þ
þ ðq þ f � 1Þ2r�3; ð44Þ

where d3 ¼ (q ) 1 + 3f)(q ) 1 + 2f)(q ) 1 + f)(q ) 2 + f)(q ) 3 + f).
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In the case d ¼ 2f ¼ 1 of the real Wishart distributions, with the classical notations p ¼ n/2,

r ¼ 2R this gives

CEðU�3Þ ¼ 2R�1ðtrR�1Þ2 þ cðR�1trR�2 þ 2R�2trR�1Þ þ c2R�3; ð45Þ

where c ¼ n ) r ) 1 and C ¼ c(c + 1)(c + 2)(c ) 2)(c ) 4).

Similarly for k ¼ 4, we obtain E(U4) and E(U)4), respectively, as follows:

EðU4Þ ¼
�
pf 3
�
rðtr rÞ3

þ
�
3p2f 2 þ 3ð�f þ 1Þf 2p

�
ðr tr r tr r2 þ r2ðtr rÞ2Þ

þ
�
p3f þ ð�3f þ 3Þfp2 þ ð2f 2 � 3f þ 2Þfp

�
ðr tr r3 þ 3r3tr rÞ

þ
�
2p3f þ ð�5f þ 5Þfp2 þ ð3f 2 � 5f þ 3Þfp

�
r2 tr r2

þ
�
p4 þ ð�6f þ 6Þp3 þ ð�17f þ 11þ 11f 2Þp2 þ ð�6f 3 � 11f þ 11f 2 þ 6Þp

�
r4

ð46Þ

d4EðU�4Þ ¼
�
5f 3q þ 11ð�1þ f Þf 3

�
r�1ðtr r�1Þ3

þ
�
5f 2q2 þ 16ð�1þ f Þf 2q þ 11ð�1þ f Þ2f 2

�
ðr�1tr r�1trðr�2Þ þ ðr�2Þðtr r�1Þ2Þ

þ
�
fq3 þ 4f ð�1þ f Þq2 þ ð3f ð�1þ f Þ2 þ f ð2f 2 � 3f þ 2ÞÞq

þ f ð�1þ f Þð2f 2 � 3f þ 2Þ
�
ðr�1trðr�1Þ3 þ 3ðr�1Þ3trðr�1ÞÞ

þ
�
2fq3 þ 9ðf � 1Þfq2 þ ð7ð�1þ f Þ2 þ 5f 2 � 13f þ 5Þfq

þ ð�1þ f Þð5f 2 � 13f þ 5Þf
�
r�2 trðr�2Þ

þ
�
q4 þ 5ð�1þ f Þq3 þ ð4ð�1þ f Þ2 þ 5f 2 þ 5� 9f Þq2

þ ðð�1þ f Þð5f 2 þ 5� 9f Þ þ 2f 3 � 5f 2 þ 5f � 2Þq
þ ð�1þ f Þð2f 3 � 5f 2 þ 5f � 2Þ

�
r�4 ð47Þ

where d4 ¼ (q ) 1 + 4f)(q ) 1 + 3f)(q ) 2 + 2f)(q ) 1 + 2f)(q ) 4 + f)(q ) 3 + f)

(q ) 2 + f)(q ) 1 + f).

6.2. Example: the case k ¼ 2

We first call the SF library and introduce the J 1=fm polynomials as a basis.

> restart:with(SF):
> add_basis(J, proc(mu) zee(mu,1/f) end, proc(mu)

hooks(mu,1/f)
> end);

We then build the matrix B2.

> l1:¼top(J[2]);

l1 :¼ p12 þ p2
f

> with(linalg):
> l12:¼vector([coeff(l1,p1“2),coeff(l1,p2)]);

l12 :¼ 1;
1

f

� 	
> l2:¼top(J[1,1]);
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l2 :¼ �p2þ p12

> l22:¼vector([coeff(l2,p1“2),coeff(l2,p2)]);

l22 :¼ ð½1;�1�Þ

The matrix B2 is therefore equal to

> B2:¼matrix(2,2,[l12,l22]);

B2 :¼ 1 1
f

1 �1

� 	
We now obtain the matrix B�1

2 .

