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Abstract
In this paper, we consider Gaussian models Markov with respect to an arbitrary

directed acyclic graph with a known ordering of the vertices. We first construct a
family of conjugate priors for the Cholesky parametrization of the covariance matrix
of such models. This family has as many shape parameters as the number of vertices,
and naturally extends the work of Geiger and Heckerman (2002). From these dis-
tributions, we derive prior distributions for the covariance and precision parameters
of the Gaussian directed acyclic graph models. Our work thus extends to arbitrary
directed acyclic graphs the works of Dawid and Lauritzen (1993) and Letac and Mas-
sam (2007) for Gaussian models Markov with respect to a decomposable graph. For
this reason, we call our distributions DAG-Wisharts. These distributions possess the
strong hyper Markov properties and thus allow for explicit estimation of the covari-
ance and precision parameters, regardless of the dimension of the problem. They also
allow for model selection and covariance estimation in the space of directed acyclic
graph models with a known ordering of the vertices. We demonstrate via several
numerical examples that the proposed method scales well to high-dimensions.

1 Introduction
The priors on the parameters of a normal distribution Markov with respect to a directed
acyclic graph now have a long history which starts with Geiger and Heckerman (2002).
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Such distributions have been derived from some types of (inverse) Wishart distributions
and we thus call them the DAG-Wishart priors (DAG is a standard acronym for a directed
acyclic graph). The different steps in this history are marked by an increase in flexibility
in the shape of the prior. In Geiger and Heckerman (2002), the prior is derived from the
Wishart distribution which has only one shape parameter. Dawid and Lauritzen (1993)
introduced the hyper inverse Wishart distribution which is the equivalent of the inverse
Wishart but for the incomplete covariance matrix which corresponds to the free parame-
ters of a Gaussian distribution Markov with respect to a decomposable graph. The hyper
inverse Wishart in Dawid and Lauritzen (1993) is actually equivalent to the DAG-Wishart
defined in Geiger and Heckerman (2002) but for the restricted class of so-called perfect
directed acyclic graphs, those that are Markov equivalent to decomposable graphs. The
hyper inverse Wishart still has only one shape parameter. For decomposable graphs, Letac
and Massam (2007) introduced a generalization of the hyper inverse Wishart, denoted the
IW PG which has k + 1 shape parameters, where k is the number of cliques. This distribu-
tion thus offers greater flexibility than the hyper inverse Wishart.

In this paper D always denotes a directed acyclic graph where we assume that the or-
dering of the vertices are known. We introduce a DAG-Wishart which is analogous to the
IW PG but introduces yet more flexibility in the choice of multiple shape parameters. The
hyper inverse Wishart and the IW PG Wishart were derived from the Wishart. In this paper,
we proceed in the other direction, we start by defining the multiple shape parameter DAG-
Wishart on a convenient space, with one shape parameter for each vertex, and then fold it
back into a Wishart-type distribution for the incomplete covariance matrix corresponding
to the parametrization of the Gaussian distribution Markov with respect to D. An advan-
tage of the DAG-Wishart distributions proposed in this paper is that, when we use them as
priors, high dimensional posterior analysis is readily amenable mainly because these dis-
tributions possess strong directed hyper Markov properties, which in turn result in closed
form solutions for their posterior moments and marginal likelihoods.

The main difficulty in achieving this goal is that when a directed acyclic graph is no
longer perfect, defining distributions on the space of covariance or precision matrices is,
in a sense, an ill-defined problem, as these spaces are curved manifolds, and thus no dis-
tribution defined on them has red a density with respect to the Lebesgue measure. Conse-
quently, tools for posterior inference on these spaces are not immediately available. For
this reason, we need to identify isomorphisms between these two spaces and new spaces
which are the projections of covariance and precision matrices onto Euclidean spaces.
These are termed the space of incomplete covariance and precision matrices and corre-
spond, respectively, to functionally independent elements of the covariance and precision
matrices of Gaussian directed acyclic graph models. Given an incomplete matrix in the
space defined by a directed acyclic graph D, we rely on results and algorithms for com-
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pletion given in Ben-David and Rajaratnam (2012) to obtain the corresponding unique
covariance and precision matrices of the corresponding Gaussian directed acyclic graph
model. Therefore, with our approach we develop a unified framework for Gaussian di-
rected acyclic graph models that naturally extends to general directed acyclic graphs the
recent methodological contributions by Letac and Massam (2007) and others (Rajarat-
nam et al., 2008) valid only for decomposable Gaussian graphical models, that is perfect
directed acyclic graphs. We also use the DAG-Wishart approach to develop a Bayesian
methodology for model selection and covariance estimation that can scale better than any
other Bayesian methods that we are aware of. Model selection is undertaken within the
class of directed acyclic graphs when the order of the vertices is given. Our Bayesian
model selection which is based on the marginal likelihood score uses the Lasso-DAG
method (Shojaie and Michailidis, 2010) for various levels of the penalty parameter as pos-
sible starting points. It then explores the space of Gaussian directed acyclic graph models
further with an improved version of the stochastic shot-gun search (SSS) of Jones et al.
(2005). Our method is thus a hybrid version of these two principled approaches. More
importantly, our proposed approach is able to overcome the computational challenges of
the Bayesian model selection problem and is shown to perform extremely well.