> IB2:¼inverse(B2);

IB2 :¼
f

fþ1
1

fþ1
f

fþ1 � f
fþ1

" #

The diagonal matrix D2(p) is easily obtained:

> D2:¼diag(d12(p),d22(p,f));

D2 :¼ pðp þ 1Þ 0
0 pðp � f Þ

� 	
The matrix M2ðpÞ ¼ B�1

2 D2ðpÞB2:

> M2:¼simplify(multiply(IB2,D2,B2));

M2 :¼ p2 p
fp ð�f þ p þ 1Þp

� 	
We now write the entries of M2(p) as polynomials in decreasing powers of p.

> MM2:¼array(1..2,1..2):for i to 2 do for j to 2 do
> MM2[i,j]:¼collect(M2[i,j],[p“2,p]) od od :print (MM2);

p2 p
fp p2 þ ð�f þ 1Þp

� 	
;

which is exactly the matrixM2(p) obtained in (36). For the computation of the moments of the

inverse Wishart, we now need to know the elements of D�1
2 ðqÞ. The diagonal elements of this

matrix are equal to

Yj¼r

j¼1

Yi¼mj

i¼1
ðq þ jf � iÞ

" #�1

where q ¼ p ) rf.

The matrix D�1
2 ðqÞ, denoted here SD2 is:

> SD2:¼diag(ds12(q,f),ds22(q,f));

SD2 :¼
1

ðqþf�1Þðqþf�2Þ 0

0 1
ðqþf�1Þðqþ2f�1Þ

" #

The matrix M�
2 ðqÞ, denoted here SM2 is therefore equal to

> SM2:¼simplify(multiply(IB2,SD2,B2));
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SM2 :¼
2fþq�2

ðqþ2f�1Þðqþf�2Þðqþf�1Þ
1

ðqþf�1Þðqþf�2Þðqþ2f�1Þ
f

ðqþ2f�1Þðqþf�2Þðqþf�1Þ
1

ðqþ2f�1Þðqþf�2Þ

" #

which is, of course, the matrix obtained in (38).

7. Conclusion and bibliographical comments

Our paper stands in a long series of works on the moments of the Wishart distribution. Our

main contribution is twofold. First, in order to obtain the algebraic expression of the invariant

moments, we use tools such as the basis of spherical polynomials and the method of ‘lifting’

never used before in such a context. Secondly, we give an easy to implement algorithm to

compute these different moments as illustrated in section 6 with some examples. We would

also like to add that a more complete version of this paper including the case of the qua-

ternionic Wishart distribution, that is the case when the Peirce constant is d ¼ 4, is available

on the website of the authors (see Letac & Massam, 2003).

Let us now make some bibliographical comments. First and second moments of the Wishart

and its inverse can be found in the literature: see e.g. Muirhead (1982) and Eaton (1983). Haff

(1982) gives the mean, covariance of U)1 and also E(U2) and E(U)2). Wong & Liu (1995) have

considered moments for generalized Wishart distribution, including non-central Wishart

distributions. Their methods are different from those used by previous authors in the sense

that they use differential forms and permutations instead of matrix derivatives and commu-

tation matrices. In that sense, their methods are closer to ours than to any other method used

so far.

Hanlon et al. (1992) give some results which in particular cases can be reformulated with the

notations of the present paper. For A and B given elements of V, A in the cone X and

Z ¼ (Zi,j)1£i,j£r a Gaussian random matrix, Hanlon et al. (1992) prove the existence of, and

compute the numbers c((i), (j), (l)), such that for all (i) in Ik we have

EðrðiÞðA1=2ZBZ�A1=2ÞÞ ¼
X

ðjÞ;ðlÞ2Ik

cððiÞ; ðjÞ; ðlÞÞrðiÞðAÞrðiÞðBÞ: ð48Þ

When B ¼ e then ZBZ� ¼ ZZ� ¼ ð
Pr

k¼1 Zik�ZZjkÞ1�i;j�r is Wishart distributed with shape

parameter p ¼ rf and scale parameter e/f. Therefore, from proposition 1, the distribution of

U ¼ A1/2ZZ*A1/2 is crf,A/f. As r(i)(e) ¼ r
P

jij, (48) implies that

Trf ðrðiÞðrÞÞ ¼ EðrðiÞðUÞÞ ¼
X
ðjÞ2Ik

cððiÞ; ðjÞ; �ÞrRj ij rðiÞðrÞ

where c((i), (j), Æ) ¼
P

(l) 2 Ik
c((i), (j), (l)). This is a particular case of our formula (31) for

p ¼ rf and d ¼ 1, 2, 4.

Another group of related results can be found in Graczyk et al. (2003) where only the

complex case d ¼ 2 is considered. This paper extends the results of Maiwald & Strauss

(2000). For the rp’s defined here in theorem 1, the above paper by Graczyk et al. gives

explicitly the expectation of rp(Uh1,. . ., Uhk) as a linear combination of the

rp¢(rh1,. . ., rhk) for p¢ 2 Sk and it also gives a similar result for the expectation of

rp(U
)1h1,. . ., U

)1hk). The theory of these non-invariant moments is not well understood

yet for other values of d. Letac & Massam (2001) give an analogue to theorem 1 for an

arbitrary Jordan algebra V by replacing rp by another closely related k linear form Rp on

V. Interesting information about the complex case can be found in section 5 of Haagerup

& Thorbjørnsen (1998).
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Interestingly enough, all results found in the literature on the moments of the inverse

Wishart use Stokes formula, including Maiwald & Kraus (2000) and Graczyk et al. (2003),

while the calculations of the present paper involving the inverse Wishart (in particular pro-

position 6) do not.
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Appendix

A1: Proof of proposition 1

It is well known that if U follows the Wishart cp,r distribution, then g(U) follows the

Wishart cp,g(r) distribution and we shall not reprove it. Then, (8) simply follows by making

the change of variable Y ¼ g(U). Applying it to g in K shows that Tp(Q) is K-invariant.

Now, fromZ
V

QðuÞehh;uilpðduÞ ¼ Q
@

@h

� �Z
V

ehh;uilpðduÞ

it follows easily that if Q is a homogeneous polynomial of degree k, then so is Tp(Q).

A2: Proof of proposition 7

For s ¼ (slk)1£l,k£r in X, denote by D�
j ðsÞ the determinant of (slk)r)j+1£l,k£r and

D�
mðsÞ ¼ D�

1ðsÞ
m1�m2D�

2ðsÞ
m2�m3 � � �D�

r ðsÞ
mr :

From FK VII.1.5 (ii), we know that

Dmðs�1Þ ¼ D�
�m� ðsÞ: ð49Þ

We also introduce the (r, r) matrix u ¼ (uij)1£i,j£r defined by ui,r+1)i ¼ 1 for all i ¼ 1,. . ., r and

uij ¼ 0 otherwise. Thus usu ¼ (sr+1)i,r+1)j), tr(r
)1usu) ¼ tr((uru))1s) and

D�
mðsÞ ¼ DmðusuÞ: ð50Þ

Therefore, as D�
r ðsÞ ¼ DrðsÞ ¼ det s, we have
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EðDmðS�1ÞÞ

¼ð1Þ
Z

X
D�
1ðsÞ

�mrþmr�1D�
2ðsÞ

�mr�1þmr�2 � � �D�
r ðsÞ

�m1D�
r ðsÞ

p�re�trðr
�1sÞ ds

ðdet rÞpCXðpÞ

¼ð2Þ
Z

X
D�
1ðsÞ

p�mr�ðp�mr�1ÞD�
2ðsÞ

p�mr�1�ðp�mr�2Þ � � �D�
r ðsÞ

p�m1D�
r ðsÞ

�re�trðr
�1sÞ ds

ðdetrÞpCXðpÞ

¼ð3Þ
Z

X
D�

p�m� ðsÞðdet sÞ�r e�trðr
�1sÞds

ðdetrÞpCXðpÞ

¼ð4Þ
Z

X
Dp�m� ðs0Þðdet s0Þ�re�trððuruÞ�1s0 Þ ds0

ðdet rÞpCXðpÞ

¼ð5Þ Dp�m� ðuruÞ Cðp � m�Þ
ðdet rÞpCXðpÞ

¼ð6Þ D�
p�m� ðrÞ

Cðp � m�Þ
ðdet rÞpCXðpÞ

¼ð7Þ ðdet rÞpD�
�m� ðrÞ

Cðp � m�Þ
ðdet rÞpCXðpÞ

¼ð8Þ Cðp � m�Þ
CXðpÞ

Dmðr�1Þ:

Equalities (1), (2) and (7) are due to definitions, equalities (3) and (8) are due to (49), equality

(4) is obtained by the change of variables s¢ ¼ usu which has Jacobian 1, (5) is true by FK

VII.1.2 while equality (6) is due to (50). The proof of the proposition is thus complete.