2 Preliminaries

2.1 Gaussian directed acyclic graph models
For a set V , let |V | denote the cardinality of V . Let RV and RV×V denote respectively the
linear spaces of |V |-dimensional vecorts x = (xi | i ∈ V ) and |V | × |V | real matrices
A = (Aij)i,j∈V . The spaces of |V | × |V | symmetric and positive definite matrices are
respectively denoted by SV (R) and PDV (R). When V = {1, 2, . . . , p} aforementioned
spaces are denoted by Rp, Rp×p, Sp(R) and PDp(R). A positive definite matrix is some-
times denoted by Σ � 0. For a, b ⊆ V , let xa denote the subvector (xi | i ∈ a) and let Aab
denote the |a|× |b| submatrix (Aij)i∈a,j∈b ∈ Ra×b. When b = V \a the Schur complement
of Σaa is defined as Σbb|a = Σbb − Σba(Σaa)

−1Σab.

Convention 2.1 Throughout the paper we shall also use the following conventions: Aa =
Aaa, A−1

a = (Aaa)
−1, A∅ = 1, and when a 6= ∅, A>a,∅ = A∅,a = 0 ∈ Ra.

Let D = (V,E) be a directed acyclic graph. From now on we assume that the vertices are
labeled 1, 2, . . . , p. A vertex i is a parent of j ∈ V , denoted by i→ j, if (i, j) ∈ E. The set
of parents of j and its cardinality are denoted by pa(j ) and paj , respectively. The family
of j, denoted by fa(j ), is pa(j ) ∪ {j} and its cardinality is denoted by faj . The set of
ancestors of a vertex j, denoted by an(j ), is the set of those vertices i 6= j such that there
is a directed path i → · · · → j (note that paths of length 0 are not allowed). Similarly,
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the set of descendants of a vertex i 6= j, denoted by de(i), is the set of those vertices j
such that i → · · · → j. The set of non-descendants of i is nd(i) = V \ (de(i) ∪ {i}).
A set A ⊆ V is called ancestral when A contains the parents of its members. In this
paper, unless otherwise stated, we shall always assume without loss of generality that the
ordering of the vertices of D is parent ordering, that is, i→ j implies that i > j.

Let X = (X1, . . . , Xp)
> and x = (x1, . . . , xp)

> denote a random vector and its ob-
served value in Rp, respectively. A Gaussian directed acyclic graph model (or Gaussian
Bayesian network) over D, denoted by N (D), is the statistical model that consists of all
multivariate Gaussian distributions Np(0 ,Σ ) obeying the ordered directed Markov prop-
erty with respect to D, that is, X ∼ Np(0 ,Σ ) ∈ N (D) =⇒ Xi ⊥⊥ Xpr(i) | Xpa(i) for
each i, where pr(i) = {i + 1 , . . . , p} \ pa(i) is the set of the predecessors without the
parents of i. Note that Np(µ,Σ ) ∈ N (D) if and only if Np(0 ,Σ ) ∈ N (D) (see An-
dersson and Perlman (1998) for a simple proof). Let PDD denote the space of covariance
matrices {Σ � 0 : Np(0 ,Σ ) ∈ N (D)} and let PD denote the space of precision matrices
{Σ−1 � 0 : Np(0 ,Σ ) ∈ N (D)]. A precision matrix in PD is usually denoted by Ω. It
is clear that the Gaussian distributions in N (D) can be parametrized by the elements of
PDD or PD.

For an undirected graph G, N (G) is defined similarly as the set of multivariate Gaus-
sian distributions obeying the (undirected) Markov property with respect to G. In this
model the corresponding parameter spaces are the space of covariance matrices PDG =
{Σ : Np(0 ,Σ ) ∈ N (G)} and the space of precision matrices PG = {Ω : Ω−1 ∈ PDG}.
Note that, for us, PDD and PD are parameter spaces of primary interest as they arise nat-
urally in the parametrization of Gaussian densities. However, in order to develop multiple
shape parameter Wishart priors on these spaces, which is the main theoretical purpose of
this paper,we begin with the more natural and more convenient Cholesky type parametriza-
tion of N (D) that we discuss in the next subsection.

2.2 Cholesky parametrizations of Gaussian directed acyclic graph mod-
els

Consider a Gaussian distribution Np(0 ,Σ ) ∈ N (D). It is a well-known fact that the
structure of D is reflected in the Cholesky decomposition of the precision matrix Σ−1. A
precise explanation is as follows. Let LD denote the set of lower triangular matrices with
unit diagonals and Lij = 0 if i /∈ pa(j), and let Dp+ denote the set of strictly positive
diagonal p × p matrices. Then Σ−1 ∈ PD if and only if there exist L ∈ LD and D ∈ Dp+
such that Σ−1 = LD−1L>. The latter decomposition of Ω = Σ−1 is called the modified
Cholesky decomposition of Ω. We call ΘD = Dp+ × LD the Cholesky space of D, the
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pair (D,L) ∈ ΘD a Cholesky parameter, and
{

Np(0 ,
(
L>
)−1

DL−1 ) : (D ,L) ∈ ΘD

}
≡

N (D) as the Cholesky parametrization of N (D).
By applying the directed factorization property (DF) of Np(0 ,Σ ) ∈ N (D) we have, for
x ∈ Rp,

dNp(0 ,Σ )(x ) =
∏
i∈V

dN (Σi ,pa(i)Σ
−1
pa(i)xpa(i),Σii |pa(i))(xi | xpa(i)), (1)

where N (Σi ,pa(i)Σ
−1
pa(i)xpa(i),Σii |pa(i))(xi | xpa(i)) is the conditional distribution ofXi given