A3: Lifting

Now, let k be a non-negative integer and let PðV ÞKk be the space of homogeneous polynomials

Q:V ´ R of degree k which are K-invariant, i.e. which satisfy Q(k(u)) ¼ Q(u) for all k 2 K

and all u 2 V. As explained in section 4.2, these invariant polynomials Q will serve to create

new polynomials ~QQ : V � V 7!R. The following proposition gives the correspondence be-

tween Q and ~QQ. As this is essentially shown in FK (p. 291), we do not give a proof. We write G

for the automorphism group of X.

Proposition 8

Let Q be in PðVÞKk . There exists a unique polynomial ~QQ : V � V 7! R such that for all h and u in

X, one has

Qðh1=2uh1=2Þ ¼ Qðu1=2hu1=2Þ ¼ ~QQðu; hÞ: ð51Þ

Furthermore, ~QQ is homogeneous of degree 2k and for all g 2 G, ~QQðgðuÞ; hÞ ¼ ~QQðu; g�ðhÞÞ, where
g* is the adjoint of g.

Conversely, if Q1:V · V ´ R is a homogeneous polynomial of degree 2k such that, for all

g 2 G

Q1ðgðuÞ; hÞ ¼ Q1ðu; g�ðhÞÞ; ð52Þ

then, there exists a unique Q 2 P ðV ÞKk such that Q1 ¼ ~QQ, namely Q(h) ¼ Q1(e,h) ¼ Q1(h,e).

To compute ~QQ given Q(u) ¼ tr(uk), we need to introduce the triple product {x, y, z} of x, y

and z in V, {x, y, z} ¼ 1
2(xyz + zyx), which satisfies the following lemma. The proof is easy

and not given here.
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Lemma 1

If a is an invertible matrix of dimension r with coefficients in Kd, denote g(x) ¼ axa* and

g*(x) ¼ a*xa for x 2 V. Then

g�fx; gðyÞ; zg ¼ fg�ðxÞ; y; g�ðzÞg: ð53Þ

Proposition 9

Let u and h be in V. Define the sequence (qk)k‡1 in V by q1 ¼ h and qk ¼ {h, u, qk�1}. Then, for

Q(u) ¼ tr uk, we have ~QQðu; hÞ ¼ hu; qki:

Proof. We write qk ¼ qk(u, h) and we show by induction on k that, for all g 2 G, one has

g�ðqkðgðuÞ; hÞÞ ¼ qkðu; g�ðhÞÞ: ð54Þ

The result is obvious for k ¼ 1. Assuming it is true for k ) 1, we obtain (54) immediately by

applying (53) to qk. It follows from (54) that Q1(u,h) ¼ tr(u qk(u,h)) satisfies (52). Clearly Q1 is

a homogeneous polynomial of degree 2k. Moreover, as fx; e; zg ¼ 1
2 ðxz þ zxÞ, we have

qk(e, h) ¼ hk. Thus if Q(h) ¼ tr hk, it follows from proposition 8 that Q1 ¼ ~QQ.
With the notations of proposition 8 we have

frðiÞrðiÞðu; hÞ ¼
Yk
j¼1

ðtrðuhÞjÞij ð55Þ

that is frðiÞrðiÞðu; hÞ is the value of rp(u)(h,. . ., h) when p has portrait (i). We mention a more

compact form of theorem 1 for all h1,. . ., hk equal.

Theorem 5

If U has the Wishart distribution cp,r on V, then for all h 2 V, one has

EðhU ; hikÞ ¼
X
ðiÞ2Ik

ai pi1þ���þikfrðiÞrðiÞðr; hÞ ð56Þ

where frðiÞrðiÞ is defined by (55) and a(i) ¼ k!/(i1!� � �ik!1i1� � �kik).

Proof. This is an immediate consequence of theorem 1, of (55) and of the fact that a(i) is the

number of permutations p in Sk with portrait (i).

Let us now turn to the definition of the lifting Lr(i)
(u) of r(i)(u). Given a real homogeneous

polynomialQ of degree k onV, we construct its polarized form as the unique symmetric k-linear

formFQ(h1,. . ., hk) onV
k such thatQ(h) ¼ FQ(h,. . ., h). This process is familiar for the quadratic

forms and the associated symmetric bilinear forms. For instance, if Q(h) ¼ tr(hk) we have

FQðh1; . . . ; hkÞ ¼
1

k!