Xpa(i). Note that Σi,pa(i)Σ
−1
pa(i) is the regression coefficient of Xi in the regression of Xi

on Xpa(i), and Σii|pa(i) is the conditional variance of Xi | Xpa(i) = xpa(i). One can easily
show that

Lpa(i),i = −Σ−1
pa(i)Σpa(i),i and Dii = Σii|pa(i) for each i ∈ V (2)

and that the mapping

ΠD ≡
(

Σ 7→ ×i∈V (Σii|pa(i),Σ
−1
pa(i)Σpa(i),i)

)
: PDD → ΞD = ×i∈V

(
R+ × Rpa(i)

)
(3)

is a bijection. In order to construct the inverse of this mapping let ×i∈V (λi, βpa(i)) denote
a typical element in ΞD, with the convention that βpa(i) = 0 whenever pa(i) = ∅. Using
the fact (see Andersson and Perlman (1998) ) that

Σi,pr(i) = Σi,pa(i)Σ
−1
pa(i)Σpa(i),pr(i), for every i ∈ V ,

the covariance matrix Σ can be recursively constructed starting from the largest index p,
by setting i) Σii = λi + β>pa(i)Σpa(i)βpa(i) ; ii) Σpa(i),i = Σpa(i)βpa(i) and iii) Σi,pr(i) =

Σi,pa(i)Σ
−1
pa(i)Σpa(i),pr(i).

3 The multiple-shape parameter DAG-Wishart distribu-
tion on Cholesky Space

The main goal of this section is to introduce a new family of multiple shape parameter
distributions on the Cholesky space ΘD as a natural generalization of the distribution of
the Cholesky factor of a Wishart random matrix. The distributions we are going to define
now are multiple shape parameter distributions, defined for all directed acyclic graphs,
which are extensions of the traditional Wishart priors studied in Geiger and Heckerman
(2013, 2002) and the Wishart WPG defined in Letac and Massam (2007). We will also
explore, in this section, some of the important properties of these distributions.
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3.1 DAG-Wishart density
In this subsection we explain how we are led to the definition of the DAG-Wishart on the
Cholesky space for an arbitrary directed acyclic graph.
(a) Suppose D is a complete directed acyclic graph. Then PD is the space of positive
definite matrices and the classical Wishart Wp(η,U ) is defined on this space. We can
show that if Σ−1 ∼ Wp(η,U ), then under the mapping Σ−1 7→ (D,L), where (D,L) is
the modified Cholesky factorization of Σ−1, the image of Wp(η,U ) on ΘD is a density
proportional to

exp

[
−1

2
tr
((

LD−1L>
)

U
)] p∏

i=1

D
−αi

2
ii , (4)

with αi = η + p− 2i+ 3. Note that by using Eq. (2) this density can be written as

exp

[
−1

2

p∑
i=1

Σ−1
ii|pa(i)(Σ

−1
pa(i)Σpa(i),i − U−1

pa(i)Upa(i),i)
>Upa(i)(Σ

−1
pa(i)Σpa(i),i − U−1

pa(i)Upa(i),i)

]
p∏
i=1

exp
[
Σ−1
ii|pa(i)Uii|pa(i)

]
Σ
− 1

2
αi

ii|pa(i). (5)

In Eq. (4) and Eq. (5) the αi, i = 1, . . . , p appear as multiple shape parameters, however,
since they are all functions of the one original shape parameter η, there is still just one
shape parameter.

(b) Next suppose D is a perfect directed acyclic graph. Then PD is identical to PG ,
where G is the undirected version of D and therefore decomposable. Let k be the num-
ber of the cliques of G. In this case we can consider the Wishart WPG(U , η) defined
in Letac and Massam (2007), with multiple shape parameter η ∈ Rk, as a distribu-
tion on PD. By Lemma 5.1 in Ben-David and Rajaratnam (2014) there exists a per-
fect order (C1, C2, . . . , Ck) of the cliques of G which respects the vertex numbering in
D, that is, there exists a perfect order of the cliques of G such that the histories are
ancestral in D. We recall that the histories, residuals and minimal separators are de-
fined as H1 = ∅, Hν = C1 ∪ · · · ∪ Cν , Rν = Cν \ Hν−1 and Sν = Hν−1 ∩ Cν for
ν = 2, . . . , k. If we use the convention R0 = S2, R1 = C1 \ C2, S0 = ∅ and S1 = S2 and
Convention 2.1, then by Theorem 4.4 in Letac and Massam (2007), under the mapping
Σ−1 7→ ×kν=0

(
ΣRν |Sν ,−Σ−1

Sν
ΣSνRν

)
, WPG(U , η) is transformed to a density proportional
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to

exp

[
−1

2

k∑
ν=0

(
Σ−1
Rν |Sν (Σ

−1
Sν

ΣSνRν − U−1
Sν
USνRν

)>
USν

(
Σ−1
Sν

ΣSνRν − U−1
Sν
USνRν )

)]

×
k∏
ν=0

exp

(
−1

2
Σ−1
Rν |SνURν |Sν

)
Σ
− 1

2
ην

Rν |Sν . (6)

This density has k + 1 free shape parameters, one for each block C1 \ S2, S2, R2, . . . , Rk.
If we further split these blocks according to the parent ordering of the vertices in D, then
we can show that the density in Eq. (6) is transformed to a density on ΘD that has the
same form as in Eq. (5) and, consequently, Eq. (4), and in which each αi is a function of
ην’s (therefore there are still k + 1 free parameters). Note that the obtained density on ΘD
retains the directed strong hyper Markov property of the WPG in Theorem 4.4 of Letac and
Massam (2007), in the sense that

Dii = Σii|pa(i) ∼ IG(
αi
2
− pai

2
− 1,

1

2
Uii|pa(i)), and (7)

Σ−1
pa(i)Σpa(i),i | Dii ∼ Npai

(
U−1pa(i)Upa(i),i ,DiiU

−1
pa(i)

)
(8)

and {Dii, Σ−1
pa(i)Σpa(i), i = 1, . . . , p} are independent.

(c) Now let D be an arbitrary directed acyclic graph. In light of (a) and (b), to form our
DAG-Wishart on ΘD, we consider the density given in (5) but with all p parameters αi
being free, thus one shape parameter for each vertex of the graph, and take its image under
the mapping ×i∈V

(
λi, βpa(i)

)
7→ (D,L). We thus define the DAG-Wishart distribution

πΘD
U,α to be the distribution with density on the Cholesky space ΘD proportional to Eq.

(4) and with normalizing constant that we are about to compute. We do so by multiple
integration of the non-normalized density in Eq. (5) and take advantage of the strong
directed hyper Markov property manifested by Eq. (7) and Eq. (8). The calculation
yields:

πΘD
U,α(D,L) =

1

zD(U, α)
exp

[
−1

2
tr((LD−1L>)U )

] p∏
i=1

D
−αi

2
ii ,

for (D,L) ∈ ΘD and

zD(U, α) =

p∏
i=1

Γ
(
αi
2
− pai

2
− 1
)

2
αi
2
−1(
√
π)pai det(Upa(i))

αi
2
− pai

2
− 3

2

det(Ufa(i))
αi
2
− pai

2
−1

. (9)
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Note that πΘD
U,α is a conjugate prior for N (D). More precisely, if the prior distribution

on (D,L) is πΘD
U,α and y1,y2, · · · ,yn is an independent and identically distributed sample

from Np(0, (L>)−1DL−1 ), then the posterior distribution of (D,L) is given by πΘD
Ũ ,α̃

, where

S = 1
n

∑n
i=1 yiy

>
i denotes the empirical covariance matrix, Ũ = nS + U and α̃ = (n +

α1, n+ α2, · · · , n+ αp). As mentioned above, πΘD
U,α is strong directed hyper Markov with

properties (7) and (8). We would like to emphasize here that a distribution of type Eq.
(5) cannot be derived from the Type II Wishart distribution in Letac and Massam (2007)
whenD is arbitrary because WPG is derived as the natural exponential family generated by
an appropriate measure on PG , a machinery which cannot be employed if directed acyclic
graphs are not perfect. It should also be noted that Bayesian inference for models of the
form given in (4), for a given order of the vertices, can be done using the Gibbs sampling
approach in ?. However, with that approach, the analytic expressions for the marginal
likelihood is not available since, in that paper, there is no equivalent to (9).

Remark 3.1 Note that, since the mapping U 7→ πΘD
U,α is not one-to-one, the parametriza-

tion of πθDU,α by U � 0 is not identifiable unless D is perfect. However, if the parameter set
is restricted to PDD, then the parametrization is identifiable. As a parametrized model,
{πΘD

U,α : U ∈ PDD} is in general a curved exponential family for an arbitrary D, and
a natural exponential family if and only if D is perfect (see supplemental section 2.7 for
details).

Remark 3.2 In supplemental section 2, we demonstrate that a particular sub-class of
DAG-Wisharts yields the same prior on Markov equivalent directed acyclic graph models.
In fact we show that this sub-class coincides with that of Geiger and Heckerman (2002),
thus making a connection between the DAG-Wishart priors and those of Geiger and Heck-
erman.

Remark 3.3 As we have seen above, the shape parameters are added to the sample size
in the posterior distribution and thus these shape parameters can be used to reflect the
different degrees of confidence in the strength of the regression relationships. The regres-
sion interpretation and the multiple shape parameters allow for prior beliefs to be flexibly
incorporated in the same manner as with standard regression.

Remark 3.4 We tabulate the properties of the various recently introduced Wishart distri-
butions used in Gaussian graphical models in supplemental section 2.11.

Let us now illustrate the functional form of the DAG-Wishart density on a specific directed
acyclic graph.
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Figure 1: Directed acyclic graph studied in example 4.1.

Ex 3.1 Consider D given in Figure 1. The DAG-Wishart density πΘD
U,α on the Cholesky

space ΘD is given as follows:

πΘD
U,α(D,L) =

1

zD(U, α)
exp

[
−1

2
D−1

33 ((L31, L32)> − U−1
pa(3 )Upa(3 ),3 )>Upa(3 )((L31, L32)> − U−1

pa(3 )Upa(3 ),3 )

]
= exp

[
D−1

11 U11

]
D
− 1

2
α2

11 × exp
[
D−1

22 U22

]
D
− 1

2
α2

22 × exp
[
D−1

33 U33|pa(3 )

]
D
− 1

2
α3

33 .