X
p2Sk

trðhpð1Þ � � � hpðk�1ÞhpðkÞÞ: ð57Þ

We use the following proposition.

Proposition 10

If Q is a homogeneous polynomial on V of degree k. Then for all h0 and h in V one has
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FQðh0; . . . ; h0; hÞ ¼
1

k
hQ0ðh0Þ; hi:

Proof. Among the many ways to express FQ, we choose the following: FQ(h1,. . ., hk) is the

coefficient of x1� � �xk in the polynomial on Rk defined by

ðx1; . . . ; xkÞ 7!
1

k!
Qðx1h1 þ � � � þ xkhkÞ:

Suppose now that h1 ¼ � � � ¼ hk)1 ¼ h0 and hk ¼ h. Using the homogeneity of Q and its

Taylor’s expansion, we write

1

k!
Qððx1 þ � � � þ xk�1Þh0 þ xkhÞ

¼ 1

k!
ðx1 þ � � � þ xk�1ÞkQðh0 þ

xk

x1 þ � � � þ xk�1
hÞ

¼ 1

k!
ðx1 þ � � � þ xk�1Þk ½Qðh0Þ þ

xk

x1 þ � � � þ xk�1
hQ0ðh0Þ; hi þ � � ��:

The coefficient of x1� � �xk is therefore the coefficient of x1� � �xk in

1

k!
ðx1 þ � � � þ xk�1Þk�1xkhQ0ðh0Þ; hi;

and this gives the desired result.

When furthermore Q is a K-invariant polynomial, using the polarized form FQ, we

are going to define the lifting of Q. To do so, we fix u in V and consider the

polynomial h 7! ~QQðu; hÞ as defined in proposition 8. The lifting LQ(u) of Q is the element of

V defined by

hLQðuÞ; hi ¼ kF~QQðu;�Þðe; . . . ; e; hÞ: ð58Þ

For instance, we are going to see that for Q(u) ¼ tr(uk), then LQ(u) ¼ kuk and more generally

we are going to calculate Lr(i)
.

Proposition 11

For (i) 2 Ik we have

LrðiÞ ðuÞ ¼ rðiÞðuÞ
Xk

j¼1
jij

uj

trðujÞ ;

Proof. We show first the result for (i) ¼ (0,. . ., 0, 1). From proposition 10, this is equivalent

to showing that @ ~QQðu; eÞ=@h ¼ kuk for Q(h) ¼ tr(hk). To see this, we observe first that the

differential of the map x ´ xk from V to V is

s 7! sxk�1 þ xsxk�2 þ x2sxk�3 þ � � � þ xk�1s:

Thus the differential of x ´ tr(xk) is s ´ kÆs, xk)1æ. Taking h ¼ e in this last formula we

obtain, as desired, h @@h
~QQðu; eÞ; si ¼ khuk ; si. From this, using the chain rule, we compute the

differential of h 7! ~QQðu; hÞ ¼ tr u1=2hu1=2 and obtain the differential at h as

s 7! khu1=2su1=2; u1=2hu1=2i:

Letting h ¼ e in this last formula gives h@ ~QQðu; eÞ=@h; si ¼ khuk ; si as desired.

Scand J Statist 31 Invariant moments of the Wishart 317

� Board of the Foundation of the Scandinavian Journal of Statistics 2004.



Having proved the result of the proposition in this particular case leads us immediately to

the general case, since from proposition 10 we have for any Q1, Q2 in PðV ÞKk
LQ1Q2

¼ Q1LQ2
þ Q2LQ1

:

As r(i) is a product of functions of type Q(h) ¼ tr(hk), the general result is obtained.

In the next proposition we use in an obvious way the notations Tp(F) and T �
p ðF Þ for E(F(U))

and E(F(U)1)), respectively, when F is not necessarily a real function of u but takes its values in

a finite-dimensional real linear space.

Proposition 12

Let U follow the cp,r distribution and let Q be in P ðVÞKk . Then with the notation of (7) and (27),

respectively, we have

for p 2 K; TpðLQÞ ¼ LTpðQÞ ð59Þ

for p � k þ ðr � 1Þf ; T �
p ðLQÞ ¼ LT �

p ðQÞ: ð60Þ

Proof. This is an immediate consequence of the linearity of Q ´ LQ.
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