4 The DAG-Wishart distribution on the space of incom-
plete covariance and precision matrices

4.1 Motivation
In the previous section we introduced the DAG-Wishart distribution πΘD

U,α on the Cholesky
space ΘD. We proceed now to define, for general directed acyclic graphs, an analog of
the WPG and its inverse, the IWPG , which are only defined for decomposable graphs. This
is motivated by the fact that Gaussian distributions are more naturally parametrized over
the covariance or precision matrices. Moreover the Wishart types distribution introduced
by Letac and Massam (2007), similar to the classical Wishart or the hyper Wisharts, are
defined on the space of covariance or precision matrices. Therefore we would also like
to derive DAG-Wisharts for the covariance and precision matrices of N(0,Σ) ∈ N(D).
Formally this requires to derive the image of the πΘD

U,α distribution under the mappings(
(D,L) 7→ LD−1L>

)
: ΘD → PD (10)(

(D,L) 7→
(
LD−1L>

)−1
)

: ΘD → PDD. (11)

From a purely mathematical or theoretical point of view, one can derive the corresponding
densities on PD and PDD with respect to Hausdorff measure. But even for the simplest
directed acyclic graphs, the Hausdorff density is not amenable to posterior analysis (see
supplemental section 3 for a more detailed discussion of this approach). To overcome this
problem, we follow what was done for the hyper inverse Wishart in Lauritzen (1996) or for
the type I Wishart in Letac and Massam (2007) and we work with the projections of PD and
PDD onto the Euclidean space that only retain the functionally independent elements of
the precision and covariance matrices of Gaussian directed acyclic graph models. The pro-
jected spaces, as we shall precisely define later, are subsets of incomplete matrices, which
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we call the spaces of incomplete precision and covariance matrices, respectively. The re-
sults in this section are also important from a practical point of view. Indeed, in Theorem
4.2 and Proposition 4.5, we derive the analytic expression of the expected value of the
projection ΩE and ΣE of the precision and covariance matrices respectively. With these
analytic expressions, we are able to compute the risk functions obtained with various esti-
mates of Ω and Σ, the MLE and the Bayes estimator, and show the superior performance
of our Bayes estimators in supplemental section 4.

4.2 The DAG-Wishart distribution on the space of incomplete preci-
sion matrices

For an element Ω ∈ P(D), let ΩE denote (Ωij : (i, j) ∈ Eu), where Eu is the edge set
of the undirected version of D, and let RD denote the set of all such ΩE . We call ΩE an
incomplete precision matrix, where only the entries along the edges of D are specified,
and RD the space of incomplete precision matrices. Note that RD is simply the image
space of the projection mapping Ω 7→ ΩE . It follows from the definition that if Υ is an
incomplete precision matrix in RD, then there is a precision matrix Ω ∈ PD, called a
positive definite completion of Υ in PD, such that ΩE = Υ. In fact by Proposition 3.5
in Ben-David and Rajaratnam (2012), a positive definite completion of Υ in PD is unique
and can be explicitly computed in polynomial time. In other words, the mapping Ω 7→ ΩE

is a bijection and has an explicit inverse Υ 7→ Ω. Hence the space of precision matrices
PD can be naturally identified with the space of incomplete precision matrices RD. Note
that RD, unlike PD, is open in its affine support. Now let πRD

U,α denote the image of πΘD
U,α

under the mapping

ψ ≡
(

(L,D) 7→
(
LD−1L>

)E)
: ΘD → RD. (12)

Since RD is open in its affine support, the distribution πRD
U,α has a density with respect to

the Lebesgue measure on RD. Thus in light of the bijection Ω 7→ ΩE , in both a natural and
practical sense, we define πRD

U,α as the DAG-Wishart distribution on the space of incomplete
precision matrices RD. To derive the density of πRD

U,α we need to compute the Jacobian of
the mapping ψ in Eq. (12). The Jacobian of ψ is a variant of similar transformations found
in Roverato (2000); Khare and Rajaratnam (2011). For completeness we still compute this
Jacobian in the following lemma. The proof is given in supplemental section 2.7.

Lemma 4.1 (Roverato, 2000; Khare and Rajaratnam, 2011) The Jacobian of the mapping
ψ : (D,L) 7→

(
LD−1L>

)E is
∏p

j=1D
−(paj+2)
jj .
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We now proceed to express the density of πRD
U,α and some of its properties. The proofs are

immediate results of Lemma 4.1 and the iterative construction of πΘD
U,α.

Theorem 4.2 Let ΩE be the image of (L,D) ∼ πΘD
U,α under the mapping ψ. Then

a) The density of ΩE ∼ πRD
U,α with respect to the standard Lebesgue measure on RD is

given by

zD(U, α)−1 exp

[
−1

2
tr(ΩU )

] p∏
i=1

D
−αi

2
+pai+2

ii ,

where Ω is the unique positive completion of ΩE in PD, Dii = (Ω−1)ii|pa(i), which is
explicitly a function of ΩE , and zD(U, α) as defined in Eq. (9).

b) The Laplace transform of πRD
U,α atKE ∈ RD is given byLRD(KE) =

zD(2K + U, α)

zD(U, α)
where K is the completion of KE in PD.

c) E
(
ΩE
)

=

(∑p
j=1(αj − paj − 2)

(
U−1
fa(j )

)0

−
∑p

j=1(αj − paj − 3)
(
U−1
pa(j )

)0
)E

,

where
(
U−1
fa(j )

)0

and
(
U−1
pa(j )

)0

denote the |V | × |V | matrices obtained by insert-
ing zeros in the positions not in fa(j ) and pa(j ), respectively.

4.3 The inverse DAG-Wishart distribution on the space of incomplete
covariance matrices

In this subsection, we shall define the distribution that corresponds to the hyper-inverse
Wishart or more generally the inverse Type II Wishart IW PG . First we introduce the space
of incomplete covariance matrices. For a covariance matrix Σ ∈ PDD, the incomplete
covariance matrix ΣE is (Σij : (i, j) ∈ Eu), and the space of incomplete covariance ma-
trices, denoted by SD is the set of all ΣE such that Σ ∈ PDD. Here we note that SD is the
projection space of the projection mapping Σ 7→ ΣE . By Proposition 3.6 in Ben-David
and Rajaratnam (2012) for each Γ ∈ PDD there a unique and explicitly (polynomial-time)
computable positive definite matrix in Σ ∈ PDD such that ΣE = Γ. Note that Σ is simply
the positive definite completion of Γ in PDD. Now since the mapping Σ 7→ ΣE is a bijec-
tion, we can identify the space of covariance matrices PDD with the space of incomplete
covariance matrices SD.
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Let πSD
U,α denote the image of πΘD

U,α under the mapping (D,L) 7→ (L−>DL−1)E : ΘD →
SD, where L−> =

(
L>
)−1. In parallel to our notation πRD

U,α, we will denote the inverse
DAG-Wishart distribution on the space of incomplete covariance matrices SD as πSD

U,α. Next
we shall derive the density of this distribution with respect to the Lebesgue measure. First
we compute the Jacobian of the mapping (ΣE 7→ Σ−E) : SD → RD, where Σ−E = (Σ−1)

E

and Σ is the completion of ΣE in PDD (see supplemental section 2.8 for proof).

Lemma 4.3 The Jacobian of the mapping (Σ−E 7→ ΣE) : RD → SD is given by
∏p

i=1

det Σpai+2
fa(i)

det Σpai+1
pa(i)

.

Ex 4.1 Consider D given in Figure 1. Then the inverse DAG-Wishart on D is given by

πSD
U,α(ΣE) = zD(U, α)−1 exp

[
−1

2
tr(Σ−1U )

]
D
−α1

2
11 D

−α2+2
2

22 D
−α3+2

2
33 ,

where Σ, the completion of ΣE , is obtained by setting Σ23 = 0 since X2 ⊥⊥ X3.

Remark 4.1 We remind the reader that for a decomposable graph G the IWPG in Letac
and Massam (2007) is a variant of πSD

U,α for a perfect directed acyclic graph version of
G. Furthermore, in the setting of Gaussian covariance graph models, the inverse Wishart
distribution introduced by Khare and Rajaratnam (2011) for a homogeneous graph G is
an equivalent form of πSD

U,α for a transitive and perfect version D of G. The proof of this
result is rather technical and is given in supplemental section 2.9.

4.4 Properties of the inverse DAG-Wishart distributions
One of the main useful property of the inverse DAG-Wishart πSD

U,α for an arbitrary D is its
strong directed hyper Markov property. As discussed in section 3.1, this follows directly
from Theorem 4.4 in Letac and Massam (2007) but is generalized to arbitrary directed
acyclic graphs. The precise statement of the strong directed hyper Markov property for
πSD
U,α is as follows.

Theorem 4.4 If ΣE ∼ πSD
U,α, then

i)
(

(Σii|pa(i),Σ
−1
pa(i)Σpa(i),i : i ∈ V

)
are mutually independent and therefore πSD

U,α has
strong directed hyper Markov property.
ii) The distribution of Σii|pa(i) and Σ−1

pa(i)Σpa(i),i | Σii|pa(i) are as in Eq. (7) and Eq. (8) of
section 3.

12



We can also evaluate the expected value under πSD
U,α. The process for computing this quan-

tity, given in the following proposition, is the exact equivalent of Theorem 3.1 in Rajarat-
nam et al. (2008) but now generalized so it is applicable to any directed acyclic graphs.

Proposition 4.5 Suppose ΣE ∼ πSD
U,α, with α > pai + 4. Then the expected value of ΣE

can be recursively computed by the following steps for i = p− 1,p− 2, . . . , 1.

(i) E (Σpp) =
Upp

αp − 4
, (ii) E

(
Σpa(i),i

)
= −E

(
Σpa(i)

)
U−1
pa(i)Upa(i),i and

(iii) E (Σii) =
Uii|pa(i)

αi − pai − 4
+ tr

[
E
(
Σpa(i)

)(Uii |pa(i)U
−1
pa(i)

αi − pai − 4
+ U−1pa(i)Upa(i),iUi ,pa(i)U

−1
pa(i)

)]
.

5 Simulation study and Applications to real data
We will now illustrate the use of our DAG-Wishart distributions by applying them to two
problems in modern high dimensional statistical inference: Bayesian model selection in
the space of Gaussian directed acyclic graph models with a given order of the vertices and
parameter estimation. Our Bayesian model selection method based on the DAG-Wishart
prior uses a closed form marginal likelihood, and to our knowledge it thus is more scalable
than previous Bayesian approaches (in our examples, we illustrate the model selection of
graphs with as high as p = 2000). Our estimation of the covariance and precision matrices
corresponding to Gaussian directed acyclic graph models uses the closed form solutions
for the estimates of the precision and covariance matrices due to Proposition 4.5 and the
conjugacy of the DAG-Wishart. The ease of implementation and scalability for model
selection is illustrated using simulated data and also the real molecular network data.

5.1 Bayesian model selection via DAG-Wishart prior
In many applications, the graph structure is unknown beforehand and estimating an under-
lying graph is an important contemporary problem. In this section, we illustrate how to
apply the DAG-Wishart priors to model selection problems.

Assuming a uniform prior on the space of all graphs on p vertices, we want to compute
the marginal likelihood p(X | D) =

∫
f(X | Σ,D)π(Σ | D)dΣ for each model D. The

marginal likelihood can be computed in closed form for our flexible DAG-Wishart priors.
In Bayesian model selection, the goal is to identify the D that gives the largest marginal
likelihood. Such procedure requires enumerating all 2(p2) graphs and is NP hard. Instead,
we propose a powerful stochastic searching strategy to identify the “best” graph with high
accuracy and in polynomial time. Our approach is an improved version of the stochastic
shot-gun search (SSS) of Jones et al. (2005) coupled with the LassoDAG method in Shojaie
and Michailidis (2010). Our model selection algorithm, DAG-W, is specified below:
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Algorithm 5.1 (DAG-W) Assume the following are given: the standardized data matrix
X , the hyper-parameters α, U and the maximum iteration number M . Estimate N mod-
els corresponding to different points on the LassoDAG regularization path, labeled as
D(k), k = 1, · · · , N . Then for each k = 1, 2, · · · , N , do the following.

1. Let D0 = D(k). Until the maximum iteration number M is achieved:

(a) Randomly select N1 graphs that are one edge away from D0. Evaluate the log
posterior scores s1, · · · , sN1 for each of these graphs, according to the DAG-
Wishart prior/posterior. Record all of these graphs and scores as a list L(k).

(b) Sample the next graph from the current graph list with probability pi ∝ exp (si)
γ ,

where γ is an annealing parameter. Take the sampled graph Dnew as D0.

(c) Return to Step 1-(a).

2. Collect/Assemble all the L(k), k = 1, · · · , N .

3. Return the graph with the largest score as the selected model.

The intuition behind the algorithm DAG-W is as follows: though LassoDAG does not in
general yield the D with the highest marginal likelihood, the model selection path of Las-
soDAG should explore the model space effectively. Therefore instead of evaluating the
marginal likelihood of all possible graphs, one can narrow the searching area to the graphs
close to the LassoDAG path. As indicated in the algorithm above, we take the various
models corresponding to different penalty parameter values on the LassoDAG regulariza-
tion path as starting points of our model search. Supplemental section 4.1 includes our
numerical evaluation of DAG-W in the setting of p = 7. In this setting, we show that our
algorithm is able to identify the highest marginal likelihood graph with very high proba-
bility (≥ 0.99) by only searching a negligible proportion of the full model space. Thus our
algorithm is a computationally feasible solver of the NP hard problem with very high ac-
curacy. In Shojaie and Michailidis (2010), the penalty parameter τi for the Lasso problem
of node i is set to

τi = 2
Z∗ κ

2p(i−1)√
n

, (13)

where in general Z∗q denotes the (1 − q)th quantile of standard normal distribution and
κ = 0.1 is the recommended value in Shojaie and Michailidis (2010). Here we use the
same setup as in Shojaie and Michailidis (2010) to evaluate and compare the performance
of the LassoDAG to our DAG-W algorithm. More details are as follows.
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The scale parameter U of the DAG-Wishart is taken to be the identity matrix. We con-
strain the shape parameters to be c ·pai+ b such that c ·pai+ b > pai+ 2. In particular, we
take b = 3, c = 1 in model selection as this seems to give reasonably good model selection
results in all of our evaluation tasks (with different p, n and sparsity). We set N = 16 in
Algorithm 5.1 for our Bayesian model selection: 15 initial states were chosen by taking
κ = (k/15)4p, k = 1 · · · 15 in Eq. (13) and the sixteenth state was selected using the Las-
soDAG recommendation1 κ = 0.1. Furthermore, we takeM = 100,N1 = 30 and γ = 0.5.

The data is generated by the random directed acyclic graph generator in the R-package
pcalg ((Kalisch et al., 2012; Hauser and Bühlmann, 2012)). In our evaluation, we spec-
ify the edge proportion (sparsity) to be 0.01 in generating the directed acyclic graph and
the edge regression weights are uniformly sampled between 0.2 and 0.8. The reader is re-
ferred to pcalg documentation for details about the model generating procedure. Fixing
n = 100, we check the model selection performance when the edge proportion is 0.01
and p = 50, 100, 200, 500, 1000, 1500 and 20002. The performance is measured by two
competing measurements: sensitivity and specificity, which are frequently used in model
selection tasks (see Baldi et al. (2000)). Sensitivity is used to measure the proportion of
true edges discovered while specificity is used to measure the proportion of the null edges
that are correctly excluded.

Table 1 shows the performance comparison between the Lasso-DAG and DAG-W.
Both methods are able to retain very good specificity. The DAG-W gives much better sen-
sitivity with only slightly lower specificity. When p is large, the improvement in sensitivity
is more noticeable. In the case of p = 2000, the sensitivity given by the DAG-W is more
than twice that given by the LassoDAG. One of the main advantages of the DAG-W is in
the area of high dimensional biological applications. In such applications gene discoveries
which are reliable are important, especially since the gain in sensitivity comes at negligible
loss in specificity.

We also demonstrate the efficiency of our DAG-Wishart approach in the context of pa-
rameter estimation in high dimensions in supplemental section 4.3. More specifically, we
investigate decision theoretic based estimation using two losses, namely Stein’s loss and
quadratic loss. We consider estimation of both Σ and Ω. The Bayes estimator correspond-

1In Shojaie and Michailidis (2010), κ can be used to measure false positive control thus it should be less
or equal to 1. Here we do not respect this constraint as our choice turns out to search the model space much
better according to our evaluation.

2To make it computationally feasible for model selection in such high dimensions, we decrease N from
16 to 9 for problems with p ≥ 500. And for each initialization points, we only search at most 50 steps
(M = 50).
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LassoDAG DAG-W
p Sensitivity Specificity Sensitivity Specificity Timing (min.)

50 0.616 1.000 0.783 0.998 1.21
100 0.483 ∼ 1 0.752 0.998 2.99
200 0.397 ∼ 1 0.741 0.998 8.53
500 0.250 ∼ 1 0.652 0.998 21.90
1000 0.175 0.999 0.425 0.997 66.39
1500 0.123 0.998 0.267 0.996 109.16
2000 0.099 0.997 0.194 0.994 280.56

Table 1: Average performance measurements for different p, when n = 100 and edge
proportion equal to 0.01. The last column is the average CPU time for one replication of
model selection by DAG-W, on Intel Xeon CPU E5606@2.13GHz.

ing to these two loss functions together with the MAP estimator yields three estimators
each for the covariance and precision matrix. Our extensive numerical investigations in
this regard indicate that estimation using our DAG-Wishart priors yield substantial risk
reductions over that of the MLE. We also give guidelines and details regarding choice
of hyperparameters, robustness of the DAG-Wishart approach to outliers and the role of
sparsity of the graph in estimation performance.

5.2 Real data application: molecular network estimation
In this section, we test our model selection method on the data set of Sachs et al. (2005)
which contains p = 11 proteins and phospholipids measurements on n = 7466 cells. This
data set was also used in Shojaie and Michailidis (2010) and Friedman et al. (2008). A
directed acyclic graph was established in Sachs et al. (2005) and will be assumed to be the
true graph for our purposes. Furthermore, we shall use the established parent order in the
following model selection investigation.
The estimated graphs are shown in Figure 2. The blue edges are the correctly discovered
ones and the red edges are false discoveries. Again, we set κ = 0.1 for the LassoDAG
and b = 3, c = 1 for the DAG-W. LassoDAG gives 78.95% sensitivity with 52.78% speci-
ficity, while DAG-W gives 94.74% sensitivity with 47.22% specificity. So DAG-W gains
a 15% increase in sensitivity by sacrificing 5% of specificity. Both of the estimations
are denser than the one reported by Sachs et al. (2005). Comparing the discoveries of
the two models: all of the 15 true discoveries from LassoDAG are also included in the
discoveries of DAG-W. The three additional true positive edges from DAG-W are edges
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PKA → MEK, PKA → P38 and PKC → MEK. So if the goal is to discover
potential associations for future laboratory research, DAG-W is a better choice, since
it includes all the discoveries of LassoDAG as a subset, and also finds three other true
edges, at the price of two more false discoveries. According to Sachs et al. (2005), the
mechanism of edge PKA → MEK is possibly due to the true molecular influence path
PKA→ Rafs621 →MEK. Edge PKA→ P38 is possibly due to the true molecular in-
fluence path PKA→ MKKs→ P38. Molecules Rafs621 and MKKs however are not
measured in the data. Thus the success in detecting indirect influences demonstrates the
better sensitivity of DAG-W. On the other hand, there are two distinct influence paths from
PKC toMEK, that is, PKC →MEK and PKC → RAF →MEK. LassoDAG only
detects the latter, which is possibly because the edge effect of PKC → RAF → MEK
masked that of PKC → MEK. In DAG-W, we are able to discover both of the edges
due to better detection sensitivity. We also evaluate our model selection and covariance
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Figure 2: The estimated graphs are compared with the ”true” network discovered by Sachs
et al. (2005). The solid edges are the correctly discovered ones and the dashed edges are
false discoveries.

estimation procedures on the call center data used in Bickel and Levina (2008) and Ra-
jaratnam et al. (2008). The DAG-Wishart model has better performance on that task as
well. More details about this example can be found in supplemental section 4.5.

6 Supplementary material
A supplemental section is available at Biometrika online and includes some background
on directed acyclic graph Markov models, theoretical properties of our new DAG-Wishart
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distribution as well as the details of our computational algorithms and results for model
selection and estimation.
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inference using graphical models with the R package pcalg. Journal of Statistical Soft-
ware, 47(11):1–26.

Khare, K. & Rajaratnam, B. (2011). Wishart distributions for decomposable covariance
graph models. Ann. Statist., 39(1):514–555.

Lauritzen, S. L. (1996). Graphical models, volume 17 of Oxford Statistical Science Series.
The Clarendon Press, Oxford University Press, New York. Oxford Science Publications.

Letac, G. & Massam, H. (2007). Wishart distributions for decomposable graphs. Ann.
Statist., 35(3):1278–1323.

Rajaratnam, B., Massam, H., & Carvalho, C. M. (2008). Flexible covariance estimation in
graphical Gaussian models. Ann. Statist., 36(6):2818–2849.

Roverato, A. (2000). Cholesky decomposition of a hyper inverse Wishart matrix.
Biometrika, 87(1):99–112.

Sachs, K., Perez, O., Pe’er, D., Lauffenburger, D. A., & Nolan, G. P. (2005). Causal
protein-signaling networks derived from multiparameter single-cell data. Science,
308(5721):523–529.

Shojaie, A. & Michailidis, G. (2010). Penalized likelihood methods for estimation of
sparse high-dimensional directed acyclic graphs. Biometrika, 97(3):519–538.

19


